
Gekko Timeseries & Modeling

Gekko 3.1.x help system

T-T Analyse

Gekko 3.1.x help system2

T-T Analyse

Table of Contents

Part I Introduction

 6

1 New features .. 8

2 Installation .. 15

3 User interface ... 17

4 Notes and issues .. 19

Part II Search

 22

Part III Gekko User Guide

 24

1 Elevator pitch (why use Gekko?) .. 25

2 Data Management User Guide .. 30

Download etc. ... 31

Data managements basics .. 31

Databanks and variables .. 32

Databanks ... 32

Timeseries .. 38

Frequency and time period ... 43

Copying etc. .. 49

Import and export of data ... 51

Download API ... 56

Gekko programs ... 58

Module organization of command files .. 61

Scalars ... 62

Lists .. 64

Loops ... 72

Array-timeseries and implicit loops .. 74

Conditional statements .. 78

Functions and procedures ... 80

Options .. 81

Data reporting ... 83

Printing ... 83

Plotting ... 88

Excel printing ... 91

Tables .. 92

3 Modeling User Guide .. 96

Download etc. ... 96

Modeling basics .. 97

Historical simulation .. 100

Multiplier analysis (shocks) ... 108

Add-factors etc. .. 113

Goal-search etc. .. 116

Forward-looking ... 120

Part IV Gekko User Manual

 124

3Contents

T-T Analyse

1 User manual introduction ... 125

Basic concepts ... 126

Time periods .. 133

Databank search .. 133

Wildcards ... 137

Naked list .. 143

Dynamic statements .. 146

Missing values .. 152

Filenames ... 154

Help system ... 156

Restore session ... 156

Under the hood ... 158

2 Syntax basics ... 160

Basic syntax rules ... 161

More about syntax ... 164

Indexing: list, matrix, map .. 172

Syntax diagrams .. 175

3 Gekko statements .. 179

Statements overview ... 180

Sim-mode statements overview ... 184

Data-mode statements overview .. 187

ACCEPT .. 191

ANALYZE .. 193

BLOCK .. 195

CHECKOFF .. 198

CLEAR .. 200

CLIP ... 202

CLONE .. 203

CLOSE .. 204

CLOSEALL ... 206

CLS .. 207

COLLAPSE .. 208

COMPARE .. 212

COPY ... 216

COUNT .. 221

CUT .. 223

CREATE .. 224

DATE ... 226

DECOMP ... 234

DECOMP2 .. 239

DELETE .. 243

DISP ... 246

DOC ... 249

DOWNLOAD .. 252

EDIT ... 257

ELSE .. 259

ELSEIF .. 260

END .. 262

ENDO ... 263

EXIT ... 267

EXO .. 268

EXPORT .. 269

FINDMISSINGDATA ... 274

Gekko 3.1.x help system4

T-T Analyse

FIND ... 277

FOR .. 279

FUNCTION ... 286

GLOBAL .. 292

GOTO ... 295

HDG ... 297

HELP ... 298

IF ... 300

IMPORT ... 304

INDEX .. 313

INI ... 318

INTERPOLATE .. 319

ITERSHOW ... 324

LIBRARY ... 326

LIST .. 333

LOCAL ... 352

LOCK ... 354

MAP .. 355

MATRIX ... 359

MEM ... 370

MENU .. 372

MODE .. 375

MODEL .. 378

MULPRT ... 390

OLS .. 396

OPEN ... 401

OPTION ... 407

PAUSE .. 427

PIPE ... 428

PLOT .. 431

PROCEDURE .. 445

PRT .. 451

PREDICT .. 463

R_RUN .. 465

PYTHON_RUN .. 472

REBASE ... 479

READ ... 482

RENAME ... 487

RESET ... 489

RESTART ... 490

RETURN ... 493

RUN ... 495

SERIES ... 499

SHEET ... 516

SIGN ... 525

SIM ... 527

SMOOTH ... 532

SPLICE .. 535

STOP ... 541

STRING ... 543

SYS .. 551

TABLE ... 553

TARGET .. 562

TELL .. 563

5Contents

T-T Analyse

TIME ... 566

TIMEFILTER ... 569

TRACE2 .. 572

TRANSLATE .. 576

TRUNCATE .. 579

UNFIX .. 580

UNLOCK ... 581

VAL .. 582

VAR .. 585

WRITE ... 587

X12A .. 590

XEDIT .. 593

4 Gekko functions ... 595

Functions ... 596

Part V Gekcel (Excel add-in)

 647

1 Gekcel basics ... 649

2 Gekcel guided tour ... 651

3 Immediate Window .. 658

4 Further development .. 663

5 More: Gekko_Get/Put ... 664

Part VI Appendix

 666

1 AREMOS translator details ... 668

2 Gekko 2.0 translator details .. 671

3 Assignments ... 674

4 Missings ... 675

5 Indexing .. 683

6 Data tracing .. 686

7 GAMS details .. 689

8 Gekko 2.4 to 3.0 cheat sheet .. 690

9 Gekko 2.4 to 3.0 reasons .. 693

10 Gekko solvers .. 701

Newton-Fair-Taylor .. 702

11 Comparison with similar software ... 708

Compare with AREMOS ... 709

Compare with EViews ... 716

Index 720

Part I

7Introduction

T-T Analyse

1 Introduction

Last modified: 11/3 2024

Gekko Timeseries and Modeling Software is a free and open-source
software system for managing and analyzing timeseries data, and for
solving and analyzing large-scale economic models. See the Gekko
homepage: www.t-t.dk/gekko. Read more about the status of different
Gekko versions on the Gekko versions overview page.

See the search page if you need to search the Gekko help system.

 Short-cuts to oft-used sections:

· Gekko statements
· Gekko functions
· Gekko options

· Data Management User Guide
· Modeling User Guide

The Gekko help system contains the following main sections:

· Introduction (this page). General info on new features, installation, user
interface, versions, etc.

· Search. Search the Gekko help system.
· Gekko User Guide. New users are guided through the software with descriptions,

practical examples, etc.
· Gekko User Manual. Comprehensive and detailed description of statements,

functions, etc.
· Excel add-in (Gekcel). A component that makes it possible to issue Gekko

statements from within Excel.
· Appendix

The help system occasionally uses toggles: embedded text that can be opened and
closed quickly like the following: +toggle (try to click it).

Some explanations and examples are not relevant for all readers, or different readers
may prefer different levels of details. Toggles are light-weight and quick to open and
close and therefore practical for showing bits of extra information of the nice-to-know
rather than need-to-know kind.

In the pdf version of the help system, all toggles are shown per default.

http://www.t-t.dk/gekko
http://t-t.dk/gekko/gekkoversions/

8 Gekko 3.1.x help system

T-T Analyse

1.1 New features

This version of Gekko is part of the 3.1.x development series, extending the official
Gekko 3.0. The 3.1.x development versions are intended to be non-breaking and just
as stable as Gekko 3.0. The development versions are published on the Gekko
website here (see also the changelog for more details, or Github for even more
details).

Gekko 3.1.x

Care is taken to ensure that the 3.1.x versions are stable and backwards compatible
with the official Gekko 3.0 (from April 2019). Compared to Gekko 3.0, the latest
3.1.x version implements the following:

· New DECOMP with many new features, among other things recursive decomposition
and dimensionality. Also supports GAMS models.

· Data tracing for timeseries, storing info on how the timeseries data have been
constructed (cf. TRACE2). Also program dependency tracking: which (data) files are
read/written?

· GAMS equations/models are now fully supported (via so-called 'unrolled' equations)
and can be used with the new DECOMP (cf. MODEL). For GAMS models, SIM<res>
works, too.

· Autocomplete on series names, including array-series. Is triggered with [Tab] or

[Ctrl+Space].

· Weekly and daily frequencies (w and d) are introduced, with dates like 2019w50 or

2019m12d24. There are also new functions to bridge between Gekko daily dates and

Excel dates.
· Gekcel: an Excel add-in (xll file) that makes it possible to (among other things)

read/write to Gekko databanks via Excel functions from within Excel, without
starting up Gekko. This component is downloaded separately, at the same download
pages as the normal Gekko system.

· Improved and less voluminous error messages.
· Local options that only apply to the curren Gekko statement.
· User-defined functions and procedures allow prompting and default values for

arguments. For functions and procedures, you may omit default arguments, or you
may use ? to make Gekko prompt (input window) regarding such default

arguments, for instance p?; to call a procedure p with prompting, or f?(); to call a

function f with prompting. See more under FUNCTION and PROCEDURE.

· User-defined functions and procedures can be stored in library zip files (cf. the
LIBRARY statement). Gekko libraries use lazy loading so that you may load a large
library quickly without slowing down Gekko. Normal files can also be accessed from
the \data subfolder of a library. Libraries can be loaded in a hierarchical fashion,

and similarly to databanks, you may use colon : to refer to a

function/procedure/file from a particular library (like lib1:f() or lib1:data.csv).

There are capabilities regarding encapsulation (this: designation and private __

prefixes).

http://t-t.dk/gekko/devel
http://t-t.dk/gekko/changelog
https://github.com/thomsen67/GekkoTimeseries

9Introduction

T-T Analyse

· OLS improvements, showing parameter stability, fit and decomposed values. Trend
polynomials can be added automatically, and endpoint restrictions can be stated
easily (so-called 'Finnish' trends). OLS<dump> will transform the estimation into
an equation suitable for Gekko models (FRML).

· New equation types for models. In addition to the usual Y-type equations (typically
containing reverted J-factors and similar technical stuff), you may use T-type
equations, too. The difference is purely semantic, but the idea is that T-type may
denote that the equations are 'interesting' (for instance used for tabelling), rather
then purely technical. Equations may also be P-type: these are not not be part of
the model at all, but can be called with the new PREDICT statement. In addition,
via RUNBEFORE$ and RUNAFTER$ tags, you may put normal Gekko program
statements inside the model file, to be run before or after the simulation proper.
These features are experimental at the moment.

· PREDICT statement to call individual model equations.
· IMPORT<aremos> can be used to transfer timeseries from AREMOS with higher

precision (significant digits) than the tsd format.
· Python interface implemented, see RUN_PYTHON and EXPORT<python>. This is

similar to the R interface, which has been simplified.
· EXPORT<array> implemented, using the Apache Arrow data format for easy use in

for instance R or Python (and others). See more under R_RUN and PYTHON_RUN.
· Better selection and indexing possibilities regarding nested lists. This makes it

possible to import an Excel sheet as a nested list, and handle the cells in a matrix-
like fashion (similar to how NumPy deals with n-dimensional arrays).

· SHEET<import list> and SHEET<import map> to transfer an Excel sheet into a
nested list or map for further processing.

· Dynamics checking from version 3.1.7 an onwards. A statement like x = x[-1] +

1 with the lagged dependent/endogenous x[-1] on the right-hand side will fail with

a 'dynamics error' if the statement is not decorated with <dyn>, <dyn = no>, or is

put inside a block series dyn = yes|no. See more here.

· Possibility to restore statements from a previous interactive Gekko session easily
(by clicking a link).

· Improvements in the GAMS to Gekko equation translator, can also be used with
mark and right-clicking text.

· In the Gekko main window, you may choose how [Enter] and [Ctrl+Enter] works

in the editor (lower part of the main window). For instance, RStudio style is
possible, where [Enter] issues a newline, and [Ctrl+Enter] executes the line.

See OPTION interface edit style =
· Use the root() function to avoid hard-coded paths in your system of Gekko

programs, databanks, etc. Using root() simplifies portability: the possibility of
painless copying/moving a folder Gekko files to another location.

· File paths allow so-called "zip paths", for instance g:

\projects\storage.zip\data.csv to refer to the file data.csv inside

storage.zip. (the .csv file is automatically extracted). This only works for file

reading, not writing.
· SPLICE supports multiple series, date intervals, and different methods. Function

splice() is also implemented.
· INTERPOLATE now has the better Denton method, too.
· INDEX supports array-series.
· PRT<view> to show nested lists in a list window.
· IMPORT<px> supports new short variable codes.

https://arrow.apache.org/
https://numpy.org/
https://rstudio.com/

10 Gekko 3.1.x help system

T-T Analyse

· CLOSEALL statement (= CLOSE *; CLEAR;).

· ELSEIF statement.
· Function laspchain() with annualoverlap argument, for non-annual chain indexes.

· Function comparefolders() to compare the contents of to file folders.
· Drag & drop of files into the main Gekko window.
· Loading of models and databanks uses multi-core cache files. For large gdx files

speedup can be a factor 3-5x.
· 64-bit version available (both Gekko and Gekcel).
· Quite a lot of smaller fixes and improvements regarding statements and inbuilt

functions, and the consistency of these.
· New functions: collapse(), fromBank(), getSpecialDay(), getWeek(), getWeekday(),

interpolate(), isLibraryLoaded(), lf(), mod(), observations(), rebase(), root(),
smooth(), tic(), toc(), upperFirst().

· New options: option collapse method, option collapse missing d, option interpolate
method, option smooth method, option copy respect.

Gekko 3.0

Syntax-wise the syntax changes from 2.0/2.2/2.4 to 3.0 are not quite as dramatic as
the changes from 1.8 to 2.0. Version 3.0 is more a question of new capabilities,
improving upon existing capabilities, cleaning up the syntax, and providing general
consistency. Regarding model solving and the way databanks are opened and closed,
nothing has been changed from 2.4 to 3.0, in order to keep these parts of Gekko
stable. There is an automatic translator from 2.0/2.2/2.4 available, cf. TRANSLATE.
The most significant changes from 2.4 to 3.0 are the following:

· All variables types, series, value, string, date, list, map, and matrix, now reside in
databanks, and all variable types can be stored in .gbk databank files.

· Assignment of variables no longer needs to include type. So series x = 5; val %

v = 100; matrix #m = [1, 2]; can now be written more compactly x = 5; %v =

100; #m = [1, 2];. To be completely sure of the type of for instance %v, you can

still use for instance val %v = 100;. Note also that in Gekko 3.0, you must use %

or # type symbols on the left-hand side, so for instance val v = 100; must be val

%v = 100; in Gekko 3.0.

· Series variables all use frequency indicator !a (annual), !q (quarterly), !m

(monthly), !d (daily) or !u (undated). These indicators can often be omitted, for

instance prt x; to print out x of the current frequency. Use the indicators to access

a series of another frequency than the current, or for mixed frequency use.
· Map is a new variable type that stores variables by name. Maps are like mini-

databanks and are among other things handy for bundling variables together, for
instance when getting variables in and out of user-defined functions.

· Lists may now store any type of variables, not just strings. The list functionalities
have been augmented, including list functions. Two-dimensional listfiles (lists of
lists) are supported, using a .csv-like format. Note that list definitions in Gekko 3.0
generally include parentheses, for instance ('a', 'b') for a list of two strings.

However, in the LIST and FOR statements, you may use a 'naked' list definition, for
instance #m = a, b; being equivalent to #m = ('a', 'b'), or #m = 1, 2; being

11Introduction

T-T Analyse

equivalent to #m = (1, 2);. Instead of LIST<direct> from Gekko 2.4, the user can

just use a naked list in Gekko 3.0. See more on naked lists.
· Introduction of local and global databanks. The local databank is used for

temporary/discardable variables (for instance inside functions/procedures), and the
global databank can be used for permanent storage of settings etc. that are
intended to survive for instance READ and CLEAR statements. In combination with
these banks, there are the new statements LOCAL and GLOBAL to denote such
variables. Apart from that, the databank logic is exactly the same as in Gekko 2.4.
The local databank is searched first, and the global databank last (also in sim-
mode).

· BLOCK ... END is a new structure to set time period and/or other options
temporarily, setting them back after the block is finished.

· Since series statements are calculated in a vector-like fashion in Gekko 3.0/3.1.x
(in contrast to the Gekko 2.x versions), lags no longer automatically accumulate
period-for-period, if the left-hand side variable is present with lags on the right-
hand side (lagged dependent/endogenous variable). See more on the help page on
dynamic statements. In Gekko versions >= 3.1.7, a statement like for instance x =

x[-1] + 1 will need to be decorated with an indication regarding whether it should

accumulate (<dyn>) or not (<dyn = no>), cf. examples on the linked help page.

Note that for absolute accumulations like x <dyn> = x[-1] + 1, you may use x

<d>= 1, x ^= 1 or dif(x) = 1 instead (and there are also variants regarding

relative accumulations, see below). Note that setting <dyn> (or block series dyn

= yes) unnecessarily entails a speed penalty and should therefore not be used

unless needed.
· Wildcard lists are syntactically changed from for instance [a*x] to ['a*x'] to

obtain a list of strings matching the wildcard, or {'a*x'} if the matched strings are

going to be used as variable names (for instance in PRT, etc.). In statements that
do not accept expressions, for instance COPY, INDEX, DISP, etc., the shorter 'naked'
wildcard a*x is legal too.

· PRT and PLOT now handle mixed frequencies in the same plot/print.
· PRT/PLOT works on non-indexed array-series, for instance prt x; instead of prt

x[#i, #j]; (where x is an array-series).

· User-defined functions and procedures have been reworked for Gekko 3.0: they can
be accessed from anywhere, as long as they have been defined chronologically
before the call. The old option library file is now obsolete. A Gekko program

file (.gcm) with user functions/procedures can just be loaded with RUN in gekko.ini,
and subsequently the functions/procedures will be available until the next
RESET/RESTART (functions/procedures are not stored in databanks).
Functions/procedures support default values and prompting.

· User-defined functions and procedures may use a <>-field to indicate time
parameters. Hence, a user-defined function scale() may be called like

scale(<2010 2020>, x), and a procedure scale may be called like scale <2010

2020> x;. Inside the functions/procedures, these time parameters can be accessed

as dates, and if they are omitted in the call, the time parameters are set to
correspond to the the local/global Gekko time period. The new <>-field is also used
in some of the inbuilt functions: avgt(), sumt(), hpfilter(), laspchain(), laspfixed(),
pack(), unpack(), time().

· All functions (including user-defined functions) can be called as object functions on
the first argument (not counting time parameters): this is called Uniform Function
Call Syntax (UFCS). So a function like for instance f(x, y) can generally be

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

12 Gekko 3.1.x help system

T-T Analyse

written as x.f(y). Therefore, instead of for instance f(#m, %s), you may use

#m.f(%s). Such functions can be chained, for instance

#m.extend(#m1).remove('a').sort(), providing a more fluent syntax than the

equivalent and 'backwards' sort(remove(extend(#m, #m1), 'a')).

· A new name type is introduced for function and procedure arguments, in order to
avoid unnecessary single quotes. You may define for instance procedure f name %

x; prt ref:{%x}; end; f a1;. After this, f a1; will print out a1 from the Ref

databank, which is more convenient than having to type f 'a1';. Inside the

function/procedure, the name %x works just like a string %x.

· The NAME statement is obsolete, so for instance NAME %s = 'a'; is not legal.

Instead, use STRING and refer to the string with {}-curlies. For instance %s =

'bvat'; prt {%s};. Note that there is a name-type for functions/procedures in

order to avoid quoted argument strings.
· A lot of new in-built functions are added to deal with variable names represented as

strings, for instance the string 'b2:x[a, y]'. There are functions to

add/set/get/remove the databank, frequency, index, etc. part of such a string.
· Faster gdx read/write. Optional equation browser for GAMS equations. In option

model type = gams mode, ENDO/EXO has been reworked to interface with GAMS.

· Alias names may be used, for instance providing a mapping from old to new
variable names. See option interface alias.

· Better abort red button that should work in all cases where Gekko needs to be
stopped.

· PLOT can export to pdf.
· m() can be used instead of miss() to indicate missing value.
· OLS<dump> can dump results as FRML equation for use in models.
· Enhanced format() function that can control width and alignment, and {}-curlies

inside strings can be formatted.
· New statements: BLOCK, CUT, LOCAL, GLOBAL, MAP, VAR.
· Removed statements: NAME (use strings and {}-curlies), SHOW (use PRT),

UNSWAP.
· New functions: addbank(), addfreq(), append(), contains(), count(), data(), dates(),

except(), extend(), flatten(), getbank(), getdomains(), getendoexo(), getfreq(),
getfullname(), getindex(), getmonth(), getname(), getnameandfreq(), getquarter(),
getsubper(), getyear(), index(), isopen(), map(), pop(), preextend(), prefix(),
prepend(), readfile(), remove(), removebank(), removefreq(), removeindex(),
replacebank(), replacefreq(), replaceinside(), rotate(), seq(), series(), setbank(),
setdomains(), setfreq(), setname(), setnameprefix(), setnamesuffix(), sort(),
strings(), stripend(), stripstart(), substring(), suffix(), timeless(), unique(), vals(),
writefile().

· Removed (renamed) functions: difference() is now except(), piece() is now
substring(), search() is now index(), strip() is now replace(), trim() is now strip().
The following functions have reordered parameters regarding dates: avgt(), sumt(),
 hpfilter(), fromseries(), unpack().

· New options: option decomp maxlag, option decomp maxlead, option gams time
freq, option interface alias, option interface remote file, option interface table
operators (renamed from 'printcodes'), option model type, option plot elements
max, option plot using, option print elements max, option print split, option series
array calc missing, option series array print missing, option series dyn, option
series normal calc missing, option series normal print missing, option series normal
table missing.

13Introduction

T-T Analyse

· Removed options: option databank logic, option interface table printcodes (renamed
to 'operators'), option library file, option series array ignoremissing (renamed).

Gekko 2.4

Gekko 2.4 is a relatively small update on the top of Gekko 2.2, and 2.4 should be just
as stable as 2.2. The main focus of development is the upcoming Gekko 3.0, but still
2.4 contains the following augmentations:

· PROCEDURE implemented. User-defined functions and procedures can be put in a
general library file (lib.gcm), so they can be stored in a central place.

· IMPORT<collapse> for collapsing high-frequency data (for instance daily
observations) into monthly, quarterly or annual Gekko-timeseries. The data must
reside in an Excel spreadsheet, more formats will be supported later on.

· Array-series, with $-conditionals, summing etc, cf. under the SERIES statement.
Array-series are further developed in the upcoming Gekko 3.0.

· Robust Newton (better handling of illegal starting values). This is managed by
means of OPTION solve newton robust = yes|no, and with robust = yes (default),
Gekko will handle illegal stating values (like the logarithm of a negative number)
much better.

· Read/write of GAMS datafiles (gdx-files): IMPORT<gdx> and EXPORT<gdx>. See
also the OPTIONs under OPTION gams ... regarding how gams files are handled.

· Reading of PC-Axis files: IMPORT<px>.
· Export of R-datasets: EXPORT<r>.
· New 'ser' (series) files format: IMPORT<ser>. This entails fast reading of flat

SERIES-like lines like "x 2020 2023 100.0 210.0 150.5 200.7".
· Better engine regarding IMPORT and EXPORT of xlsx-files. The new system

(default) does not depend upon Excel being installed on the pc, and should be more
stable and leak less memory.

· MATRIX definition with row/colnames.
· Remote control of Gekko is made possible via using a remote.gcm Gekko program

file, cf. OPTION interface remote = yes|no.
· EXPORT<cols> implemented for .csv and .prn files.
· Some new functions: avgt(), sumt(), time(). The two first handle sums and

averages over time (for timeseries).
· Stand-alone html equation browser generator (DOC<browser>).
· OLS<dump> can dump results as FRML equation for use in models.

Gekko 2.2

Gekko 2.2 most notably adds a lot of new graphing capabilities (PLOT) to Gekko.

· PLOT statement completely overhauled, see demo plots here. Graphs can be
controlled in a lot of new ways, either as options in the PLOT statement, or in a
template file (.gpt), or both. Histograms/bars/boxes are supported, too. There is a
special handy option to separate boxes and lines vertically: PLOT<separate>, and
many other possibilities.

http://www.t-t.dk/gekko/gallery/g.html

14 Gekko 3.1.x help system

T-T Analyse

· OPEN<edit> should be used instead of OPEN<prim>, and LOCK/UNLOCK
statements can lock/unlock already opened databanks. Opened databanks (OPEN
without options) are now opened last in the list of databanks. Opened databanks
are now protected (non-editable) per default.

· OLS statement improved, including linear restrictions on parameters.
· INTERPOLATE and REBASE statements implemented.
· XEDIT statement to open up a dedicated and in-built xml editor (for graph and table

templates).
· MATRIX statement allows all kinds of indexers on left-hand side.
· SHEET<import matrix> imports a matrix from an Excel sheet.
· IMPORT accepts dates.
· PIPE improvements.
· Functions: random number functions, see rseed(), runif() and rnorm(). Functions

pchy(), dify() and dlogy() to handle yearly differences. Functions movavg(),
movsum() for moving averages/sums, and lag() for lags. Function chol() for
Cholesky decomposition of matrices. See here.

· Some new table options: 'mdateformat', 'decimalseparator', 'thousandsseparator'
and 'stamp'. See under OPTION, in the OPTION table ... section. With these options,
a number like 12345.67 can be printed as 12,345.67 or 12.345,67, and this may
be combined with negative decimal places (for instance "f9.-2", to produce 12,300
or 12.300). Monthly dates can be formatted as for instance 'Jan. 2020' instead of
'2020m1'. Menu files accept links to .gcm files.

· The .gbk databank file format now uses a datafile called 'databank.data' internally
(instead of 'databank.bin'). The old name caused problems when sending databank
files over email. To produce a databank file suitable for Gekko 2.0 or 1.8, see the
note in the WRITE help file.

· Options: see the end of the OPTION statement regarding new options in Gekko 2.2.

Regarding Gekko 2.0 and earlier, see this page.

https://t-t.dk/gekko/whats-new/

15Introduction

T-T Analyse

1.2 Installation

Installation files

In order to install Gekko as a standalone package for economic analysis, go to www.t-
t.dk/gekko, and choose 'Download' to choose between a stable version or a
development version (direct link: stable versions or development versions). If you
have problems installing, please consult the trouble shooting guide. After installation
and starting up Gekko, it might be convenient to create a .bat file to start up the
program in the future (see more in the 'Setup and environment' section below).

For ADAM users, please use the setup facilities supplied by Economic Modelling,
Statistics Denmark, in order to install ADAM+Gekko (in order to uninstall
ADAM+Gekko, use the uninstall facilities supplied by Economic Modelling, Statistics
Denmark). Please note that Gekko is not tied to the ADAM model in any way, and is
being used by many other users.

Uninstallation

Uninstalling Gekko as standalone package can be done from the Windows Control
Panel. Close Gekko, start the Control Panel and choose Add/remove programs, then
select Gekko and uninstall it.

Setup and environment

Gekko uses the concept of a working folder from which files are read and written.
This may be chosen in two ways:

· If Gekko is started up from the 'Programs' menu in Windows, Gekko will open up
the last-opened working folder. You may change this by means of 'File' --> 'Set
Working Folder...' in the Gekko menu.

· If Gekko is started up from the Windows command prompt, Gekko will use that
particular folder as its starting folder. Typing 'gekko' only works if a gekko.bat file

is available, see 'Utilities' --> 'Make .bat file for easy Gekko startup...'. (This
gekko.bat file should be put somewhere in your Windows path -- Gekko will try to

put it into your Windows folder).

If a file with the name gekko.ini is present in the program folder (where gekko.exe

is located) or in the working folder, this file will be executed at Gekko startup.
Typically such a file contains OPTION, TIME, MODEL and READ statements setting up
the environment for different kinds of analyses. The gekko.ini file will be rerun

when issuing a RESTART statement (or an INI statement to just run gekko.ini), so

this statement is in effect equivalent to closing and reopening Gekko (in contrast, the
RESET statement omits loading the gekko.ini file).

http://www.t-t.dk/gekko
http://www.t-t.dk/gekko
http://t-t.dk/gekko/installer/
http://t-t.dk/gekko/develop/
http://t-t.dk/gekko/troubleshooting/

16 Gekko 3.1.x help system

T-T Analyse

For more advanced users, there is the possibility to indicate parameters when calling
the gekko.exe file at Gekko startup. See the RUN help file for more on this.

17Introduction

T-T Analyse

1.3 User interface

The Gekko GUI (graphical user interface) looks as follows:

There are 3 tabs: "Main", "Output" and "Menu". The main tab is divided into two
parts: the lower part is the command input window, and the upper part is the
command output window. The output tab is sometimes used to show detailed lists etc,
so that these do not clutter the main output window. The menu tab is for showing
user-designed menus and tables. You may jump between the tabs by means of
Ctrl+M, Ctrl+O and Ctrl+U.

Help on a particular statement is also available by means of typing help; or help

[statement name]; in the statement prompt (or you may press F1). The bottom bar

shows the current global time period, loaded databanks, and current working folder.
At the right-side of the bottom bar are red, yellow or green "traffic lights". Green
means that Gekko ended the job successfully and awaits new input, red means that
Gekko encountered an error and awaits new input, and yellow means that Gekko is
working on a job. You can double click on the traffic light to see a list of currently
executing jobs (practical for tracking the progress of long-running jobs).

You may use the F2 key to see the list of open databanks.

List of function keys etc.

Function keys are used for quick access to specific Gekko statements. At the moment,
only a few function keys are active.

F1 Opens up the help system. You can also type for instance help; or

help sim; from the command line, in the latter case you will get

help on that particular statement (SIM).

18 Gekko 3.1.x help system

T-T Analyse

F2 Opens up the databanks window (close with Esc). Note that the
Ref, Local and Global databanks do not show up in this window if

they are empty. You may also use SERIES? to see what kinds of
timeseries the databanks contain.

Tab Starts variable autocompletion: first place the cursor at the
(partial) variable name. Gekko will try to match the variable name,
and will show a list of matching names to choose from. You may
use autocomplete on a variable like ab, where Gekko will try to

match the pattern ab* (Gekko implicitly adds the trailing *). You

may also add a databank name, like bank1:ab to look for ab* in

bank1. You may set * or ? wildcards explicitly, but in that case

Gekko will not add any trailing * on itself. Symbols @ (Ref

databank) or ! (frequency) can be used, and array-series can be

searched by using autocomplete on for instance the partial name
x[ab to match all x[ab*], or on x[, which will match all x[**]

(returns all elements of the arrayseries, regardless of the number
of dimensions). Autocomplete looks in open databanks and only
works on timeseries names, not scalar or collection names. The list
of matching names contain labels as popups.

Note that [Ctrl+Space] can be used, too. Autocomplete uses the

INDEX statement internally. Anything that can be used as input for
the INDEX statement can be used for autocomplete, too.

Enter If you hit [Enter] on a line without trailing ;, Gekko will

automatically add the ; for you. If you hit [Enter] in the middle of

a line not ending with ;, Gekko will complain and not add the ;

automatically.

Note that with option interface edit style = ... , you may

swap the use of [Enter] vs. [Ctrl+Enter].

Ctrl+Enter New line in command prompt, without issuing the command line.

Note that with option interface edit style = ... , you may

swap the use of [Enter] vs. [Ctrl+Enter].

Ctrl+Space Starts variable autocomplete, cf. [Tab] above.

Mark+Ente
r

You may mark several lines in the Main window and execute them
as one block with [Enter]. This is functionally equivalent to putting

the lines in a Gekko program file (.gcm) and executing them with
RUN.

Note that with option interface edit style = ... , you may

swap the use of [Enter] versus [Ctrl+Enter].

19Introduction

T-T Analyse

Ctrl+M Jump to Main tab.

Ctrl+O Jump to Output tab.

Ctrl+U Jump to Menu tab.

As mentioned, you may double-click the 'traffic light' indicator in the lower right of
the interface to open up the 'Run status' window.

The left- and right arrow buttons below the menu are for browsing back and forth
when showing DISP (equation browser), or when showing tables by means of menus.
The 'home' button navigates back to the start.

The 'Stop current job' red button tries to halt an executing job.

The 'Copy last ...' button/icon at the top of the main Gekko window copies the last
PRT/MULPRT, table, matrix, etc. as spreadsheet cells on the clipboard, for subsequent
pasting into a spreadsheet (similar to CLIP). This is convenient for copy-pasting to for
instance Excel.

There is also a button to close all PLOT and DECOMP windows at once.

1.4 Notes and issues

Gekko 3.0 contains quite a lot of new features, and a cleaned up syntax. The syntax
is hopefully more logical and consistent than version 2.0/2.2/2.4/2.5.x, and some of
the most important changes regarding syntax are listed below.

At the end or this page, you will also find a list of issues with 3.0 and 3.1.x. These
minor issues will be fixed in the form of patches to version 3.0 and 3.1.x.

Regarding lists of new statements, new built-in functions and new options, see the
new features page, under Gekko 3.0. It is probably beneficial to read that section
first, before reading the rest of the current page. See more on stability of the
software below.

Stability

In general, Gekko 3.0 (release version) and 3.1.x (development version) are stable
in the sense that smaller glitches may occur, while major bugs are not expected.
There is currently a syntax freeeze, so the 3.1.x line of development versions will
stay compatible with Gekko 3.0, and care is taken that the 3.1.x versions are as
stable as the 3.0 version. Read more about the different Gekko versions here.

In general, it is advised to use the latest version in the 3.1.x development line
rather than 3.0, and to migrate from Gekko 2.0/2.2/2.4/2.5.x if possible.

http://t-t.dk/gekko/gekkoversions/

20 Gekko 3.1.x help system

T-T Analyse

Besides the new components available in 3.1.x that are not present in 3.0, there is
also a continued polishing going on in 3.1.x, which makes it a more pleasant
experience than 3.0. Besides, the help system is much improved in 3.1.x relative to
3.0, and Gekko error messages will continually be made more understandable in
3.1.x (this is a project planned for the spring of 2021).

Gekko 3.0/3.1.x reads all databanks made by 2.x versions, and Gekko 2.5.x can read
databanks from Gekko 3.0/3.1.x. So transferring databanks between Gekko 2.x and
3.x should not pose problems.

Beware

There is an automatic translator from Gekko 2.0 (or 2.2/2.4) to Gekko 3.0. See
TRANSLATE, or more info here. The syntax changes compared to Gekko 2.0/2.2/2.4
programs are not too dramatic, the most important are the following:

· Since series statements are calculated in a vector-like fashion in Gekko 3.0/3.1.x
(in contrast to the Gekko 2.x versions), lags no longer automatically accumulate
period-for-period, if the left-hand side variable is present with lags on the right-
hand side (lagged dependent/endogenous variable). See more on the help page on
dynamic statements. In Gekko versions >= 3.1.7, a statement like for instance x =

x[-1] + 1 will need to be decorated with an indication regarding whether it should

accumulate (<dyn>) or not (<dyn = no>), cf. examples on the linked help page.

Note that for absolute accumulations like x <dyn> = x[-1] + 1, you may use x

<d>= 1, x ^= 1 or dif(x) = 1 instead (and there are also variants regarding

relative accumulations, see below). Note that setting <dyn> (or block series dyn

= yes) unnecessarily entails a speed penalty and should therefore not be used

unless needed.
· Symbols on scalars and collections must appear on the left-hand side too, for

instance val %v = 100;, where val v = 100; is no longer legal. Note that

assignment statements SERIES, VAL, DATE, STRING, LIST, MAP, MATRIX may be
omitted, so you can use %v = 100; too.

· In general, when defining a list, the elements are enclosed in parentheses, but the
'naked' form #m = a, b, c; is allowed as short-hand for #m = ('a', 'b', 'c');.

For lists of simple numbers, naked lists can be used, too, for instance #m = 1, 2,

3; or y = 1, 2, 3;.

· Beware that for %i = #m; is no longer legal, you must indicate type: for string

%i = #m;.

· The NAME statement is deprecated, and in many places {}-curlies must now be
used where they could be omitted in Gekko 2.0. For instance you must use prt

{#m}; or prt {%s}; to print the variables corresponding to the the list of strings #m

or the string %s (without the {}-curlies, the list elements or the string itself would

be printed).
· Name compositions like a{i}b must now be a{%i}b: the %-symbol can no longer be

omitted here (or anywhere else).
· Name concatenation like a%i|b is no longer endorsed, but will still work. It is

generally better to use a{%i}b, for readability and consistency.

· #m[0] cannot be used to get the length of a list, use #m.length().

21Introduction

T-T Analyse

· Using #m[%s] to check if the string %s is a member of the list of strings #m will be

deprecated, and the expression %s in #m or #m.contains(%s) should be used

instead.
· Series operators like +, *, %, etc. are now +=, *=, %=, etc., so assignments always

contain the = symbol.

· List operators: &+ is changed to ||, &* is changed to &&, and &- is changed to -.

· Scalars inside quoted strings should use {}-curlies, for instance %s = 'car'; tell

'The {%s} is red';. Alternatively, you can use tell 'The ' + %s + is red';,

which is harder to read. Beware that tell 'The %s is red'; will no longer in-

substitute %s. Inside a quoted string, any expression can be used inside {}-curlies,

as long as it evaluates to a string or value type.
· IMPORT and EXPORT statements from Gekko 2.0 without time indication should be

changed into IMPORT<all> and EXPORT<all>, respectively. In Gekko 3.0, IMPORT
and EXPORT without time indication will use the global time period, potentially
truncating the data.

· The following functions have been changed (see details here): avgt(), sumt(),
piece(), search(), strip(), trim(), difference(), hpfilter(), fromseries().

Issues list

The following is a list of statements etc. that are known to be defunct in in Gekko
3.0:

· DECOMP. DECOMP works for expressions and equations. There are still issues
regarding DECOMP of equations if the left-hand side is not equal to the right-hand
side. Therefore: DECOMP of equations is ok if performed on simulated equations,
but not on non-simulated equations.

· TIMEFILTER only works for annual frequency.
· User-defined procedures and functions have a problem with samples and composed

series arguments, if these are later on lagged. For instance: function series
plus(series x1, series x2); return x1 + x2[-20]; end; time 2001 2003;

y1 = 3; y2 <1981 1983> = 2; print y1, y2, plus(y1, y2+0); This will print

missings for the result of plus(y1, y2+0) whereas plus(y1, y2) will be fine. This

is being looked into.

Part II

23Search

T-T Analyse

2 Search

To search the help system, you may try a site-restricted Google search via the site:

parameter. For instance, if you search for daily frequency site:http://t-

t.dk/gekko/docs/user-manual in Google, you will get results related to "daily

frequency" from the newest help system.

· Search the help system ("daily frequency" example)

There is some inbuilt search capabilities in the non-pdf help system versions, but
these are limited. A Google search like the example seach above will prioritize search
results from the newest help system, but hits from older help systems may show up,
too (if the search result contains for instance the text "user-manual-2.4", this
indicates that it is from the Gekko 2.4 help system).

Notes

To seach the help system corresponding to Gekko 2.4 (and 2.5.x), you may use the
parameter site:http://t-t.dk/gekko/docs/user-manual-2.4.

In the pdf version of the manual, you may use Ctrl+F to search the whole help
system for words/phrases.

Using site:http://t-t.dk/gekko/docs/user-manual searches the full help system,

not only the user manual part of it. For historical reasons, the sub-folder containing
the help system is called /user-manual. This path will be changed into /help-system

later on.

https://www.google.com/search?q=daily+frequency+site%3Ahttp%3A%2F%2Ft-t.dk%2Fgekko%2Fdocs%2Fuser-manual

Part III

25Gekko User Guide

T-T Analyse

3 Gekko User Guide

The Gekko User Guide provides an overview of the program, with a lot
of examples, and highlighting only the main points. The Gekko User
Guide is aimed at beginners and new users, and does not presuppose
anything, except some curiosity.

If you need more details or explanations, consider the Gekko User
Manual, where you can find detailed descriptions of statements,
functions, and other components.

There are presently the following parts of the user guide:

· Elevator pitch (why use Gekko?) Trying to explain the main points of Gekko.
· Data management guide. A guide regarding data management in Gekko.
· Modeling user guide. A guide regarding modeling in Gekko.

The data management and modeling guides are designed for beginners, being
relatively easy to understand, with a lot of examples, and with less details than what
is presented in the Gekko user manual. In the user manual, you can find conceptual
descriptions of Gekko's syntax and capabilities, together with exhaustive descriptions
of the different statements and functions that Gekko offers. If the user manual feels
overwhelming and you would prefer something more destilled, the Gekko User Guide
is the right place to start!

3.1 Elevator pitch (why use Gekko?)

Before delving into the data management and modeling user

guides, first a so-called elevator pitch. An elevator pitch is a brief

summary that it should be possible to deliver in the time span of

an elevator ride. It is, of course, possible to skip directly to the

Data Management User Guide or the Modeling User Guide. But

please consider spending a modest amount of time to read or at

least glance through the following brief listing of the main points

of the Gekko software. And if this plea does not persuade you,

please consider revisiting the current page at a later time!

Free and open-source programs like R or Python also manage data and can even run

models, so what is so special about Gekko being timeseries-oriented? The following

tries to explain this, highlighting some of the special concepts and syntax that Gekko

uses in order to offer convenient timeseries management.

https://en.wikipedia.org/wiki/Elevator_pitch

26 Gekko 3.1.x help system

T-T Analyse

Timeseries-oriented

· Gekko operates with the concept of a global time period, so you normally do not

need to state time, t, in timeseries expressions. Instead, you just use the

timeseries names themselves, for instance y = 2 * x;.

· Gekko has a concept of global frequency, so you normally do not have to state the

frequency of a timeseries variable, unless it differs from the global frequency. To

denote a frequency explicitly, use the ! symbol, for instance x!q for a quarterly

timeseries.

· Lags, leads, time differences, percentage growth, etc. have easy syntax, for

instance x[-1], x[+1], dif(x), pch(x), etc. You may also use x.1 as short-hand

for x[-1].

Scalars and collections

· Timeseries variables are exempt from prefix symbols, whereas scalars use % prefix

symbol (for instance %x), and collections use # prefix symol (for instance #x).

· All Gekko scalars have prefix symbol %, for instance %x = 100;. Scalars can be

value, date, or string.

· All Gekko collections have prefix symbol #, for instance #x = ((1, 2), 3); for a

nested list of values. Collections can be list, matrix, or map.

Databanks and comparisons

· Gekko operates with the concept of a hierarchical list of open databanks, in which

the first-position databank is the so-called Work databank when Gekko starts up. A

databank reference can be stated explicitly with colon (:), for instance b1:x to

indicate the timeseries x from the databank b1. If a databank name is not stated,

Gekko will look for x first in the first-position databank, next in the second-position

databank, and so on (unless such databank searching is switched off).

· Besides the list of open databanks, Gekko operates with a so-called Ref databank.

You may use for instance prt <m> x; to print absolute differences between the x's

in the two databanks (besides <m>, there are a lot of other comparison operators).

The Ref databank is not part of the databank hierarchy.

· You may open an external Gekko databank file (.gbk file) as a 'named' databank,

adding it to the end of the databank hierarchy. Alternatively, you may copy or

27Gekko User Guide

T-T Analyse

merge the contents of an external databank file into the first-position databank

with READ or IMPORT.

· You may use the special Global databank to store global variables/settings, for

instance global:%tstart = 1980;.

Variable names

· The name prefix symbols % and # (for scalars and collections, respectively), and the

frequency symbol ! are all to be interpreted as integrated parts of the variable

name, alongside the more standard characters like a, b, ... z, etc. (+ digits and

underscore).

· A variable can be uniquely identified by means of: bank + : + symbol + variable

+ ! + freq, where bank/variable = a simple name, symbol = % or #, and freq = a

frequency character. For instance, b1:x1!q looks in the databank b1 for the

variable x1 with q (quarterly) frequency, or b2:%y1 looks in the databank b2 for the

scalar variable %y1. Timeseries names have no prefix symbol. Often, bank and/or

frequency may be omitted.

· The names of variables residing in a given databank can be indexed and searched

in different ways, using wildcards, ranges, etc. In some statements, 'naked'

wildcards can be stated as simple as x*, whereas in other statements ['x*'] or

{'x*'} must be used (more about wildcard logic here).

Lists

· Lists can contain any Gekko variable, and a list of strings is often used to represent

variable names (or name-parts). It is often more convenient to operate on lists of

names of variables, rather than on lists of the variable objects themselves. There

are two ways to define lists: strict syntax, or as naked lists:

· Strict syntax: #m = ('a', 'b'); is a list of the two strings 'a' and 'b'. Note the

use of parentheses and quoted strings.

· Naked list: #m = a, b;. Parentheses and quotes can omitted for such simple lists.

The result is the same as above.

· Nested lists (lists of lists) can represent multidimensional data, for instance "cells"

from spreadsheets etc.

Name-composition

28 Gekko 3.1.x help system

T-T Analyse

· Gekko uses {}-parentheses to insert name-parts from a string or list of strings. For

instance, %i = 'a'; prt x{%i}y; is the same as prt xay;. The {}-parentheses

can contain any expression that evaluates to a string or a list of strings.

· You may interpret the {}-parentheses as "quote-removers", cf. the equivalence

x{'a'}y = xay.

· Lists of strings can be used in name-composition, too. For instance #m = a, b, c;

prt x{#m}y; is the same as prt xay, xby, xcy;.

· Instead of for instance x{%i}y or x{#m}y, you may use x%i|y or x#m|y, but this

syntax is no longer officially endorsed.

· The {}-parentheses work inside strings too, for instance %i = 'a'; %s = 'x{%i}

y'; is the same as %s = 'xay';.

· Instead of name-composition, it is often convenient to use array-series, with syntax

like x[#m, y]. More on this page.

Operators

· Operators are often used in PRT (print), PLOT or SHEET (spreadsheet) for viewing

data.

· Time-differences use operators like <d> for absolute time-difference, or <p> for

percentage growth

· Bank-differences use operators like <m> for absolute difference between the first-

position and the Ref databanks, or <q> for percentage differences.

· The operators can also be used in timeseries statements, for instance x <p>= 2; or

x <q>= 2;, the first making x grow 2% per period, and the last augmenting x with

2% (same period). Other operators are available too, for instance x %= 2; (grows

2% per period) or x += 1; (adds 1, same period).

· There is a special kind of operator, @, where @x is short-hand for ref:x, that is,

fetching x from the Ref databank.

Statements, functions and procedures

· Statements can be stated with or without a <>-field to indicate 'local' options like

the local time period. For instance, PRT <2020 2030> x; will use the period 2020-

30 in the PRT statement, but not alter the global time period. Gekko functions and

procedures also support an optional local time period.

29Gekko User Guide

T-T Analyse

· Gekko functions support so-called Unified Function Call Syntax. So for instance the

function y = f(x1, x2, x3) can alternatively be called with y = x1.f(x2, x3),

moving the first argument out of the function and adding a dot (.). You may also

use local time period in functions, like y = x1.f(<2010 2020>, x2, x3).

Options

· The user can state global options with the OPTION statement, whereas local options

can be stated inside the <>-field of individual statements. A local option inside

<...> angle brackets is only in effect during the execution of that particular

statement.

Trivia

· Gekko is in general case-insensitive. So prt <p> x; is the same as PRT <P> X;.

· Commas (,) are generally used to separate lists of elements (and function

arguments).

· You must use semicolon (;) at the end of a statement. In the Gekko input

window, ; is set automatically when Enter is pressed.

More capabilities

Disclaimer: this section does not highlight the modeling capabilities of Gekko.

Gekko has a lot more capabilities than what has been listed above. What was listed
above can be said to illustrate what is special about Gekko, and where its perceived
advantages lie. To read about some more capabilities: +toggle.

· Gekko has its own open databank format (.gbk), but also interfaces with a lot of

other databank formats (see IMPORT/EXPORT).

· Converting between frequencies, COLLAPSE and INTERPOLATE.

· Copy, rename, move, delete objects between databanks.

· Conditions (IF) and loops (FOR).

· Linear regression (OLS) with extra possibilities.

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

30 Gekko 3.1.x help system

T-T Analyse

· Seasonal correction (X12A).

· Operate on timeseries metadata, for instance labels, units, etc.

· There are quite a lot of MATRIX possibilities (linear algebra), and conversions

to/from timeseries is easy.

· The MAP variable type is essentially a mini-databank, handy for storing variables by

name, or used to return multiple variables from a function call.

· There are a lot of possibilities and conveniences regarding array-series, and there

is a tight correspondence to GAMS syntax for operating on such variables. So for

instance, the array-subseries pop[m, 40] could represent the population of 40-

year old males over time, instead of using a name convention like popm40 or

pop_m_40 to store the same data in a normal timeseries. Array-series can be

combined with sums, lists, and $-conditionals (known from GAMS).

· R- and Python code/programs can be run from within Gekko, and there is also the

so-called Gekcel add-in for running Gekko from within Excel.

3.2 Data Management User Guide

At present, Gekko is used for many things, but the two foremost use
cases are probably data management and modeling. Regarding the
latter, there is a user guide available for modeling here. The present
data management user guide does not cover modeling at all, except a
bit on how to compare two databanks (also relevant for modeling).

The data management user guide contains the following sections:

· Download etc.
· Data management basics
· Databanks and variables
· Gekko programs
· Data reporting

Note: Sections on "Data management" (strategies for managing data), and
"Testing databanks" (consistency checks) are forthcoming.

31Gekko User Guide

T-T Analyse

3.2.1 Download etc.

This part of the user guide will focus on the data handling capabilities.

To download and install Gekko, see the general installation section.

You may consult the page on interface, function keys, etc. to read more about how
the interface works. But for now, just note that you type statements in the lower part
of the window, and results are shown in the upper part. You issue statements with
[Enter], and if you omit the ending ; in a statement, the user interface will add it on

its own.

3.2.2 Data managements basics

Before we start out the data management user guide, a few general words on what
"data management" is. You may skip this part of the user guide if you prefer, and
move on to the section on databanks and variables.

So what is "data management"? Essentially, we may think of data as arriving in more
or less raw (or at least less refined) form. Then the is processed, checked, adjusted,
aggregated, and so on, refining it in the process. This can be done in many ways,
among the most simple is to fire up a spreadsheet and manage the data there, and
among the most complicated is performing big data analytics on massive amounts of
data.

Raw data will ofte be represented as "tables", where each row of the table represents
an "observation", and where each column represents some characteristic (dimension)
of the data. We might for instance envision columns representing sex, age, year and
value regarding population data, where one row might represent for instance, sex =
male, age = 40, year = 2020, value = 60.000, stating that in 2020, there were
60.000 40-year old males.

32 Gekko 3.1.x help system

T-T Analyse

This "observation" could be represented as a variable pop, where we could assume

that pop[male, 40, 2020] = 60.000. What Gekko does about data management is

to assume that all (or at least most) variables are in the time dimension, so instead
of pop[male, 40, 2020], Gekko would talk about the timeseries pop[male, 40],

which would be defined over some period, for instance 1980-2020. Such a series
could be represented as a co-called array-timeseries in Gekko. But in practice such
timeseries are often represented via naming conventions, providing simple names:
for instance representing the timeseries as popmale40 or pop_male_40.

So what Gekko data management is about is essentially the "wrangling" of timeseries
like popmale40 or pop_male_40, adjusting them, filling out holes, printing them,

looking at graphs, etc. Gekko is timeseries-oriented, which among other things
entails that timeseries are "first-class citizens" of Gekko, and a lot of functionality is
built around that concept. For instance, you can typically omit stating the time
dimension explicitly, and concepts like percentage growth rates, lags and leads,
frequencies, etc., are an integral part of the Gekko language.

But to return to the concept of data "wrangling", Gekko data management is often
about data wrangling of timeseries variables. The purpose of Gekko is that such
timeseries wrangling should be relatively easy to do, without very complicated syntax
or very complicated concepts. Granted, some parts of the Gekko data management
capabilities are rather complicated, but a lot of it does not entail a very steep
learning curve.

The following sections is an attempt to describe these not-too-complicated parts in a
hopefully understandable manner.

3.2.3 Databanks and variables

This section describes how Gekko can handle and manage data, using databanks to
store different types of Gekko variables. The section covers the databank concept,
and how frequencies, time periods, and timeseries work in Gekko. There are also
sections on copying and importing/exporting data. In addition, it describes how Gekko
can interact with a particular online database API to fetch timeseries data online.

Read more about databanks and variables in the sub-sections.

3.2.3.1 Databanks

The data management capabilities of Gekko has a lot to do with databanks.
Databanks store Gekko variables, for instance timeseries, lists or scalar variables.
The databanks can be read and written as external .gbk databank files, which is
Gekko's own open databank format. When read into Gekko, databanks are in-
memory, bounded in size only by available RAM. Databanks can contain many
variables, so beware that the keys [Tab] or [Ctrl+Space] offer autocompletion on

timeseries names (cf. here).

Hierarchical databanks list

33Gekko User Guide

T-T Analyse

As seen on the left side of the illustration above, Gekko operates with the concept of
a hierarchical list of open databanks. When Gekko starts up, only an empty Work

databank is present in the first position in the databank hierarchy, providing a kind of
working area. Besides Work, you may add other databanks to the databank hierarchy

with the OPEN statement. The databanks are hierarchical in the sense that when
issuing a statement like prt x;, Gekko will first look for the variable x in the first-

position databank, then in the second-position databank (bank2 above), then in

bank3, and so on.

If you need to, you may specify a databank name explicitly with colon :, like for

instance prt bank2:x;. In that case, x is searched for only in bank2. Left-hand side

variables like y in y = 2 * x; are always taken from the first-position databank only,

unless a databank name is provided explicitly (like for instance bank2:y = 2 * x;).

There are options to control whether Gekko searches the databank hierarchy for a
variable like x or not.

Gekko also operates with the concept of a reference databank (called Ref). This

databank is often used for comparisons, for instance in modeling, but in data
management programs the existence of Ref can be safely ignored. And rest assured,

in a statement like prt x; or y = 2 * x;, Gekko will never search the Ref databank

for the x variable. To access a variable from Ref directly, you may use for instance

prt ref:x; or prt @x;, where the @ operator is short-hand for ref:.

As mentioned, when Gekko starts up, the Work databank can be thought of as the

'working area' in which timeseries and other variable types are stored per default.
The Work databank can be filled with data via for instance the READ statement

(reading an external Gekko databank .gbk file), or alternatively with IMPORT
(obtaining data from different supported formats, for instance .csv, .xslx., etc.). If you
subsequently want to save the variables of the Work databank, you must either save

it as a Gekko .gbk databank file with WRITE, or export all the variables to a format
that the EXPORT statement supports.

As an alternative to writing a databank with WRITE, you may use OPEN<edit> to
open a databank .gbk file as editable in the first position in the databank hierarchy.

34 Gekko 3.1.x help system

T-T Analyse

After this, you may define and alter variables in that databank, and when you CLOSE
the databank again, all changes to it are automatically written back to the same .gbk
file.

Whether you use READ and WRITE, or alternatively OPEN and CLOSE to change the
contents of a Gekko databank file is basically a matter of taste: data management
programs tend to use OPEN/CLOSE more, whereas modeling programs tend to use
READ/WRITE more. One thing to note about READ is that it first removes any
variables already existing in the first-position databank, including helper variables
you may have set previously, for instance time periods, file paths, etc. So when using
READ, such variables could instead be put into the so-called Global databank, more
on this at the end of this page.

Some relevant databank statements:

OPEN Opens a .gbk databank as read-only, in the last position in the list of
open databanks.

OPEN <edit> Opens a .gbk databank as editable in the first position in the list of
open databanks. If the corresponding .gbk file does not exist, it will be
created.

LOCK/UNLOCK Can be used to set a databanks as read-only (LOCK) or editable
(UNLOCK). Often OPEN <edit> is sufficient, and note that a normal
OPEN statement without <edit> option always opens a databank as
read-only.

CLEAR CLEAR clears a particular databank (deletes the contents). If no
bankname is given, the first-position databank is cleared.

CLOSE * Closes all open databanks (except Work) in the databank hierarchy,

and saves all 'named' databanks to files, if these have been changed.
Databanks can also be closed individually. The Work databank cannot

be closed because it serves as a kind of 'working environment'.

RESET/RESTART RESET implicitly performs a close *; (cf. above), and subsequently

deletes and restores everything in Gekko, as if the Gekko main window
had been closed and opened up again. With RESTART, user-defined
options etc. can be reloaded.

Gekko's own file format .gbk is the default format and used for
READ/WRITE/OPEN/CLOSE, but as mentioned, Gekko can handle a number of other
file types, which is described in the user guide section on import and export.

We will start out creating two databanks from scratch for later use. You do not need
to understand the following code, just run it to create a couple of Gekko databanks
for later use.

reset;

35Gekko User Guide

T-T Analyse

time 2010 2020;
open <edit> bank1; clear bank1;
x1 = 100; x2 = 200;
close bank1;
open <edit> bank2; clear bank2;
x1 = 101; x2 = 201;
close bank2;

The following example shows how to open up databanks:

reset; //resets everything
open <edit> bank; clear bank;
open bank1 as b1;
open bank2 as b2;

When Gekko starts up, or when reset or restarted, there is only one databank in the
databank hierarchy: the empty Work databank. The second statement above opens up

the file bank.gbk in the first position in the databank hierarchy (note that bank is

also cleared, to erase any data that might be already stored, if bank.gbk already

exists). Opening bank in the first position demotes Work to the second place in the

hierarchy. Subsequently, two more databanks are opened with the normal OPEN
statement, which puts databanks at the end of the databank hierarchy (as read-only).
In the third statement above, bank1.gbk is put into the third position, with the alias

name b1. Finally, bank2.gbk is put into the fourth position, with the alias name b2.

In the Gekko window, you can hit the F2 button to see the databank hierarchy, which

will show the following:

Priority Name Filename

1. bank bank.gbk

2. Work

3. b1 bank1.gbk

4. b2 bank2.gbk

As mentioned above, you can always refer to a variable from a specific databank
using a colon : like this:

open bank1 as b1;
open bank2 as b2;
prt <2020 2024 n> b2:x1, b1:x1, b2:x1-b1:x1;

In this example, the values of the timeseries x1 in each of the two databanks,

together with the difference between the values are printed. The <n> option ensures

that only levels are printed (no percentage growth rates).

36 Gekko 3.1.x help system

T-T Analyse

So to sum up: An open<edit> will open that databank at the top of the databank

hierarchy list (and in this case demote Work to second position), whereas a normal

OPEN opens the databank at the bottom of the databank hierarchy.

The HDG statement allows you to include meta-information about a databank which
will be shown when it is read or opened later on. For instance:

open <edit> bank1;
hdg 'Historical databank, period = 2010-2020';
close *;
// ----------------------
open bank1; //test that it has a new heading

This yields the following when the bank is read or opened:

DATABANK bank1
Info : Historical databank, period = 2010-2020
Date : 08-02-2021 09:40:28
File : c:\gekko\testing\bank1.gbk (vers: 1.2)
Period : The file contains data from 2010-2020
Size : Read 2 variables from file into cleared Work databank (0.46 sec)
Note : Press F2 for info on databanks

The contents of a databank can be erased with the CLEAR statement:

clear bank1;

If you need to clear the contents of the first-position databank, you can instead just
use this:

clear;

You may also close any open databanks with close *;. The following code cleans up

databanks:

close *; clear; //clear here will clear the Work databank

Here, it should be noted that the Work databank can never be opened or closed, since

it is to be understood as a kind of 'working area' always present. The two statements
above will in general provide a 'cleaned up' working environment, closing all banks
besides Work, and also deleting all variables already in Work. But some things live on

in Gekko after a close *; clear;, for instance options, loaded models, functions and

procedures, and other things. To also clear these things, you must use RESET or
RESTART (or close and reopen Gekko).

37Gekko User Guide

T-T Analyse

The Global databank

As mentioned above, READ and WRITE are often used in modeling scenarios, whereas
OPEN and CLOSE are often used for data management purposes. Still, READ and
WRITE can advantageously be used for data management too, and may sometimes be
more practical to use than a hierarchy of open databanks. As mentioned, this is a
matter of taste, but if you plan to use READ and WRITE, beware that READ reads an
external .gbk databank file into the first-position databank (typically the Work

databank), after first clearing its contents.

For instance:

reset;
%ti = 2000; //resides in the Work databank
read bank1;
fyi <1980 2020> = fy/fy[%ti]*100; //will fail, cannot find %t

Here, we start out defining an index year %ti, which we plan to user subsequently (%

ti is a scalar, more on scalars later on). However, any variables you may have

already defined in the first-position databank will be deleted after issuing a READ,
and therefore the third statement fails, because it cannot find %ti. You may use

READ<merge> to avoid %ti being deleted, but then the first-position databank is

'polluted' with %ti, which you may not want to be included in the .gbk databank file,

when you WRITE later on in your program.

Instead of this, you can put such helper variables into the so-called Global databank:

reset;
global:%ti = 2000; //resides in the Global databank
read bank1;
fyi <1980 2020> = fy/fy[%ti]*100; //now it finds %ti in the Global
databank
write bank1; //will include the series fyi, but not the scalar %ti

Like the Work databank, the Global databank always starts out empty when starting

up Gekko, and can not be opened or closed. When looking for a variable, Global will

be searched last for this variable, after all other databanks in the databank hierarchy
have been searched. The variables in the Global databank both survive a READ and a

close *; clear;, but Global is cleared after a RESET/RESTART.

An alternative to the above methodology is to use OPEN<edit> and CLOSE, for
instance:

reset;
%ti = 2000; //resides in the Work databank
open <edit> bank1; //Work will now be in 2. position in databank
hierarchy

38 Gekko 3.1.x help system

T-T Analyse

fyi <1980 2020> = fy/fy[%ti]*100; //finds %ti in Work
close bank1; //writes the changes to bank1.gbk, %ti is not
included

With OPEN and CLOSE, it is easier to avoid that the databank gets 'polluted' with
irrelevant helper variables, and this is perhaps the reason why OPEN and CLOSE is
used a bit more than READ and WRITE for data management programs.

3.2.3.2 Timeseries

Note: There is an additional kind of timeseries available in Gekko, namely so-
called array-timeseries. These are explained in a later section.

Timeseries variables can be defined and transformed easily, and variables from any
open databank can be used in a series expression. The syntax is as follows:

var1 <per1 per2> = value | list of values | expression;

The variable name, var1, is here the name of the timeseries that is created or

assigned with values. You may prepend SERIES to the statement to indicate the
variable type, but this is not necessary (see more on this: +toggle)

In Gekko versions prior to 3.0, you had to start the statement with the SERIES
keyword, for instance

series <2010 2020> y = 2 * x;

This is not necessary in Gekko versions >= 3.0, where you can just write

y <2010 2020> = 2 * x;

Note the placement of the local <> option field between the left-hand side variable

and the = symbol. The SERIES keyword is not necessary, because Gekko knows from

the variable name y that it must be a timeseries (names of other types of variables

like scalars and collections must start with % or # symbol).

If only one value is specified, this value will be applied to the entire update period. If
several values are specified, the number of values must match the number of
periods. The following examples set values for the timeseries var1 over the period

per1 to per2:

39Gekko User Guide

T-T Analyse

var1 <per1 per2> = value;
var1 <per1 per2> = value_1, ... , value_n;

The var1-var4 examples below shows the use of a value, a list of values, or an

expression:

time 2021 2023;
%v = 120;

var1 = 100;
var2 = 110, 120, 115;
var3 = var1 + var2; //210, 220, 215
var4 = (%v-10, %v, 100+15); //note parentheses

prt var1, var2, var3, var4;

Note that var4 is not simple numbers like var2, and therefore the right-hand side

has to defined with parentheses (list syntax). It is possible to define the variable over
a specific period of time. For example, if you want to form a Laspeyres chain price
index, with 2010 equal to 1, on the basis of two quantities in current prices, q1 and

q2, as well as their prices p1 and p2:

reset;
time 2010 2015;
p1 = 1, 1.02, 1.04, 1.04, 1.06, 1.05; //price
p2 = 1, 0.99, 1.03, 1.06, 1.05, 1.08; //price
q1 = 10, 12, 9, 14, 13, 15; //quantity
q2 = 20, 19, 22, 23, 22, 25; //quantity

// --- compute laspeyres chain indexes ---
p <2010 2010> = 1; //aggregate price index
p <2011 2020 dyn> = p.1 * (p1*q1 + p2*q2)/(p1.1*q1 + p2.1*q2);
q = (p1*q1 + p2*q2)/p; //aggregate volume index
prt p, q;

// --- use in-built function ---
#p = p1, p2; //prices
#q = q1, q2; //quantities
#m = laspchain(#p, #q, 2010); //#m is a map
prt #m.p, #m.q;

Result:

 p % q %
 2010 1.0000 M 30.0000 M
 2011 1.0016 0.16 31.0000 3.33
 2012 1.0359 3.42 30.9101 -0.29
 2013 1.0546 1.80 36.9242 19.46
 2014 1.0557 0.11 34.9329 -5.39
 2015 1.0708 1.42 39.9247 14.29

40 Gekko 3.1.x help system

T-T Analyse

 #m.p % #m.q %
 2010 1.0000 M 30.0000 M
 2011 1.0016 0.16 31.0000 3.33
 2012 1.0359 3.42 30.9101 -0.29
 2013 1.0546 1.80 36.9242 19.46
 2014 1.0557 0.11 34.9329 -5.39
 2015 1.0708 1.42 39.9247 14.29

First of all, note that in general, you can state a timeseries lag more compactly as
x.1 instead of x[-1]. In the formula, (p1*q1 + p2*q2)/(p1.1*q1 + p2.1*q2)

means taking the total expenses in the numerator, and the total expenses in the
previous year's prices in the denominator. This fraction is used to construct the price
index p successively year for year. Note also the <dyn> tag in the formula. Without it,

Gekko will complain that because of the accumulating lag p.1, you need to decorate

the statement with either <dyn> or <dyn = no> (the latter would not make sense

here). Read more about <dyn> and the reason why Gekko does not just run with

implicit <dyn> tags added in all cases like this: +toggle.

As mentioned, Gekko will detect if you omit a <dyn> tag in a statement like x = x[-

1] + 1;, where the dependent variable x appears with a lag on the right-hand side.

Such a statement must be decorated with <dyn> or <dyn = no>, otherwise Gekko

fails with an error. What <dyn> does is in reality quite simple. In a timeseries

statement like x <dyn> = x[-1] + 1;, instead of running the statement in one go

over the whole period (let us assume that the period is 2020-2023), it will run the
statement period-by-period in four steps: in 2020, in 2021, in 2022, and in 2023. In
that way, lags will accumulate, and x will augment with 1 for each period. If the

statement is not run in four steps, it does not accumulate, because timeseries are
treated like vectors in Gekko, cf. this explanation page with illustrations etc.

But why doesn't Gekko run such statements stepwise period-by-period on itself?
Among other things, the reason is that some kinds of statements cannot be run
interchangeably with <dyn> or <dyn = no>, like for instance the following: x = x[-1]

 + (1, 2, 3, 4);. To a human, it may seem obvious that this means augmenting x

with 1 in 2020, 2 in 2021, 3 in 2022, and 4 in 2023. But the statement cannot just
be run for one period at a time: there is only 1 period and 4 values, and Gekko will
abort with an error because the number of observations and the number of values do
not match. Work-arounds for such cases could perhaps be invented, but simplicity is
preferred. The simplicity lies in the fact that with <dyn = no> tag, a series statement

like x = x[-1] + 1; is run vector-like in one go (without accumulation), whereas

with <dyn> tag, the statement is run period by period, accumulating.

A radical solution to this problem would be to decide that all series statements should
be run period-by-period (that is, with an implicit <dyn> tag). This would create other

problems, however. Perhaps the worst of these problems is that it would make all
series statements run much slower, because of the period-by-period looping.
Normally, timeseries calculations in Gekko operate like vector arithmetics, for
instance adding or multiplying vectors (arrays) on a low machine level, whereas
period-by-period looping operates at a much higher and slower machine level.
Therefore, unnecessarily decorating a series statement with <dyn> as in y <dyn> = 2

41Gekko User Guide

T-T Analyse

* x; basically makes the statement run n times slower, where n is the number of

time periods. The statement still yields the same results as without <dyn>, but for

longer time periods and many series statements, the slowdown would be really bad.

Instead of constructing the Laspeyres chain index by hand, Gekko has an in-built
function to compute these values. The function laspchain() returns a map,

containing the two timeseries (aggregated price and quantity).

The following is an example of changing the base year of a variable:

reset;
time 2010 2015;
p1 = 1, 1.02, 1.04, 1.04, 1.06, 1.05;
p1a = p1 / p1[2012]; //p1a is 1 in 2012
prt p1, p1a;

The growth rates of p1 and p1a are identical, but p1a has value 1 in 2012 rather than

in 2010.

In the following example, the series x1, x2, x3, and x4 are added together into a sum

series called xsum.

reset;
time 2010 2015;
x1 = 1; x2 = 2; x3 = 3; x4 = 4;
xsum = x1 + x2 + x3 + x4;
prt xsum; //value: 10

Instead of this, you can define a list of series names and use the sum() function to

sum over this list:

//...continued
#xlist = x1, x2, x3, x4; //naked list, list of strings
xsum = sum({#xlist}); //you can also use sum(x1, x2, x3, x4);
prt xsum; //still 10

Note the use of {}-parentheses. First, it should be noted that we are using a so-called

'naked' list definition, being short hand for the more strict #xlist = ('x1', 'x2',

'x3', 'x4');, more about this in the user guide section on lists. So the elements of

#xlist are the four strings 'x1', 'x2', 'x3', 'x4', and not a list of four timeseries

objects. Using sum(#xlist) would amount to sum('x1', 'x2', 'x3', 'x4'), and in

that case Gekko will complain that it cannot extract a value from a string type. In a
sense, the {}-parentheses 'eat' quotes ('), transforming the sum into sum(x1, x2,

x3, x4).

If confused about the use of {}-parentheses, try to read the elevator pitch.

42 Gekko 3.1.x help system

T-T Analyse

The user may aks why Gekko does not just 'know' that sum('x1', 'x2', 'x3',

'x4') is to be understood as the sum of the variables that these string names refer

to? But such contextual interpretation is bound to create other problems. For
instance, when printing out #xlist, how should Gekko 'know' whether the user

wants to have the four raw strings printed, or the four timeseries that the strings
refer to? The PRT statement here has the exact same {}-logic:

//...continued
prt #xlist; //prints the strings 'x1', 'x2', 'x3', 'x4'
prt {#xlist}; //prints the series x1, x2, x3, x4

It is often convenient to use name-parts ('codes') instead of full names, and use lists
to compose the names from these name parts. For instance, you may use a name-
composition with the name x{#xcodes} in the following way: #xcodes = ('1', '2',

 '3', '4'); prt x{#xcodes};. This also prints x1, x2, x3, and x4. Note that

#xcodes does not use the syntax #xcodes = 1, 2, 3, 4;, because in that case, the

four elements become values, and Gekko will complain that it cannot convert values
directly into strings (but you could use #xcodes = #xcodes.strings() to convert the

list elements into strings).

In addition to sum(), there is a number of other functions that can replace the

corresponding expressions on the right side of the equals sign.

Transformations and operators

Gekko also allows you to use a number of operators for easy transformations. Some
of the most used are the following:

^= absolute time-change:

x ^= 15; //absolute time-change, same as x <d>= 15;
x <dyn> = x[-1] + 15; //corresponds to this

%= relative time-change:

x %= 15; //relative time-change, same as x <p>= 15;
x <dyn> = x[-1] * 1.15; //corresponds to this

+= absolute change (same period)

x += 15; //absolute change (same period), same as x <m>= 15;
x = x + 15; //corresponds to this

*= relative change (same period)

43Gekko User Guide

T-T Analyse

x *= 1.15; //absolute change (same period), same as x <q>= 15;
x = x * 1.15; //corresponds to this

#= change in growth rate

x #= 15; //absolute change (same period),
same as x <mp>= 15;
gx = x/x[-1]; //corresponds to ...
x <dyn> = x[-1] * (gx + 0.15); //... these two lines

Instead of ^=, %=, +=, *= and #=, you may use the equivalent <d>, <p>, <m>, <q>, or

<mp> operators, for instance x <d>= 15; instead of x ^= 15; These <> operators

correspond exactly with the corresponding operators used in PRT, PLOT, SHEET, etc.
There is also a third possibility, namely using left-hand side functions, for instance
dif(x) = 15; which is equal to both x ^= 15; and x <d>= 15;

The choice of operator type is mostly a question of taste, and perhaps habit.

If <keep=p> is used as option, Gekko will keep the growth rate of the left-hand series

intact after the period over which the series is updated. For instance, x <2020 2025

m keep=p> x = 100; will add 100 to x over the period 2020-25, since <m> is the

operator for absolute change (same period). The keep=p setting makes sure that the

growth rate of x regarding 2026 and on is the same as before the update.

Data tracing

Gekko timeseries variables support data tracing, that is, the ability for a given
timeseries to "remember" how it has been constructed. Consider the statements x1 =

1; x2 = 2; x = x1 + x2;. Data tracing implies that x remembers that it has been

produced according to the expression x1 + x2, and x will also remember how both x1

and x2 were constructed (as sub-traces: even if x1 and x2 are subsequently deleted).

Data tracing also works through Gekko databanks (.gbk files). Think "Trace
Precedents" from Excel, just more powerful. See more here.

3.2.3.3 Frequency and time period

When working with timeseries, setting the global frequency and the global time
period is usually the first thing to do. When Gekko starts up, the default frequency is
annual (a), and the time period is set from t-10 to t, where t is the current year.

The frequency and time period settings control a wide range of statements, for
instance creation of new timeseries, databank search, transformations, estimation,
printing, etc. It is recommended to keep an eye on how the frequency and time
period is set, and to aid this, the current frequency and time period are displayed in
the lower left corner of the main Gekko screen:

44 Gekko 3.1.x help system

T-T Analyse

You may change the global time period with TIME:

reset;
time 2010 2020;
%t = 2021;
time %t-10 %t; //using a scalar date %t

The time period includes both the starting and ending period. You may use scalars
like %t instead of fixed dates, to control time settings more dynamically.

With option freq ... ;, the global frequency can be set:

reset;
option freq q;
time 2020q1 2020q4; //4 quarters
option freq d;
time 2020m1d1 2020m12d31; //366 days from Jan. 1, 2020 to Dec. 31,
2020.

This shows the use of quarterly (q) or daily (d) frequency. In both cases, you may

alternatively use time 2020 2020;, and Gekko will transform this into the same time

periods with 4 and 366 observations, respectively. (In general, Gekko tries it best to
translate 'foreign' frequency dates into current frequencies).

There are the following frequencies available in Gekko:

Na
me

Frequency Example Periods

a Annual time 2020 2022; 3

q Quarterly time 2020q1
2022q4;

12

m Monthly time 2020m1
2022m12;

36

w Weekly time 2020w1
2022w52;

157

d Daily time 2020m1d1
2022m12d31;

1096

u Undated time 0 100; 101

45Gekko User Guide

T-T Analyse

Undated frequency can be used to create, for instance, a timeseries defined over
different ages, so that x[30] corresponds to 30-year olds, etc. It could also represent

hours measured from some starting point, or any other repetitive data. Note that
week numbering follows the ISO 8601 standard. This means that weeks around New
Year are basically "strange" in the sense that the last days of particular year may
belong to the first week of the subsequent year, and the first days of a particular year
may belong to the last week of the preceding year (week number 52 or 53: the total
number of weeks varies from year to year).

The COLLAPSE statement is used to convert a higher frequency time series into a
lower frequency timeseries. If, for example, you only have quarterly data for a series
y, it can be converted into a corresponding annual series by taking the average over

quarters:

reset;
option freq q;
time 2010q1 2012q4;
y!q = 100, 110, 90, 105, 110, 125, 95, 115, 125, 130, 105, 125;
collapse y!a = y!q avg;
prt y!q, y!a;
plot y!q, y!a;

//Note: above, instead of y!q, you could just use y, because the
frequency is
// set to quarterly at the top. The !q is added here for
clarity.

Result:

 y % y!a %
 2010
 q1 100.0000 M
 q2 110.0000 10.00
 q3 90.0000 -18.18
 q4 105.0000 16.67
 a 101.2500 M

 2011
 q1 110.0000 4.76
 q2 125.0000 13.64
 q3 95.0000 -24.00
 q4 115.0000 21.05
 a 111.2500 9.88

 2012
 q1 125.0000 8.70
 q2 130.0000 4.00
 q3 105.0000 -19.23
 q4 125.0000 19.05
 a 121.2500 8.99

https://en.wikipedia.org/wiki/ISO_8601

46 Gekko 3.1.x help system

T-T Analyse

Here, we note the frequency symbol !, which is used to distinguish the annual series

y!a from the corresponding quarterly series y!q. In general, if the global frequency is

for instance quarterly, you do not need to decorate/suffix every quarterly timeseries
y!q with !q , but can just use y, where Gekko implicitly adds the !q behind the

scenes. The frequency indicators are mostly used when mixing frequencies.

As arguments to the COLLAPSE statement, you can choose between total, avg,

first, or last. When using total, you get the sum of the observations, with avg the

average, while first and last use the first and last observation, respectively. Gekko

also supports auto-collapse when printing, for instance prt <collapse=avg> y!q;

(this will print yearly averages).

If the global period is not undated, and if you use an integer sufficiently small, Gekko
adds 1900 to the year. This means, for example, that 95 becomes 1995, and 125
becomes 2025 (the latter variant is less used, but time 80 2020; instead of time

1980 2020; can be practical enough).

Date scalars

In many contexts it is practical to use pre-defined date variables to set the different
time periods. Scalar variables are often used for this purpose, that is, values, dates
and strings (cf. also the user guide section on scalars). Such variables are often used
for settings, for instance path strings that determine the location of different
databanks, or date scalars that set different time periods. This is especially practical
in large Gekko program systems, where the statements, for example calculations and
updates etc. are unchanged, but where the desired period over which the calculations
are to be made changes.

Gekko scalars (strings, values, and dates) must start with the symbol %, for instance:

reset;
//general settings
%per0 = 2012;
%per1 = 2015;
%per2 = 2020;
%path = 'e:\forecasts\scenario1\';
%bank = 'long.gbk';

47Gekko User Guide

T-T Analyse

%factor = 1000;
// -------------------------------
time %per0-1 %per2;
open {%path}{%bank} as b;
prt <%per1 %per2> b:gdp/%factor 'GDP';

Such settings variables may occur in many places in subsequent Gekko program files
in a larger data management system. When new data arrives, these settings may
change, for instance changing the three date variables to 2013, 2016, and 2021. The
location of the databanks may also change, for instance during testing. And a variable
like %factor might be set to 1e6 instead, so that printing is done per million rather

per thousand. To inspect such scalar variables, the MEM statement is practical,
because it shows all scalar variables in all open databanks.

As mentioned in the user guide section on databanks, it can be convenient to place
such settings variables in the Global databank, because this databank survives both

READ, CLOSE *, and CLEAR statements. The Global databank is always open, so you

can just prefix global: on the settings, for instance global:%per0 = 2012; (cf. also

the GLOBAL statement).

It should be noted that for instance %per0 in the example above is not really a date,

but an (integer) value. In practice, this is not an issue, because %per0 can be used as

a date in all relevant statements and functions. If you really wanted a date, you could
indicate the type with date %per0 = 2012;, or use %per0 = 2012a; but there is not

really any advantage of doing this. Dates can be stated in any frequency, for instance
%per0 = 2012q2; or %per0 = 2012m4d1;.

Seasonal adjustment

When working with monthly or quarterly data, there are often systematic
fluctuations, recurring depending on the month or quarter. It is often necessary to
correct for these seasonal fluctuations. In Gekko, the X12A statement is used for
seasonal correction.

If you have a quarterly series y that needs to be seasonally adjusted, you can write:

reset;
option freq q;
time 2010q1 2014q4;
y = 100, 110, 90, 105, 110, 125, 95, 115, 125, 130, 105, 125, 130,
140, 120, 135, 145, 150, 125, 145;
x12a y; //Returns the variable y_saa as seasonally adjusted
plot y, y_saa;

Result:

48 Gekko 3.1.x help system

T-T Analyse

You may fine-tune the X12A statement with special parameters, cf. the statement
description.

Structural levels

When working with monthly, quarterly or annual data, one is sometimes interested in
finding the structural levels. One way to find the structural level of a series is by
using a Hodrick–Prescott filter (HP filter), which inputs an economical time series
y[t], it adjusts a trend g[t] by solving a minimization problem.

The syntax for using a HP filter in Gekko is for instance:

reset;
time 2010 2024;
y = 105, 110, 95, 105, 120, 105, 125, 130, 115, 125, 120, 100, 105,
95, 110;
%lambda = 6.25;
y_hp = hpfilter(y, %lambda); //or: y.hpfilter(%lambda);
plot y, y_hp;

Result:

49Gekko User Guide

T-T Analyse

The statement returns a trend-adjusted variable yhp of the variable y. Lambda is

usually set to 6.25 for annual series, 1600 for quarterly series, and 129600 for
monthly series. Usually one finds the structural level of seasonally adjusted variables,
so in our case the following: yhp = hpfilter(y, 1600);

Note that in general, you may move the first argument of a function out of the
function like this: y.hpfilter(1600), instead of hpfilter(y, 1600). This often

allows a more "fluent" syntax, and allows chaining like for instance
y.hpfilter(1600).avgt() for taking the average, instead of the more backwards

avgt(hpfilter(y, 1600)).

3.2.3.4 Copying etc.

As mentioned in the user guide section on databanks, Gekko databanks can contain
different types of variables. Such variables may be copied, rename, moved, etc.
between databanks, cf. the following statements:

CLONE Makes the Ref (reference) databank an exact copy of the first-position

databank. The statement is often used for modeling, but can also be
used for data management, when comparing two databanks.

COPY Copies variables inside a databank or between databanks. COPY copies
all observations of timeseries, unless COPY<respect> is used.
Wildcards and ranges can be used.

DELETE Deletes variables in a databank (by name or wildcards/ranges)

INDEX Searches a databank for variables (with wildcards or ranges). Can also
search inside array-series.

RENAM
E

Renames variables in a databank (by name or wildcards/ranges). Can
also be used to move variables between databanks (without copying).

50 Gekko 3.1.x help system

T-T Analyse

In general, regarding statements like the above, it should be noted that a seemingly
all-encompassing wildcard like * will only match timeseries of the current frequency

in the first-position databank. If you need, for instance, to match all timeseries (of
the current frequency) in all databanks, use *:*, and to match all timeseries of all

frequencies (in the first-position databank), use *!*. There are also special rules

regarding matching of scalars and maps, cf. this page on wildcards.

Some examples:

copy x1 to x2; //make x2 an exact copy of x1
copy <respect> x1 to x2; //only for the global time period
copy #m1 to #m2; //copies the *list* #m1 to the *list*
#m2
copy {#m1} to {#m2}; //copies *elements* of #m1 to the
elements of #m2
copy b1:x1 to b2:x2; //copies between databanks
copy b1:x* to b2:*; //using wildcards
copy b1:x*; //copies into the first-position
databank

As with other statements, it should be remembered that copy #m1 to #m2; will copy

the object #m1 itself (#m1 may or may not be a list) into the object #m2, whereas copy

{#m1} to {#m2}; will copy the variables corresponding to the string names inside

#m1 (#m1 must be a list) into the variables corresponding to the string names inside

#m2.

About wildcards, there are some special rules regarding these in relation to the
symbols %, #, and !, cf. the user guide page on lists (or a more detailed explanation

of wildcard logic here).
The DELETE statement just deletes named variables in a databank, for instance:

delete x1, x2, x3;
delete b1:x1, b2:x2;
delete b2:x*;

RENAME has the same syntax as COPY, and the only difference between the two is
that COPY clones objects/variables, whereas RENAME renames/moves them. For
instance:

rename x1, x2 as y1, y2; //renaming two variables
rename x* as y*; //rename using wildcards
rename b1:x1 as b2:x1; //moving the variable between banks

The INDEX statement searches for variables and returns the results as a list of string
names. See more about INDEX on the user guide page on lists. Beware that the keys
[Tab] or [Ctrl+Space] offer autocompletion on timeseries names (cf. here).

51Gekko User Guide

T-T Analyse

3.2.3.5 Import and export of data

There is a difference between reading a .gbk Gekko databank and importing a data
file in a 'foreign' format. A similar distincion can be made between writing a .gbk
databank and exporting data to en external foreign format. Import and export of data
is characterized by the fact that it the files are in non-gbk formats like csv, xls(x),
prn, tsd, etc.

The Gekko databank files (gbk) support all Gekko variable types, both series, scalars
and collections. Foreign formats do not support all Gekko data types, but a number of
formats can be used for transportation of timeseries data. Examples could be the csv,
prn, and tsd formats. These are characterized by having a well-described and open
format. In addition, many software packages will be able to import and export
timeseries to these formats.

Note that Gekko can also exchange data with Excel and gnuplot. In both cases, Gekko
can do more than just send data to and from formats supported by Excel and gnuplot
and in both cases perform some of the tasks that user would otherwise have to do
after exporting the data. The use of Excel or gnuplot as a backend for Gekko is dealt
with in a separate section.

Supported transport formats:

P
r
o
g
r
a
m
/
f
o
r
m
a
t

File
type

Impo
rt

Expor
t

Comment

A
R
E
M
O
S

.dmp x AREMOS also supports the tsd
format, but .dmp (dump) files have
a lot better precision (significant
digits).

A
p
a
c
h
e

.arrow x Supported by many programs,
including R and Python. Import will
come soon, too.

http://www.gnuplot.info/
https://en.wikipedia.org/wiki/AREMOS

52 Gekko 3.1.x help system

T-T Analyse

A
r
r
o
w

c
s
v

.csv x x An open text format. Many programs
read this format, including Excel.

E
x
c
e
l

.xls(x) x x Regarding Excel, there is also the so-
called "Gekcel" project, where Gekko
statements can be issued from within
Excel, without opening up Gekko at
all. This project will soon be
released.

f
l
a
t

.flat x x A Gekko-specific text format that
resembles Gekko series statements,
but is more simple and very fast.

g
c
m

.gcm x x When exporting, the exported
timeseries are exported in the form
of .gcm statements that can be used
directly in Gekko. Not very fast, cf.
the 'flat' format.

G
A
M
S

.gdx x x The gdx format is supported for both
import and export. Is often used for
array-series, and GAMS sets are
interchanged, too.

g
n
u
p
l
o
t

.dat x Gekko can export data in a form
suitable for gnuplot.

P
C
I
M

.bnk x PCIM has previously been used for
modeling. Gekko can import its
binary databank format.

p
r

.prn x x A csv-like open text format.

53Gekko User Guide

T-T Analyse

n

P
C
-
A
x
i
s

.px x Gekko can import PC-Axis px files
(these are text-based). See also the
DOWNLOAD statement.

P
y
t
h
o
n

.py x Gekko can export data as a Python
script. Alternatively, use the Apache
Arrow format.

R .r x Gekko can export data as a R script.
Alternatively, use the Apache Arrow
format.

t
s
d

.tsd x x An open text-based format used by
AREMOS and EViews.

T
S
P

.tsp x x Can import and export TSP records.

Import of data

IMPORT and READ are similar, but READ is meant for Gekko's own .gbk databank
format, for instance loading the file data.gbk like this:

read data; //Gekko appends .gbk automatically

Regarding timeseries, READ gets all observations regardless of the global time period,
and READ also first clears the first-position databank, before data is loaded.

In contrast, the IMPORT statement restricts import to the global time period (unless
otherwise stated), and merges data with existing data in the first-position databank.
Therefore note that IMPORT may not import all observations from the data file, and
existing values outside of the global time period will remain unchanged. Use
IMPORT<all> to import all observations and replace existing timeseries completely. If
you need to IMPORT into an empty databank, you can use CLEAR first.

https://www.scb.se/en/services/statistical-programs-for-px-files/
https://en.wikipedia.org/wiki/AREMOS
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

54 Gekko 3.1.x help system

T-T Analyse

Example:

import <tsd> data.tsd; //will only import for the global time
period
import <tsd all> data.tsd; //imports all data for all observations
in the data file

When reading csv and xls(x) files, one must be aware that Gekko per default reads
the time series in rows, and expects the first column to contain series names, and the
first row to contain dates. If the time series are in columns (transposed), this must be
specified with the <cols> option in IMPORT:

import <csv cols> data.csv; //series running downwards in columns
import <xlsx cols> data.xlsx; //series running downwards in columns
import <prn> data.prn;

Regarding prn, this format is similar to csv, only it uses space as delimiter, rather
than semicolon, and the first "cell" (corresponding to A1 in a spreadsheet) inside the
prn file contains info on whether the timeseries run outwards in rows, or downwards
in cols.

Export of data

EXPORT and WRITE are similar, but WRITE is meant for Gekko's own .gbk databank
format, for instance writing the file data.gbk like this:

write data; //Gekko appends .gbk automatically

Regarding timeseries, WRITE writes all observations regardless of the global time
period. In contrast, the EXPORT statement restricts export to the global time period
(unless otherwise stated). Therefore note that EXPORT may not export all
observations from the first-position databank. Use EXPORT<all> to export all
observations. It is also possible to store one or more selected variables in the .gbk
databank file:

write x1, x2, x3 file = data; //Three series, Gekko appends .gbk
automatically

The EXPORT statement is very similar, for instance (here, the csv format is used: the
file is indicated with extension .csv for clarity, even though Gekko would add the
extension automatically):

export <csv> data.csv; //All series, global period
export <csv all> data.csv; //All series, all observations
export <csv> x1, x2, x3 file = data.csv; //Three series, global

55Gekko User Guide

T-T Analyse

period
export <csv all> x1, x2, x3 file = data.csv; //Three series, all
observations

The EXPORT statement supports Excel xls(x) files, but export of data to Excel can also
be done using the SHEET statement, where you can control the sheet name, starting
cell, and the orientation (columns or rows) of the timeseries. Regarding Excel, the
difference between EXPORT and SHEET can summed up like this:

· EXPORT<xlsx> exports timeseries to a matrix of cells starting in cell A1, where the
first row is dates, and the first column is series names. Only raw values are
exported, no transformation is possible, and EXPORT<xlsx> is very similar to
EXPORT<csv>.

· SHEET is essentially a print or plot statement in disguise, allowing all the same
transformations and expressions used in prints or plots, for instance the use of
operators, mathematical expressions, functions, etc. SHEET also allows choosing
the sheet name, starting cell name, and it can suppress period and/or name labels
to only show raw data, etc.

The SHEET statement is therefore a flexible way of transferring data to Excel. Excel
must be installed for SHEET to show the results, and the statement does not work
with e.g. LibreOffice Calc or Google Sheets. For this, it is recommended to use
EXPORT<csv>, since the csv format is supported by most spreadsheet programs.
Alternatively, it is possible to use the CLIP statement, which is equivalent to SHEET,
but places the result on the clipboard for later pasting with Ctrl-V.

As a minimum, the SHEET statement must specify which variables are to be
transferred to Excel, e.g.:

sheet x1, x2, x3;

The above statement puts the timeseries x1, x2, and x3 into Excel (in rows). No file is

saved, and the Excel sheet containing the data is automatically opened by Excel and
shown. As mentioned, SHEET is a PRT/PLOT statement in disguise, so it allows all
kinds of transformation, for instance:

sheet x1/(x1+x2), x3 <p>;
sheet log(x1/x2) 'lx1x2' file = logdata.xlsx; //changing the label

In the first statement, x3 is shown as percentage growth due to the operator <p>. In

the second statement, the result is not shown in Excel, but instead the file
logdata.xlsx is written to disk. The label 'lx1x2' is set, because a label (name) like

'log(x1/x2)' is not useable if the file is being re-imported into Gekko from this

spreadsheet (with IMPORT<xlsx>).

In the following example, several series are exported from the bank hist1115.gbk to

Excel:

56 Gekko 3.1.x help system

T-T Analyse

read hist1115;
time 2010 2020;
sheet fY, fM, fCp, fCo, fI, fE;

After issuing a SHEET statement, Excel should start up, showing the data.

Piping

A special kind of export is using a pipe. The PIPE statement is generally used to store
Gekko output in a file by directing (piping) Gekko's output into the file, instead of on
screen. In the following example, the output is saved in a the text file data.prn:

pipe prt.txt;
prt <n> x1, x2, x3;
pipe <stop>;

The <n> operator suppresses percentage growth, which is normally shown in PRT,

together with levels. After pipe<stop>; the file prt.txt contains the print, and no

output is shown in the Gekko output window. You can use TELL to add text to such a
pipe file. Instead of text format, the PIPE statement can also generate output in html
format, and with the use of PIPE<html> in combination with PLOT and TABLE, quite
advanced "reports" can be produced.

3.2.3.6 Download API

Gekko has an interface to the online API of Statistics Denmark (statbank.dk). This is
perhaps not very interesting for non-Danish users, but other online databanks could
be supported in Gekko, too.

You can use the DOWNLOAD statement to download timeseries originating from data
tables on statbank.dk, without having to go through a manual process. The syntax for
accessing the API is:

download 'http://api.statbank.dk/v1/data' statbank.json;

With the above statement line, Gekko accesses the online API via the provided link
and a .json file describing which data to download. The file indicates which table and
which variables from that table are to be retrieved. The json file is based on the .json
format, which can be thought of as a kind of simplified and more readable xml. For
example:

{
 "table": "PRIS6",
 "format": "px",
 "variables": [

57Gekko User Guide

T-T Analyse

 {"code": "VAREGR", "values": ["011200", "011100"]},
 {"code": "UNIT", "values": ["100"]},
 {"code": "TIME", "values": ["*"]}
]
}

With the above specification, Gekko will use the API to fetch the data table PRIS6

("table": "PRIS6"), in PC-Axis format ("format": "px", which is currently the only

format Gekko can use regarding statbank.dk), and the price index ("code": "UNIT",

 "values": ["100"]) retrieve the product groups with the codes 011200 and 011100

("code": "PRODUCT", "values": ["011200", "011100"]) for the entire period

("code": "TIME", "values ": ["*"]).

The variables are placed in Gekko's work bank and the variables are named according
to the following convention:

 <table
name>_<dimension1>_<code1>_<dimension2>_<code2>_<dimension3>_<code3> ...

When the above DOWNLOAD statement is run, the following output is shown:

 -> Download start ...
 PRIS6_VAREGR_011200_ENHED_100, with freq M, 2000m1-2015m12
 PRIS6_VAREGR_011100_ENHED_100, with freq M, 2000m1-2015m12
 -> Downloaded 2 timeseries in total

And the two time series PRIS6_VAREGR_011200_ENHED_100 and

PRIS6_VAREGR_011100_ENHED_100 are located in Gekko's first-position databanke,

where the name composition corresponds to this:

PRICE6 <table name>
_VAREGR_011200 _<dimension1>_<code1>
_ENHED_100 _<dimension2>_<code2>

In addition, Gekko shows info about frequency and time period, respectively. For
instance, "with freq M, 2000m1-2015m12" means that the frequency is monthly (M),
and the dates mean that the data runs from January 2000 to December 2015. If it
had instead been 2000m2-2015m11, the data would have run from February 2000 to
November 2015.

If you want to retrieve all item groups and unit types from a table, you may use "*"

inside the square bracket that follows the table group code (PRODUCT, UNIT and TIME

in the above). This is e.g. done for the time period in the json file above.

If you wanted to e.g. to retrieve the entire table, PRICE6, with price indices for all

product groups, the json file should look like this:

{
 "table": "PRIS6",
 "format": "px",

https://www.scb.se/en/services/statistical-programs-for-px-files/

58 Gekko 3.1.x help system

T-T Analyse

 "variables": [
 {"code": "VAREGR", "values": ["*"]},
 {"code": "UNIT", "values": ["*"]},
 {"code": "TIME", "values": ["*"]}
]
}

The API is a handy tool for downloading multiple statbank data at once. As
mentioned, the DOWNLOAD interface could be adapted for other online databanks,
too.

3.2.4 Gekko programs

When using Gekko in daily work, you will usually use Gekko program files, if you
have a program that takes up more than a few statements, and this statement
sequence will be run several times. A Gekko program file is an alternative to typing
each statement interactively in the Gekko main window. An additional advantage of
using Gekko programs is that the documentation of the performed calculations is
done automatically -- it is simply the Gekko program(s).

When using Gekko programs, it is thus possible to review at any time which
statements have previously been run in order to produces some results. Gekko
program files also provide some protection against errors, since programming with
the help of Gekko programs ensures a certain order of the program structure.

A Gekko program is characterized by two properties:

· It contains only Gekko statements.
· It is a system file with file extension: .gcm

To run a Gekko program file with the name data.gcm, type:

run data; //Gekko will add extension .gcm

All the statements in the file will then be executed exactly as if they were issued
interactively from the statement window.
Below is an example of a Gekko program as it will look in Notepad (read more about
editors: +toggle).

An editor like Window's in-built Notepad text editor can be used for Gekko programs,
but this editor is not particularly advanced. It is advised to use a more capable text
edit, because you may need to operate on blocks of code, search and replace in a
more advanced fashion, etc. Additionally, but not least, more advanced editors allow
code coloring (highlighting). This is the same kind of coloring seen in the above box
illustrating the RUN statement: note that the semicolon is blue, and the comments
are green. A particular handy possibility is the possibility to feed the editor with a list
of Gekko statement names, so that these get their own color.

https://en.wikipedia.org/wiki/Microsoft_Notepad

59Gekko User Guide

T-T Analyse

With a more advanced text editor, such coloring is possible, coloring for instance all
the special symbols in one particular color, numbers in another color, text strings in a
third color, etc. Some editors can even color different levels of nested parentheses in
different colors.

· The so-called Kedit text editor has historically been used a lot together with Gekko,
among other things because it can be fed with a syntax coloring definition file.
However, Kedit is a more or less discontinued product, and is not free.

· Else, there is Sublime Text, for which there is a free open-source Gekko module
available that handles text coloring, but also other things like remote-controlling
Gekko. Sublime Text is free for evaluation purposes.

· The possibilities regarding text editors are practically infinite, it basically comes
down to personal preference.

// ----- file start -----
read hist1115;
ul = ua - q;
prt ul;
// ----- file end -------

The above file first loads the databank hist1115.gbk. Next, the number of

unemployed (ul) for the current period is calculated and printed.

It is advised to include comments in Gekko programs. This increases readability both
for the user him/herself, but especially for other users who need to understand the
contents of the file. Comments can be included in the file with either:

· // some text
· /* some text */

The former (// ...) only out-comments the rest of the current line, wheras the

latter (/* ... */) can span several lines and is therefore practical for multi-line

commentaries, or for out-commenting larger blocks of code (read about other ways of
skipping code: +toggle).

You may out-comment code like this:

x1 = 1;
/*
x2 = 2;
x3 = 3;
*/
x4 = 4;

 In that case, only x1 and x4 are calculated (// could have been used as well, on the

two lines). An alternative is this:

https://www.kedit.com/
https://www.sublimetext.com/
https://github.com/MartinBonde/gekko_sublime

60 Gekko 3.1.x help system

T-T Analyse

x1 = 1;
if(1 == 0);
 x2 = 2;
 x3 = 3;
end;
x4 = 4;

Here, activating the two lines is a bit easier, just change into for instance if(1 ==

1);. Or use a 'control' variable, like if(%cond == 1);, where the code is run only if

the settings variable %cond is set to 1.

To stop execution of Gekko at a particular location, it is advised to insert a STOP
statement, for instance

x1 = 1;
stop;
x2 = 2;
x3 = 3;
x4 = 4;

Now only the first line of the Gekko program file is run, after which Gekko stops, and
the user can inspect variables or try to sort out bugs. Gekko cannot resume after a
stop, but you may move the STOP statement and run the file again.

Besides gcm program files, Gekko also recognizes files named gekko.ini

(henceforeward called the 'ini file'). The file usually contains a number of custom
options that the user wants Gekko to set at startup. The options can, for example, set
the folder structure for which Gekko should look for model files, bank files, and
Gekko programs, along with other more general settings like setting the global time
period, etc. The ini file is run automatically, if Gekko is started from a folder in which
such a file exists (otherwise, the INI statement can execute the ini file on demand,
and the RESTART statement resets Gekko and subsequenctly runs the ini file). An
example of the contents of an ini file could be:

option folder bank = C:\Datop\bank\;
option folder command = C:\Datop\;
run period.gcm;
read hist1115;
time 2010 2020;

The first two lines define the folders in which Gekko searches for data banks (option

folder bank) or Gekko program files (option folder command). When bank and

Gekko programs paths are defined as above, in subsequent statements it is not
necessary to use full path indication if you open up a data bank or run a Gekko
program. The third statement loads date variables from an external period.gcm file.

Finally, a databank is read, and the global time is set.

61Gekko User Guide

T-T Analyse

It is a good idea to start your Gekko program with the following:

restart;

which closes all data banks, clears everything (including options, etc.), and re-runs
gekko.ini. A RESTART is essentially equivalent to closing the Gekko main window,
and starting Gekko up again. Related to RESTART is the RESET statement, which also
closes all data banks but fails to run any ini file.

reset;

With RESET, a gekko.ini file is not searched for and run. There is the following

equivalence: RESTART = RESET; INI;. Since both RESTART and INI do not abort with

an error if no ini file is found, if you need to be absolutely certain that a gekko.ini file
is found and run (and no-one accidentally deleted the file), instead of RESTART; at

the top of your Gekko program, you can use RESET; RUN gekko.ini;. In that way, if

the ini file is not found, Gekko will stop with an error.

If you need to clear the output window, you can use CLS (clear screen):

cls;

Neither RESET nor RESTART clears the output window, so cls; RESTART; is often

seen in combination.

Read more about Gekko programs in the sub-sections.

3.2.4.1 Module organization of command files

Gekko program files can be nested, that is, a Gekko program file calling another
program file, which in turn calls a third program file, etc. It can be an advantage to
separate large automated runs in several program files, where the individual steps
are separated into modules. For example, program.gcm can contain several separate

steps:

Program.gcm:

run step1.gcm; // Reads input data
run step2.gcm; // Converts to aggregated groups
run step3.gcm; // Calculates derived variables
run step4.gcm; // Writes calculated variables to databank

62 Gekko 3.1.x help system

T-T Analyse

There are several advantages to modularity. For example, it makes it possible to
reuse a group of statements. It can also provide a clearer structure in more complex
tasks, which makes the programs easier to write, troubleshoot and reuse.

However, complications can occur, especially when calling Gekko program files from
other program files. Circular calls should obviously be avoided, for instance where
file1.gcm calls file2.gcm, which in turn calls file1.gcm.

The following statements are particularly useful in modular/nested program files:

ACCEP
T

Can be used for interactive user input.
Example: accept string %yesno 'Do you want to continue?
(y/n)';

PAUSE Stops the execution of statements, writes the text to the output
window, and waits for the user to press [Enter].
Example: pause 'Click [Enter] to continue';.

TELL Example: tell 'The calculations are now finished';.

Writes text to the output window.

RETUR
N

Returns from the currently executing program file, and returns to its
'parent' (calling) program file. RETURN is also used for functions and
procedures.

STOP Stops the run and ignores the rest of the cmd file. Also interrupts runs
of nested files, in contrast to RETURN.

Instead of using (nested) program files, it is also possible to use user-defined
functions or procedures (more on this in a later section). These are defined first, and
can be called subsequently. They can be called with arguments, providing ease of use
and encapsulation.

When a larger Gekko session is running (for instance running a number of program
files), you may use the menu item 'Utilities' --> 'Run status...' to see how Gekko is
progressing (or double-click the yellow 'traffic light' at the bottom left of Gekko main
window). In addition, you may track which data files are read and written by
activating the menu item 'Data' --> 'Track data'. When active, a Gekko session will
conclude by showing which data files were read and written. This info can be
practical for larger structures of Gekko program files.

3.2.4.2 Scalars

As explained in the section on frequency and time period, scalar variables can
practical for storing general settings in the beginning of a system of Gekko program
files. Scalars are useful in longer program files, where you easily lose track of for
instance time settings, file paths etc. Scalars can be of type value, date or string, and
scalars always start with the symbol %.

63Gekko User Guide

T-T Analyse

Note: Gekko variables can also be of collection type, for instance list type. Lists
can also be practical to define at the beginning of a system of Gekko program files
(lists are explained in the following user guide section on lists).

Gekko has three types of scalars:

value Numeric values, with decimals (also used for integer values).
For instance %v = 25, %v = -1.2345, or %v = 2.57e9.

date Date variable with time indications.
For instance %d = 2012a, %d = 2012q4 or %d = 2012m12.

If you write %d = 2012, %d will technically be value, but can still be

used just like an annual date, no worries.
See also "date combining functions" under functions.

string For example text strings or path names.
For instance %s = 'Price index, 100 = 1' or %s = 'm:

\data\revision2\'.

See also "string combining functions" under functions.

Notes:

· Values: a particular observation from a timeseries can easily be fetched as a value:
%v = x[2020];, where x is a timeseries. In Gekko, there is no special integer type:

for integers, you just use values. Values often represent annual dates, too.
· Dates: you may add or deduct integers from dates, for instance the quarterly %d1 =

2012q4; %d2 = %d1 + 10; will add 10 periods/quarters to %d1, with result %d2 =

2015q2 (fourth quarter of 2012 + 10 periods = second quarter of 2015). You may

also use date differences: %d2 - %d1 = 10.

· Strings: can be concatenated with +, for instance %s = 'rise'; prt 'sun' + %s;,

which prints 'sunrise'. Alternatively, and often more readable, Gekko also

supports string interpolation, where Gekko replaces any {...} curlies inside a

string with the result of evaluating the curlies. For instance, %s = 'rise'; prt

'sun{%s}'; will also print 'sunrise'. String interpolation corresponds tightly with

the equivalent concept of name-composition in Gekko, where %s = 'rise'; prt

sun{%s}; will try to find a timeseries with name sunrise (note the absense of

quotes in this PRT variant).
· Types: you may prepend explicit scalar type, for instance val %v = 100;, but

normally this is not necessary, because the scalar type is normally given from the
right-hand side of the assignment. Beware that, in general, if you add a value and
a string, the value will first be promoted to a string, and therefore prt '2' + 3;,

which print '23', not 5. Therefore, you may sometimes need to convert, which is

done with the functions val(), date() or string(). These functions try to convert

to the desired type, for instance prt val('2') + 3; will print 5.

Example:

https://en.wikipedia.org/wiki/String_interpolation#:~:text=In%20computer%20programming%2C%20string%20interpolation,replaced%20with%20their%20corresponding%20values.

64 Gekko 3.1.x help system

T-T Analyse

%bank = 'hist1115';
read %bank;
fy <2010 2012> += 1000;
write %bank;

The series fy from the bank hist1115.gbk is augmented by 1000 in 2010-12. Here,

we do not need to use {}-curlies around %bank, (but still this is perfectly legal),

because the READ and WRITE statements (and IMPORT and EXPORT, too) support
both of the two variants read hist1115; or read 'hist1115';.

In connection with data revision programs, it may be a good idea to incorporate the
names of input banks, output banks and time period settings centrally at the top of a
program file, so that it is easy to adjust.

// --- Update banks and dates if necessary ---
cls; reset;
%in = 'in.gbk'; // input bank
%out = 'out.gbk'; // output bank
%per1 = 2012;
%per2 = 2014;

// ---- Does not normally need to change ---
read %in;
time %per1 %per2;
var1 %= 2; //2 percent growth rate
var3 = var1 + var2;
write <%per1 %per2> var3 file=%out;
reset;

In the above example, an input databank %in is read, time is set to the chosen

period, the growth rate of the series var1 is set to 2% annually, and var3 is

calculated as the sum of var1 and var2. Finally, a databank is written, with the given

%out name.

If this needs to be performed on two other databanks, or on a different time period,
this can easily be adjusted in the top part of the program.

3.2.4.3 Lists

A Gekko list is an ordered sequence of Gekko variables. A list name must begin with
the # symbol like the other Gekko collection types (matrix and map). Lists are often

used to store strings, particularly strings that represent variable names. But lists are
practical for many things. For instance, you may store 2-dimensional Excel
spreadsheet cells inside a nested list (a list of lists), see example later on in this
section.

A simple list example with a list of strings:

65Gekko User Guide

T-T Analyse

#m1 = ('x1', 'x2', 'x3'); //strict syntax
#m2 = x1, x2, x3; //equivalent 'naked list' simple syntax
prt #m1; //prints the strings 'x1', 'x2', 'x3'
prt {#m1}; //prints the series x1, x2, x3

Two important things must be noted about the above example. First, the strict syntax
for creating a three-element list of strings uses parentheses () and quotes '. Using

()-parentheses is the the most general/strict way of defining lists, but in the

particular case of lists of strings, a simpler 'naked list' syntax is legal, too (naked due
to the omitted parentheses and quotes). For a naked list, strings are not enclosed in
quotes, either, cf. the second statement above. It should be remembered, however,
that even though the second statement above may look like it inserts three
timeseries objects x1, x2, and x3, this is not the case. The naked list definition #m2 is

just a convenient syntactical short-hand for the strict list definition #m1 above, and

inside the resulting list there are in both cases three strings 'x1', 'x2', and 'x3',

not three timeseries objects x1, x2, and x3.

Regarding the print-statements, with prt #m;, you are printing out the list itself --

that is, raw strings. If you need to print out the variables that the strings refer to,
you must enclose the list in {}-curlies, as shown in the last print statement. Lists are

also often used in connection with loops, where the same calculations are performed
for each of the list elements individually (cf. the loops user guide section).

You may pick out an individual list element with an []-index, for instance #m[2] to

pick out the second element of the list #m. To see all defined lists, use the following

statement:

list?;

Naked list syntax

If you are combining strings and lists of strings, naked list syntax offers the following
easy way of combining them:

//naked list combinations
#m1 = b, c; // ('b', 'c')
#m2 = e,; // ('e',) --> note trailing comma!
#m3 = a, {#m1}, d, {#m2}; // ('a', 'b', 'c', 'd', 'e')

Note the {}-curlies, and note the trailing comma in the #m2 definition (a naked list of

only one element, cf. the section on 'singletons' later on). The use of {}-curlies in

naked lists is similar to printing lists of variables with prt a, {#m1}, d, {#m2};,

which would be equivalent to prt a, b, c, d, e;. You may use the rep keyword to

repeat element, for instance:

#letters = a rep 2, b, c rep 3; // ('a', 'a', 'b', 'c', 'c', 'c')

66 Gekko 3.1.x help system

T-T Analyse

The comma , is useful for concatenation, and for lists of strings, the naked list syntax

is often convenient. Naked lists can also be used to define lists of values or lists of
'codes', for instance:

#m1 = 2, 3, 4; // (2, 3, 4) values
#m2 = 1, -2.3, 3.4; // (1, -2.3, 3.4) values
#m3 = 1, a, 2; // ('1', 'a', '2') strings
#m4 = 2, 03, 4; // ('2', '03', '4') strings

The first two lists become lists of values (value scalars), whereas the last two lists
become lists of strings. The main rule is that if all elements are normal values, the
elements of the resulting list will be values, too. In all other cases, all the elements
will become string types. There are some special rules regarding such naked lists, see
more on the naked list page. To convert the elements of a list to a particular type,
you may use the values(), dates(), or strings() functions.

Note: When using naked lists, a lot of single quotes can be avoided for long lists
of strings. But this convenience may introduce some confusion. On the right-hand
side of LIST or FOR statements, you should be aware that there are three
different kinds of possible expressions:

#m = something; //normal assignment
#m = something, something, ... ; //naked list definition
#m = (something, something, ...); //strict list definition

In the first, there is no comma and no soft parentheses. In the second, there are
one or more commas, but no soft parentheses. In the third, there are both
commas and parentheses. Now, consider this:

#m = a; //normal assignment
#m = a, b; //naked list definition
#m = (a, b); //strict list definition

In the first, you are trying to assign the timeseries a to #m (this will fail with a

type error). In the second, the list will contain the two strings 'a' and 'b'. And in

the last, the list will contain the two series objects a and b.

Therefore, in LIST or FOR statements, always take a look at the right-hand side to
see if there are commas or enclosing parentheses. On the right-hand side of a
naked list definition, other lists must be enclosed in {}-curlies, for instance #m =

{#m1}, {#m2}; to append the two lists #m1 and #m2. So why is #m = #m1; legal,

omitting the {}-curlies? That is because there is no comma, and the statement is

therefore a normal assignment (the equivalent naked list definition would be #m =

 {#m1},; with trailing comma).

67Gekko User Guide

T-T Analyse

Other operators

You may also combine lists with the + or || operators:

#m1 = a, b, c, d; // ('a', 'b', 'c', 'd')
#m2 = c, d, e, f; // ('c', 'd', 'e', 'f')
#m3 = #m1 + #m2; // ('a', 'b', 'c', 'd', 'c', 'd', 'e', 'f')
#m4 = #m1 || #m2; // ('a', 'b', 'c', 'd', 'e', 'f')

The #m3 list contains duplicates, because the + operator for lists is a simple

concatenation of the two lists. In #m4, however, duplicates are removed, because the

|| is the union operator. Some commonly used operators and functions:

Some useful operators and functions for two lists

#m1 ||
 #m2

Union The union of the two lists, no dublets introduced.

#m1 &&
 #m2

Interse
ction

The intersection of the two lists.

#m1 -
#m2

Differe
nce

The difference between the two lists.

#m1 +
#m2

Concat
enation

This is like a 'naive' union where dublets may be introduced
if #m2 contains some of the same elements as #m1.

unique
()
sort()

Functio
ns

There are a large number of list functions available, see
more under LIST or under functions. But for instance
unique() will remove dublets, and sort() will sort

alphabetically. Such functions may be nested, for instance
#m = #m1.unique().sort();.

The += and -= operators can also be practical when appending to or removing

elements from naked lists. To append an element to a list, the append() function can

also be used, and prepend() to prepend. To remove an element, remove() can be

used. Examples:

68 Gekko 3.1.x help system

T-T Analyse

#m = a, b, c, d; //Result: ('a', 'b', 'c', 'd')
#m += e, f; //Append using a naked list and +=
operator
#m = #m.append('g').append('h'); //Append using append() function
#m -= g, h; //Remove using a naked list and -=
operator
#m = #m.remove('e').remove('f'); //Result: ('a', 'b', 'c', 'd')
#m = #m.prepend('x'); //Result: ('x', 'a', 'b', 'c',
'd')

Beware that you cannot use for instance #m + 'a' or 'a' + #m to append/preprend

the string 'a' to the list #m, whereas you can use #m - 'a' instead of

#m.remove('a') to remove 'a' occurrences from the list.

To add or remove a string %s from a list, the following can be convenient. Note the

comma (singleton comma, cf. below). More elements can be put after the comma.

#m += {%s},; //add string %s to the list
#m -= {%s},; //remove string %s from the list

Strict list syntax

If you need fine-grained control over the types of list elements, you can use strict
syntax, that is, lists defined with ()-parentheses. For instance:

#m = (1, 'a', 2020q1); // (1, 'a', 2020q1)

In a strict-syntax list definition, ()-parentheses cannot be omitted, and all string

elements must be quoted. Above, the #m list contains a value, a string, and a date, so

the list elements are all of different type. Other examples where strict ()-syntax

must be used:

#m1 = (x1, x2); //list of series objects
#m2 = (2001q1, 2002m12); //list of dates
#m3 = (#m1, #m2); //list of lists (nested list)
#m4 = ((x1, x2), (2001q1, 2002m12)); //same as above

Instead of the first list (a list of series objects), it is often simpler and more
manageable to store the names (as strings) of the timeseries (the two strings ('x1',

 'x2')), and then use {}-parentheses afterwards when referring to the series

objects.

Wildcards

69Gekko User Guide

T-T Analyse

With the INDEX statement, you can use wildcards and ranges to search/index
variable names in databanks. For instance:

index fx* to #m1; //wildcard
index fxa..fxn to #m2; //range

The first statement looks in the first-position databank for variable names that match
fx*, that is, variables beginning with the string 'fx' (this search is case-insensitive).

The result is put into the list #m1. If the to #m1 part of the statement is omitted,

Gekko will just print the matching names on the screen, providing an overview of
how many variables in the databank start with 'fx'. Ranges are supported, too:

fxa..fxn finds names in the alphabetical range fxa to fxn.

You may choose whether you want INDEX to return "full" variable names with
bankname and frequency (like b1:x1!q) or not (like just x1). Gekko has a lot of

functions for dealing with for instance banknames or frequency parts in lists of
variable names, for instance removebank() or removefreq() to remove banknames

or frequencies, but also functions for setting or adding those. See more under
"Bank/name/frequency/index manipulations" on the functions page.

You may equivalently search/index in the following way:

#m1 = ['fx*']; //wildcard
#m2 = ['fxa..fxn']; //range
prt ['fx*']; //prints the matching timeseries names (as
strings)
prt {'fx*'}; //prints the matching timeseries themselves

As it is seen from the examples, a wildcard can either be 'naked' like fx*, used in for

instance the INDEX or COPY statements, or enclosed inside quotes and
brackets/parentheses, like ['fx*'] or {'fx*'}. The former is used for lists, and the

latter is used in for instance PRT, PLOT, etc. The user might ask herself the following
question: if index x*y; is legal syntax for finding timeseries starting with 'x' and

ending with 'y', why is it not possible to use prt x*y; to print those timeseries? The

reason is that x*y can also be understood as x multiplied by y, so in statements like

PRT or PLOT, where mathematical expressions are allowed, you cannot use the
'naked' wildcard x*y, but must instead use the more cumbersome prt {'x*y'};.

Regarding wildcard searching/indexing of databanks, there are some special rules
regarding the special name-characters %, #, and !. Read more about these rules in

this +toggle.

About the wildcard syntax, there are some special rules when using wildcards to
search/index databanks. Variable names may start with the symbol % or #, or end

with a frequency indicator like !q or !m (quarterly and monthly). When

searching/indexing databanks, a general wildcard like * will not match % or #, so if

the first-position databank contains the variables xy1 (series) and %xy1 (scalar), the

wildcard *y1 only matches the series xy1, not the scalar %xy1. Similarly, if the global

70 Gekko 3.1.x help system

T-T Analyse

frequency is set to annual and the first-position databank contains the variables
xy1!a and xy1!q (an annual and quarterly timeseries), the wildcard xy* will only

match the annual xy1!a, not the quarterly xy1!q. Therefore, a general wildcard like *

only matches timeseries, and only timeseries of the current frequency. If you need to
match for instance scalars, you can use %*, and if you need to match a 'foreign'

monthly frequency, you can use for instance *!m. Another thing to note is that a

wildcard like fx* only searches the first-position databank. To search all open

databanks for fx*, use the wildcard *:fx*, or use b1:fx* to search inside a specific

databank. Read more about these wildcard rules here.

The INDEX statement has options to control whether the resulting list of names
includes banknames and frequency indicators. It should be mentioned that indexing
works differently when a list rather than a databank is indexed, so for instance
#m['*y1'] will match all elements of the list #m ending with 'y1', following normal

matching rules, with no special treatment of %, #, and !.

Listfiles

You may create and manipulate lists of strings via list files. List files are just text
files, where each line contains a string (without quotes), for instance:

vars.lst

a
b
c
d

If you put the file vars.lst into the working folder, you may subsequently use this

listfile as if it was a normal list, using the syntax #(listfile vars). The listfile

elements may contain characters like %, # and !, but you may also prepend a -. The

latter can be useful for certain kinds of operations where you for instance want to
subtract a variable from a sum. If needed, each line of a list file may contain several
elements, delimited with the ; symbol. In that case, the list will become a nested list,

kind of like a mini-spreadsheet where all the cells are strings (such a list will
resemble the csv file syntax).

Gekko databank files (.gbk files) can store any kinds of (nested) lists, but sometimes
when operating on lists of strings, it is just easier to be able to operate directly on a
list in the form of a text file. The following shows how to create and use a listfile:

#(listfile vars) = a, b, c, d; //creates file vars.lst
prt #(listfile vars); //'a', 'b', 'c', 'd'
#m = #(listfile vars) - 'c'; //remove 'c'
prt #m; //'a', 'b', 'd'

71Gekko User Guide

T-T Analyse

Instead of a list file, you may alternatively import a list or a nested list from a
spreadsheet (xls(x) or csv file), read more in this +toggle.

Instead of using a list file you may alternatively import cells directly from a
spreadsheet (xls(x) or csv file) into a nested list with SHEET<import list> like this:

sheet <import list> #m file=data.xlsx;

The user manual regarding the SHEET statement contains some examples of
advanced "data wrangling" of a nested list of spreadsheet cells ('nested' understood
as rows of columns of cells). Such cells need not be only strings: they can be values
and dates, too.

One-element lists and trailing commas

The last thing to note about lists is that one-element lists (also called singletons lists)
have to be treated in a special way, adding a 'superfluous' trailing comma:

//singleton list
#m1 = x1,; //naked list with comma: result = ('x1',)
#m2 = ('x1',); //strict syntax with comma: result = ('x1',)

The problem with one-element lists is that in general mathematics, (x) = x, and

circumventing this general rule would introduce all sorts of other problems in Gekko.
Therefore, as it is also done in e.g. Python, a trailing 'superfluous' comma is used to
indicate that we are defining a one-element list. Without the extra comma, in the
first statement above, Gekko would fail because it cannot convert a series x into a

list, and in the second statement, Gekko would fail because it cannot convert a string
'x1' into a list.

If you do not like to use trailing commas, you can alternatively use the list()
function:

#m1 = list('x1'); //one-element list, note: no comma
#m2 = list(); //empty list

In the first statement, quotes must be used for the string. The list() function

without arguments is useful if you need to construct an empty list.

More

You can do many more things with lists and nested lists. Some of the more relevant
capabilities are listed below. For an exhaustive explanation of all capabilities, see the
LIST statement.

72 Gekko 3.1.x help system

T-T Analyse

· On the present page, we have mostly dealt with lists of strings. But lists of values
or dates are also useful, as is lists of lists (nested lists). Nested lists are practical for
representing table-like structures of "cells", for instance the contents of
spreadsheets. In contrast to the matrix variable type, with a nested list, you can
store dates and strings, too (and not only values). Additionally, nested lists can be
of any dimensionality. See more on this page.

· Regarding nested lists, you may for instance use #m[2][3] to pick out the second

element of #m, which is itself a list. From this element (that is, from #m[2]), the

third element is selected. In such cases, you may alternatively use the syntax
#m[2, 3], which would do the same. But beware that there is a difference

regarding ranges, where for instance #m[2..4][3] is not the same as #m[2..4,

3]. More on this here.

· Lists are used a lot for array-series. If you define a list of strings like #s = a, b;,

and define array-series x[a] and x[b], you may use x[#s] to refer to these array-

series, or sum(#s, x[#]) to sum them up, etc. See more under SERIES.

· Lists have a close cousin: maps. Maps allow referring to an element with a name
(rather than picking out with an element number), and can be thought of as a kind
of mini-databanks. So instead of picking out an element of a list with an index
number (for instance #m[2] to pick out element number 2), maps assign a name to

each element, so you can instead pick out an element with for instance #m['%dw'].

This picks out a value corresponding to a Durbin-Watson test (the name %dw is

easier to remember and understand, than the index number 2...). Instead of the
strict #m['%dw'], you may also use the equivalent #m[%dw] or #m.%dw. Note how

the last variant resembles m:%dw, picking out the variable %dw from the databank m.

· The INDEX statement can also search inside array-series, cf. INDEX.

3.2.4.4 Loops

Note: If you are running one of the examples interactively in the Gekko input
window, you should mark the code from for to the corresponding end, followed by

[Enter]. Executing a FOR loop line by line in the Gekko input window will not
work.

Also, beware that you may often use implicit looping over lists, as shown in the
next section.

Loops are used when the same statements or calculations reused over several
variables. Loops can simplify and reduce the length of program files considerably. In
Gekko, the FOR statement is used for looping, and lists are often used in combination
with loops.

73Gekko User Guide

T-T Analyse

Example with lists:

kax = 1; kay = 2; kbx = 3; kby = 4;
#i = a, b;
#j = x, y;
for string %i = #i;
 for string %j = #j;
 prt k{%i}{%j};
 end;
end;

This will print the timeseries kax, kay, kbx, kby, one by one. In this particular case,

the user could just use prt x{#i}{#j};, and Gekko would auto-unfold and print the

same timeseries (cf. the section on array-series), but for many other purposes, fine-
grained looping can be practical. You may also obtain roughly the same output with
prt {'k*'};, but the difference is that the wildcard version includes all variables

starting with 'k', possibly including irrelevant variables.

When using a FOR loop, the type of the loop variable must always be stated (the
same is the case for function and procedure definitions), and a FOR loop must always
end with a matching END statement.

FOR loops can also be used for date and value variables. Regarding these types,
intervals are often used (and the by keyword can be used for step length), for

instance:

%v1 = 1;
%v2 = 99;
%sum = 0;
for val %v = %v1 to %v2 step 2;
 %sum += %v;
end;
//%sum = 2500 (sum of uneven numbers)

// ---
option freq q;
time 2020q1 2021q4;
y = 1, 2, 3, 4, 5, 6, 7, 8;
x = 100;
%d1 = 2020q1;
%d2 = 2021q4;
for date %d = %d1 to %d2 by 2;
 y[%d] = x[%d];
end;
// y = 100, 2, 100, 4, 100, 6, 100, 8;
// every second quarter skipped

Lists may also contain values or dates, and such lists may be looped in the same way
as the first example (looping over a list of strings). Synchronized/parallel loops are
possible, too, for instance:

74 Gekko 3.1.x help system

T-T Analyse

#i = a, b;
#j = x, y;
for string %i = #i string %j = #j;
 tell 'Combination {%i}, {%j}';
end;
//--
//output:
//
// Combination a, x
// Combination b, y

Forward Laspeyres chain aggregation can, for example, be made with a loop (this is
just an illustration: there is an inbuilt function laspchain() that does this

automatically):

%t1 = 2010;
%t2 = 2020;
#s = 1, 2, 3; //sectors
#s = #s.strings(); //else they are of value type
py <%t1-1 %t1-1> = 1; // base year
for date %t = %t1 to %t2;
 y <%t %t> = sum(#s, p{#s} * fx{#s}); //p1*fx1 +
...
 fy <%t %t> = sum(#s, p{#s}[-1] * fx{#s}) / py[-1]; //p1[-1]*fx1
+ ...
 py <%t %t> = y / fy;
end;

TODO: check the above!

The sum() function over lists is practical for repetitive sums like p1*fx1 + p1*fx2 +

p3*fx3 and similar. Such sums are often used for array-series,

3.2.4.5 Array-timeseries and implicit loops

Array-timeseries are a bit more advanced than normal timeseries. The current
section also explains implicit looping over lists, which can also be used for normal
timeseries.

An array-series q may for instance represent production quantities in different

sectors #i (where #i is a list of sector names/strings), and another array-series p

may represent price levels in the same sectors. Using array-series, you may use
expressions like v[#i] = p[#i]*q[#i] to calculate the nominal production values in

the different #i sectors, or v = sum(#i, p[#i]*q[#i]) to calculate the sum of these

values. Such syntax should not be too difficult to understand, since it resembles
normal mathematical expressions like the following:

75Gekko User Guide

T-T Analyse

Using array-series, it is typically possible to avoid explicit looping over indexes, and
perform the looping implicitly in one statement. The Gekko sum() syntax also

resembles GAMS syntax for summation, which is no coincidence.

But before we move on to array-series, it must be emphasized that much of the same
loop-avoidance can be achieved with normal timeseries, too. An example will
illustrate this.

Implicit loops with name-composition

As mentioned in previous sections (for instance the elevator pitch), you may use {}-

name-substitution in series names. Inside the {}-curlies, it is allowed to place a list of

strings, like for instance:

reset; time 2010 2012;
#i = a, b, c; //list of three strings 'a', 'b', 'c'
pa = 1.1; pb = 1.2; pc = 1.3;
qa = 200; qb = 300; qc = 400;
v{#i} = p{#i}*q{#i};
vtot = sum(#i, p{#i}*q{#i});
prt <n> v{#i}, vtot; // <n> omits percentage growth

// va vb vc
vtot
// 2010 220.0000 360.0000 520.0000
1100.0000
// 2011 220.0000 360.0000 520.0000
1100.0000
// 2012 220.0000 360.0000 520.0000
1100.0000

In the statement v{#i} = p{#i}*q{#i} above, implicit looping over the elements of

#i is performed, so the statement amounts to va = pa*qa; vb = pb*qb; vc =

pc*qc;. Similarly, v = sum(#i, p{#i}*q{#i}) amounts to v = pa*qa + pb*qb +

pc*qc.

A naming scheme like above can work pretty well, using normal timeseries (and it
works in multiple dimensions, too). But one of the problems is that for instance the
three series va, vb, vc are not coupled in any way, except for their names. For

instance, if you need to delete all these nominal production values from the
databank, how can you be sure that you really delete all of them? There might be
stray vd and ve series lying around, but do these represent sectors d or e of the same

kind of variables, or are their names just coincidences? So there is a looseness about
using naming conventions that the concept of array-series tries to resolve.

Implicit loops with array-timeseries

https://www.gams.com/

76 Gekko 3.1.x help system

T-T Analyse

Array-timeseries provide a tighter coupling of dimensional timeseries data, and also
provide other benefits and conveniences. Let us try to reconstruct the above example
with array-series instead:

reset; time 2010 2012;
#i = a, b, c; //list of three strings 'a', 'b', 'c'
v = series(1); p = series(1); q = series(1); //1 for 1-dimensional
p[a] = 1.1; p[b] = 1.2; p[c] = 1.3; //sub-series
q[a] = 200; q[b] = 300; q[c] = 400; //sub-series
v[#i] = p[#i]*q[#i];
vtot = sum(#i, p[#i]*q[#i]);
prt <n> v[#i], vtot; // <n> omits percentage growth
index v[**]; //see all sub-series inside v

// v[a] v[b] v[c]
vtot
// 2010 220.0000 360.0000 520.0000
1100.0000
// 2011 220.0000 360.0000 520.0000
1100.0000
// 2012 220.0000 360.0000 520.0000
1100.0000
//
// v[a], v[b], v[c]
//
// Found 3 matching items

This replicates the previous example, where normal timeseries and name-composition
were used. So instead of for instance the normal timeseries va, vb, vc, we now have

an array-series v with sub-series v[a], v[b], v[c]. Instead of index v[**] here,

v[*] could have been used (since v is 1-dimensional), cf. the INDEX statement.

What is the big deal about that, except for the use of []-brackets to access the sub-

series? The following examples try to illustrate the point of using array-series:

// ...continued

prt <n> v; //prints out all of the sub-series

// v[a] v[b] v[c]
// 2010 220.0000 360.0000 520.0000
// 2011 220.0000 360.0000 520.0000
// 2012 220.0000 360.0000 520.0000

disp v; //get info on dimensionality etc.

//
===
=======================
// SERIES Work: v
// Annual series has 3 elements in 1 dimensions (period 2010 -
2012)

77Gekko User Guide

T-T Analyse

// Dimension 1 (3 elements): a, b, c
// First/last elements (alphabetically): v[a] ... v[c]
//
===
=======================

prt p*q/1000; //some algebra is legal directly on array-series --
 //this presupposes that the p and q sub-series
 //are compatible (contain the same elements)

// p*q/1000 [a] p*q/1000 [b] p*q/1000 [c]
// 2010 0.2420 0.4320 0.6760
// 2011 0.2420 0.4320 0.6760
// 2012 0.2420 0.4320 0.6760

v = p*q; //this also works, if the sub-series are compatible.
delete v; //deletes v and all its sub-series in one go.

As it can be seen from the above examples, an array-series like v can be used more

like a matrix or array, for instance when printing it (which prints all its sub-series),
DISP-ing it (showing dimensionality, size and element information), or deleting it.

Simple algebra on the array-series themselves is also supported, allowing index-free
syntax (like p*q/1000 instead of p[#i]*q[#i]/1000). This can be thought of as being

a bit similar to matrix algebra, performing bulk operations on the sub-elements.

In addition, there are other capabilities:

· When you are looping implicitly or summing up over dimensions, you may
omit/skip list elements via the $ conditional operator (similar to GAMS).

· You may assign domains to the dimensions, so that you do not accidentally use an
illegal element name (for instance mistyping a sector name).

· Multiple dimensions works too, and it is quite easy to aggregate dimensions (roll-
up), or pick an element from a dimension (slicing), etc. You just use commas to
separate the dimensions, like x[a, k] or x[#i, #j]. You may for instance

eliminate (aggregate) the second dimension from the array-series x like this: y[#i]

 = sum(#j, x[#i, #j]).

· You may assign "default sets", so that prt v; only prints out some of the (most

important) elements.
· You can use special rules regarding the printing of and calculation with array-

series, for instance if there are "holes"/missings in these. You can use the options
option series array print missing = ... ; and option series array calc

missing = ... ; to control this.

· There is no risk of name-collisions with array-series. With name-composition there
is always a risk of this. For instance if Kb means buildings capital, and q is a sector

name, Kbq could mean buildings in the q sector. But what if there was another

sector with the name bq? Couldn't Kbq then mean total capital K in the bq sector?

This is often "solved" with underscores like Kb_q vs. K_bq, but array-series are

impervious to this problem, because Kb[q] and K[bq] are necessarily different.

· Array-series can be sparse. If the first dimension of the array-series x has 100

possible elements (for instance 100 sectors), and the second dimension has 100

78 Gekko 3.1.x help system

T-T Analyse

possible elements (for instance export categories), there can be up to 10.000
different kinds of sub-series inside x. But if there are fewer sub-series than that,

corresponding to data being sparse, these "holes" (zero values) will not take up any
space/RAM.

· Array-series containing ages (like population data) can be "rotated", so that for
instance age profiles can be plotted, cf. the rotate() function, more under PLOT

(age profiles section).

More on array-series under the SERIES statement.

Array-series do not yet work in model files (.frm), but this is on the to-do list.

3.2.4.6 Conditional statements

Note: If you are running one of the examples interactively in the Gekko input
window, you should mark the code from if to the corresponding end, followed by

[Enter]. Executing an IF statement line by line in the Gekko input window will

not work.

The IF statement is used to execute statements if a certain condition is met (and an
optional ELSE statement will execute other statements if not). The syntax is pretty
standard for programming languages, for instance:

%x1 = 2; %x2 = 3;
if (%x1 < %x2);
 tell 'true';
else;
 tell 'false';
end;

If the condition is true, the following statements are executed, and if the condition is
false, ELSE can be used to execute alternate statements. You normally compare
scalar expressions via one of the following comparison operators: <, <=, ==, >=, > or

<>, and these operators can also be combined with the logical keywords and, or, and

not.

You may also compare two whole timeseries, but beware that there are some special
rules in play in that case, and there are also special rules when one or both of the
values contain missing values (more here or here).

Several terms can be combined with and, or, and not, like in the following example:

if (not(x[%t] > 100 or %x == 'yes') and (%x1 > %x2));
 tell 'true';
end;

79Gekko User Guide

T-T Analyse

Below is an example of a part of a program where the program file interrupts, if the
variable fvar has a zero value in the period %t.

if (fvar[%t] == 0);
 pause 'A price cannot be calculated';
 stop;
else
 //continue normally
end;

You can also combine ACCEPT and IF to control the flow of a program interactively:

accept string %yesno 'Do you want to multiply x by 1000?';
if (%yesno == 'yes');
 x *= 1000;
else;
 if (%yesno <> 'no');
 tell 'You must answer "yes" or "no"';
 stop;
 end;
end;

When comparing, you may need to convert between variable types. In the following
example, %s is a text string, %d is a date, and %v is a value.

%s = '2012';
%d = date(%s);
%v = val(%d);
mem; //show these scalars

When comparing those, you will need to convert %s and %d to values, for instance:

if (val(%s) == val(%d) and val(%s) == %v and val(%d) == %v);
 tell 'true';
else
 tell 'false';
end;

It should be mentioned that Gekko supports $-conditionals, similar to how these work

in GAMS. These are a kind of inline if-conditions, an example:

time 2010 2013;
x1 = 100;
x2 = 90, 110, 80, 120;
y = x2 $ (x2 > x1); //0, 110, 0, 120

80 Gekko 3.1.x help system

T-T Analyse

In the last statement, Gekko checks the condition for each period, and if it is true, x2

is used, otherwise the value is 0. Also see the iif() function with similar capabilities.

3.2.4.7 Functions and procedures

Note: If you are running one of the examples interactively in the Gekko input
window, you should mark the code from function or procedure to the

corresponding end, followed by [Enter]. Executing an function or procedure

statements line by line in the Gekko input window will not work.

It is possible for Gekko users to compose user-defined functions and procedures. This
is described in depth on the help pages corresponding to FUNCTION and PROCEDURE.
Note that user-defined functions and procedures do not live in Gekko databanks.
Instead, it is advised to store them (as Gekko code) in external .gcm program files.
Instead of using external .gcm files for functions/procedures, you may alternatively
pack these into a .zip file and use this package file as a library (cf. the LIBRARY
statement).

An example of a user-defined function that multiplies two values:

function val mul(val %x1, val %x2);
 return %x1 * %x2;
end;
// --------------
%z = mul(3, 5);
prt %z; //15

An example of a corresponding procedure performing the same multiplication and
printing it out.

procedure mul val %x1, val %x2;
 tell '{%x1}*{%x2} = {%x1*%x2}';
end;
// --------------
mul 3 5; //3*5 = 15

The TELL inside the procedure uses string interpolation, calculating the inside of the
{}-curlies, and inserting the result into the resulting string.

A procedure is fundamentally the same as a user-defined function without return
value. But procedures do not use parentheses or commas when called. This may pose
challenges if you are inputting negative values in a procedure, like mul 3 -5;,

expecting it to print out -15 as the result. In that case, Gekko will complain that it
cannot find the procedure mul with only 1 argument, because it interprets mul 3 -5;

as being the same as mul -2; , subtracting the two values. The solution to this could

be to either use a function without return value instead (calling it with mul(3, -5);),

81Gekko User Guide

T-T Analyse

enclosing the negative number in parentheses: mul 3 (-5);., or subtract it from 0:
mul 3 0-5;

Another thing to note is that user-defined functions and procedures support a special
variable type: name. On the inside of a function or procedure, a name type variable
behaves just as a string, so the only difference between name and string is that,
when called from the outside, a name argument does not need quotes, whereas a
string argument does. For example:

procedure ratio name %n1, name %n2;
 prt {%n1}/{%n2};
end;
// --------------
x1 = 3; x2 = 5;
ratio x1 x2; //prints 0.60

If, instead, we had used string arguments, the procedure would have looked like this:

procedure ratio string %n1, string %n2;
 prt {%n1}/{%n2};
end;
// --------------
x1 = 3; x2 = 5;
ratio 'x1' 'x2'; //prints 0.60, calling without quotes will fail

So nothing is changed in the inside of the function: the only difference is that the
user now has to quote the arguments, which can be tedious for functions or
procedures where some of the arguments are names of variables.

You may also use series type is argument in functions and procedures, but in many
cases name type works better and provides equivalent syntax for calling the
function/procedure.

3.2.4.8 Options

Three types of options
Gekko operates with three types of options: global options, block-options and local
options. Global options are stated with the OPTION command and apply until
changed. Block options are stated with the BLOCK command and apply for a block
of Gekko statements. Local options are stated inside the <> local option field and

apply to that single statement only. See more here.

Global options

If you need to use an option for the whole (remainder of the) Gekko program, you
just use a global option. This may be an option like setting the frequency.

82 Gekko 3.1.x help system

T-T Analyse

option freq = a;
x1 = 1;
option freq = q;
x1 = 2;
option freq = a;
x2 = 3;

This will produce the series x1!a = 1, x1!q = 2 and x2!a = 3. (Instead of changing

the frequency you could in this case have used x1!q = 2;, but the example is for

illustrative purposes).

Block options

Switching global options back and forth can be error-prone and tedious, so therefore
Gekko offers to use a BLOCK statement:

option freq = a;
x1 = 1;
block freq = q; //or: block option freq = q; --> both variants are
legal syntax
 x1 = 2;
end;
x2 = 3;

When BLOCK is encountered, it works like setting option freq = q;, but when the

END is encountered, option freq = ... is restored to what it was before the BLOCK

statement. BLOCK is particularly practical when the option applies to > 1 Gekko
statements.

Local options

Local options are the last type, applying to 1 Gekko statement. The option is put
inside the <> local option field:

option freq = a;
x1 = 1;
x1 <option freq = q> = 2;
x2 = 3;

For single statements, local options can be convenient, instead of using BLOCK. Note

that regarding local options, options from the OPTION statement can be mixed with
standard local options like time period etc. In that case, put the options from the
OPTION statement last, after a semicolon ;. For instance:

option freq = q;
time 2020q1 2021q4;

83Gekko User Guide

T-T Analyse

y = 1, 2, m(), 4, 11, 12, 13, 14;
prt <2020q1 2021q2 p; option print freq = simple; option series
data missing = zero> y;

The green 2020q1 2021q2 p part are normal print options: setting the time period

and choosing operator p (percentage). The blue ; option print freq = simple;

option series data missing = zero part contains local options from the OPTION

statement. Sometimes, an option from the OPTION statement already exists as a
built-in local option for the command. For instance, continuing from the previous
example, these two statements are equivalent:

prt <2020q1 2021q2 collapse = total> y;
prt <2020q1 2021q2; option print collapse = total> y;

When a equivalent in-built option exists, it is recommended to just use that option.

Functions

Local options do not work for functions (yet). Syntax could be something like this:

y = f(<2020q1 2021q2; option series data missing = zero>, x1 + x2);

3.2.5 Data reporting

In order to view, inspect and error-check data, there are different kinds of reporting
facilities in Gekko. In the following sub-sections, we will look at simple printing,
plotting/graphs, "printing" to Excel, and producing tables.

· Printing
· Plotting
· Excel printing
· Tables

You may also use other programs for the reporting of Gekko data. To see how to
produce R or Python graphs from within Gekko, see the examples/interfaces here or
here. In the Excel printing sub-section, there is an example regarding how to produce
an Excel graph from Gekko data.

3.2.5.1 Printing

To see the contents of Gekko-timeseries (and other variables), the PRT statement is
often used.

Note: PRT can print mixed frequencies in the same print.

84 Gekko 3.1.x help system

T-T Analyse

The statement prints output on the upper part of the Gekko main window, for
instance:

reset;
time 2010 2014;
x1 = 15, 12, 14, 16, 12;
x2 = 13, 14, 16, 15, 16;
prt x1, x2; //local period: prt <2011 2013> x1, x2;

Result:

 x1 % x2 %
 2010 15.0000 M 13.0000 M
 2011 12.0000 -20.00 14.0000 7.69
 2012 14.0000 16.67 16.0000 14.29
 2013 16.0000 14.29 15.0000 -6.25
 2014 12.0000 -25.00 16.0000 6.67

PRT prints the levels (4 decimals), and in addition, percentage growth rate (2
decimals). The number of decimals etc. can be controlled via options (see option

print ... under options). (Note that after a print has been shown in Gekko, you

may click the "Copy" button in the user interface and paste the printed "cells" into for
instance Excel).

The PRT statement can also be used to print mathematical expressions. The following
example prints the ratio between the two series x1 and x2:

//continued
prt <n> x1/x2;

Result:

 x1/x2
 2010 1.1538
 2011 0.8571
 2012 0.8750
 2013 1.0667
 2014 0.7500

Here, percentage growth is suppressed with option <n> (for levels). There are a

number of operators like <n> available, which can be seen on the PRT page, for

instance <p> for percentage growth, etc.

Ref databank comparison

PRT can also be used to compare values in the first-position databank with values in
the Ref (reference) databank, for instance like this:

85Gekko User Guide

T-T Analyse

reset;
time 2010 2014;
x1 = 15, 12, 14, 16, 12;
clone; //makes Ref an exact copy
x1 = 13, 14, 16, 15, 16; //changes x1
prt <n r m q> x1;

Result:

 x1 <r> <m> <q>
 2010 13.0000 15.0000 -2.0000 -13.33
 2011 14.0000 12.0000 2.0000 16.67
 2012 16.0000 14.0000 2.0000 14.29
 2013 15.0000 16.0000 -1.0000 -6.25
 2014 16.0000 12.0000 4.0000 33.33

This PRT statement prints levels in first-position databank (<n>), levels in Ref

databank (<r>), absolute difference (<m>), and relative difference (<q>).

Lists

The PRT statement has a lot of functionality ready regarding lists of variables, or
variable names composed of lists of "codes". A few examples:

reset;
time 2010 2012;
xa = 1; xb = 2; xc = 3;
#m = a, b, c; //"codes"
prt <n> x{#m}, sum(#m, x{#m});

Result:

 s
 xa xb xc um(#m, x{#m})
 2010 1.0000 2.0000 3.0000 6.0000
 2011 1.0000 2.0000 3.0000 6.0000
 2012 1.0000 2.0000 3.0000 6.0000

Array-series

Instead of composing names like xa, xb, xc, such a naming pattern can also be

implemented via array-series., which were mentioned earlier on in the user guide.
You may try the following nearly identical example:

reset;

86 Gekko 3.1.x help system

T-T Analyse

time 2010 2012;
x = series(1); //define 1-dimensional array-series
x[a] = 1; x[b] = 2; x[c] = 3;
#m = a, b, c;
prt <n> x[#m], sum(#m, x[#m]);
prt <n> x;
disp x; //shows meta-information on the array-series

Result:

 s
 x[a] x[b] x[c] um(#m, x[#m])
 2010 1.0000 2.0000 3.0000 6.0000
 2011 1.0000 2.0000 3.0000 6.0000
 2012 1.0000 2.0000 3.0000 6.0000

 x[a] x[b] x[c]
 2010 1.0000 2.0000 3.0000
 2011 1.0000 2.0000 3.0000
 2012 1.0000 2.0000 3.0000

 ==
==================
 SERIES Work: x
 Annual series has 3 elements in 1 dimensions (period 2010 - 2012)
 Dimension 1 (3 elements): a, b, c
 First/last elements (alphabetically): x[a] ... x[c]
 ==
==================

As it is seen from the last PRT statement, with an array-series, you can use the
convenient prt x; to print all the sub-series inside x, and DISP will print general info

on the dimensionality of x etc. In general, array-series can be handy for variables

with well-defined dimensions like sectors, countries, age groups, etc.

Wildcards

You can use wildcards to print out timeseries. In that case, for PRT you have to use
the notation {'...'}, for instance like this:

reset;
time 2010 2012;
x1a = 1; x2a = 2; x1b = 3; x2b = 4;
prt <n> {'x*a'};
prt <n> {'x1*'};

Result:

 x1a x2a
 2010 1.0000 2.0000

87Gekko User Guide

T-T Analyse

 2011 1.0000 2.0000
 2012 1.0000 2.0000

 x1a x1b
 2010 1.0000 3.0000
 2011 1.0000 3.0000
 2012 1.0000 3.0000

Without the {'...'} notation, prt <n> x*a; will fail with an error, complaining that

the variables x and b can not be found (it expects to multiply them). Statements like

INDEX, COPY and others do not need that notation, because they do not accept
mathematical expressions, and therefore the following:

//continued
index x*a;

Produces this:

 x1a, x2a

 Found 2 matching items

The PRT statement can also print other variable type like scalars or lists. Note that
MEM is handy for printing out all scalar variables from all databanks.

DISP

Another way of printing timeseries is using the DISP statement. This statement does
not accept mathematical expressions, and only prints one timeseries at a time.

reset;
time 2010 2014;
x1 = 15, 12, 14, 16, 12;
disp x1;

Result:

 ==
==================
 SERIES Work: x1
 Annual data from 2010 to 2014 (updated: 05-02-2021)
 Source: 2010-2014: x1 = 15, 12, 14, 16, 12
 --

 Period value %
 2010 15.0000 ******
 2011 12.0000 -20.00
 2012 14.0000 16.67

88 Gekko 3.1.x help system

T-T Analyse

 --

 2 periods hidden (show)
 ==
==================

The DISP statement show more information on the timeseries, for instance
frequency, data period, last updated time, and the source of the variable. It may also
show other forms of meta information, like explanation, units, etc. When a model is
loaded, DISP can be used to start equation browsing. Wildcards may be used, like
disp x*;.

3.2.5.2 Plotting

Gekko does not have its own in-built graphics engine, but you can use the PLOT
statement to plot via gnuplot as engine, or alternatively transfer the variables to for
instance Excel, R, Python, or others, for plotting. In this section, we will focus on the
PLOT statement, which is quite central when working with timeseries.

To see what PLOT is capable of regarding styling etc., see the Gekko demo plots.
Note: PLOT can plot mixed frequencies in the same plot.

First of all, it pays off to understand that the statements PRT, PLOT and SHEET are
close cousins. This means that any expression, with any operator, used in one of the
statements, can be used in the same way in one of the other statements. For
instance, you may take a PRT statement and just replace PRT with PLOT, and the
timeseries will be plotted instead.

Therefore, the examples from the preceding section on printing can be used for
plotting, too.

reset;
time 2010 2014;
x1 = 15.5, 13.6, 14.3, 16.8, 15.3, 15.4;
x2 = 16.6, 12.7, 15.2, 15.6, 16.4, 15.9;
plot x1, x2; //local period: plot <2011 2013> x1, x2;

Result:

http://www.t-t.dk/gekko/gallery/g.html

89Gekko User Guide

T-T Analyse

There are a lot of options to control and style plots, see the possibilities under the
PLOT statement.

The PLOT window has some clickable controls:

You may click on "Normal" to get levels (corresponding to <n> operator), or on

"Difference" or "Percent" to get time-differences (operators <d> or <p>, respectively).

If you check "Multiplier", Gekko will show differences relative to the Ref databank

instead, where in that case "Difference" corresponds to <m> operator, and "Percent"

corresponds to <q> operator.

You may try this:

//continued
plot <d> x1, x2; //absolute time difference
plot <p> x1, x2; //percentage growth

Operator <d>, absolute change Operator <p>, growth rate (%)

90 Gekko 3.1.x help system

T-T Analyse

You may also show plots with log() or dlog() transformations.

If you use the 'Copy' button, the plot is copied as an .emf file, for pasting in, e.g.,
Microsoft Excel of similar. Alternatively, you may save these .emf files to disk with
the other buttons. Note that PLOT support other output file formats, too, like for
instance .pdf, .svg, etc. The latter is practical for use with html pages. This is how the
demo plots are made.

Like for PRT, you may plot any mathematical expressions like plot x1/x2; etc.

See the page on printing regarding plotting with databank comparisons, lists, array-
series, and wildcards -- the syntax is the same as for PRT.

You can use PLOT silently to produce graph files, for instance:

//continued
plot <d> x1, x2 file = plot.svg;

This will produce the file plot.svg in the working folder, without opening up a PLOT
window.

The PLOT statement may produce a large number of plot windows. These can be
automatically closed via the Gekko menu in the user interface: Window --> Close -->

http://www.t-t.dk/gekko/gallery/g.html

91Gekko User Guide

T-T Analyse

Close all PLOT. Alternatively, the "Close all PLOT and DECOMP windows" button can
be used, and there is also a CUT statement that does the same.

3.2.5.3 Excel printing

You may use the SHEET statement to "print" directly to an Microsoft Excel worksheet.
(For non-Excel users, you may try CLIP instead of SHEET (to copy-paste via the
clipboard)).

As mentioned in the section on plotting, the statements PRT, PLOT and SHEET (and
CLIP) are close cousins. This means that any expression, with any operator, used in
one of the statements, can be used in the same way in one of the other statements.
For instance, you may take a PRT statement and just replace PRT with SHEET, and
the timeseries will be transferred to Excel instead.

A simple example could be the following:

reset;
time 2010 2014;
x1 = 15, 12, 14, 16, 12;
x2 = 13, 14, 16, 15, 16;
sheet x1, x2, x1<d>, x1/x2; //local period: use sheet <2011 2013>
... ;

The following Excel worksheet is shown:

As with PRT or PLOT, you can use operators and mathematical expressions. The third
argument x1<d> shows absolute time-difference in x1, because of the operator <d>.

Transforming the worksheet into an Excel graph is quite easy. Just click on the A1
cell, and then choose "Insert" and choose the chart type that you prefer (here: line
with markers):

Excel graph

92 Gekko 3.1.x help system

T-T Analyse

The SHEET statement needs Excel installed to work (else use CLIP, mentioned
below). Per default, SHEET shows timeseries row-wise (use sheet<cols> to "print" in

columns). In this worksheet, a missing value is shown as #I/T (because row 4 shows

absolute time-change in x1), So operators like absolute or percentage time-change

are easy to use with Excel, and expressions, too. This may in some cases be more
convenient than using Excel formulas to do the same.

All in all, the SHEET statement is practical for showing things in Excel, rather than in
the Gekko output window (with PRT). There are, however, other ways of interacting
with Excel:

· Gekcel. This is an add-in for Excel that makes it possible to issue Gekko statements
from within Excel (without starting up the Gekko graphical user interface).

· CLIP. This statement produces a semicolon-separated string that can be pasted to
Excel (or other spreadsheets). Compared to SHEET, if using CLIP to paste into
Excel, some precision and formatting is lost.

· IMPORT<xlsx> and EXPORT<xlsx>. These statements operate on Excel sheets
formatted with variables as rows and dates as columns. Similar to csv
import/export, just for .xlsx.

· SHEET<import>. This is a special kind of SHEET statement, where data is imported
from Excel. In contrast to IMPORT<xlsx>, SHEET<import> is more flexible and can
operate more freely on individual cells. SHEET<import> can also import a Gekko
matrix from Excel cells.

3.2.5.4 Tables

The TABLE statement is used to call tables (.gtb files) designed in a special XML
format. Tables are intended for the tabelling of timeseries, with quite a lot of special
functionality regarding this. Tables can be produced in either text or html format, and
can be shown in the "Menu" tab of the Gekko graphical user interface. (Note that
after a table has been shown in Gekko, you may use the 'Copy' button to copy the
cells to the clipboard, for successive pasting into e.g. a spreadsheet like Excel).

Simple example

93Gekko User Guide

T-T Analyse

We will try to construct a simple table with a few timeseries. First, we construct the
table file (.gtb). You can use Notepad to do this, try using the edit demo.gtb;, after

which an empty file shows up (click 'yes' to create a new file). Next, put the following
into demo.gtb and save the file.

Gekko table file: demo.gtb

<?xml version="1.0" encoding="Windows-1252"?>
<gekkotable>
 <tableversion>1.0</tableversion>
 <table varformat="f9.0">
 <cols>
 <colborder/>
 <col txtalign="left"/>
 <col txtalign="right"/>
 <colborder/>
 <col type="expand" txtalign="center"/>
 <colborder/>
 </cols>
 <rows>
 <rowborder/>
 <row>
 <txt colspan="3">Table 1. Demo table</txt>
 </row>
 <rowborder/>
 <row>
 <txt/>
 <txt/>
 <date/>
 </row>
 <rowborder/>
 <row>
 <txt>Variable 1</txt>
 <txt>$</txt>
 <var>x1</var>
 </row>
 <row>
 <txt>Variable 2</txt>
 <txt>$</txt>
 <var>x2</var>
 </row>
 <row varformat="f9.2">
 <txt>Ratio</txt>
 <txt>$</txt>
 <var>x1/x2</var>
 </row>
 <rowborder/>
 </rows>
 </table>
</gekkotable>

Now, we can try showing the table:

94 Gekko 3.1.x help system

T-T Analyse

reset;
time 2010 2017;
x1 = 15.5, 13.6, 14.3, 16.8, 15.3, 15.4;
x2 = 16.6, 12.7, 15.2, 15.6, 16.4, 15.9;
table demo; //adds .gtb on its own

Result (shown in the "Menu" tab):

Here, you may click the link 'Transform options' to transform the data (for instance
the p button for percentage growth).

First of all, it is seen that the decimals are removed for x1 and x2, because of the tag

varformat="f9.0". Here, f9.0 means floating point, 9 characters wide, 0 decimals.

This varformat is set for the whole table at the top of the .gtb file, but is "overruled"

in the x1/x2 row, where it is set to f9.2 (two decimals).

The table is designed by first stating <cols>, and then <rows>. Regarding the

columns, we do not need to state a column for each year/period, but just a column
that is "expandable".

· Col 1: <col txtalign="left">. The first column is for showing the labels (for

instance "Variable 1").
· Col 2: <col txtalign="right"/>. The next column is for shown the

variables/formulas (like "x1").
· Col 3: <col type="expand">. The third column is an expandable column for the

six years 2010-2015.

There are also some <colborder> tags to insert vertical borders/lines. So technically,

you should think of the table as having three columns, where the last column is
"expandable".

Next, we define the <rows>.

· Row 1: The first row looks like this: <txt colspan="3">Table 1. Demo

table</txt>. The colspan="3" tag means that the cell spans three columns, in

effect merging these cells into one "super cell". Here, it should be noted that Gekko
visualizes the table as having three columns in all (where the last column is
expandable), so colspan="3" effectively also merges with all the date columns

(2010-2015), so that the first row spans all columns of the table.

95Gekko User Guide

T-T Analyse

· Row 2: The next row has these tags: <txt/><txt/><date/>, which means empty

text for the first two columns, and then <date> tag to ask Gekko to show the dates

(in this case: years) corresponding to the global data period 2010-2015.
· Row 3: There are these tags: <txt>Variable 1</txt> <txt>$</txt>

<var>x1</var>, so in the first column, the text Variable 1 is inserted, whereas

the special $ in column two means that it should take the text from the next

column, that is, insert the text x1. This is just to avoid repetitive typing. The last

column uses a <var> (variable) tag to state the variable or expression for the

expandable column.
· Row 4: Just like row 3.
· Row 5: Also just like row 3, but overruling the formatting, to show two decimals

(f9.2).

In addition, there are some <rowborder> tags to insert horizontal borders/lines.

Note that you may use strings in {}-curlies inside the xml elements, for instance

instance <txt>Table regarding the year {%year}</txt>.

More details

Tables can also be called from menus (see MENU). Menus are used to store and
organize a collection of tables in tree-like structure for better overview (if there are
many tables).

Instead of using Notepad or a similar text editor, you may alternatively use the in-
built XML Notepad editor to edit the .gtb file, try xedit demo.gtb;, and see XEDIT.

Use 'View' --> 'Expand All' to unfold all XML nodes for better overview, and use
Ctrl+D to duplicate an XML node (including its children nodes).

For more advanced users, you may ask Gekko to output the raw HTML code
corresponding to the table, and together with PIPE<html>, and graphs stored in the
.svg format (to produce these, use the syntax PLOT x1, x2 file = plot.svg;), you

may construct html pages mixing text/explanations, tables, and plots. The Gekko
demo plots are actually an example of an auto-constructed html page (this page does
not, however, contain html tables). Html pages can be converted to pdf for easier
distribution (for instance via mail).

http://www.t-t.dk/gekko/gallery/g.html

96 Gekko 3.1.x help system

T-T Analyse

3.3 Modeling User Guide

This guide showcases the modeling capabilities of Gekko. The guide
is centered around a concrete practical simulation example (for
which data can be downloaded).

The modeling user guide contains the following sections:

· Download etc.
· Modeling basics
· Historical simulation
· Multiplier analysis (shocks)
· Add-factors etc.
· Goal-search etc.
· Forward-looking

3.3.1 Download etc.

This part of the user guide will focus on the simulation capabilities. We will be using
sim-mode (in contrast to data-mode) in this part of the Gekko User Guide.

Sim-mode. This mode can be used for modeling, and entails two main differences
compared to data-mode (which is default). First, in a statement like y = 2 * x;,

in sim-mode Gekko will never look for x in a databank that was opened with the

OPEN (or the identical READ ... AS) statement. And secondly, in a statement like
y = 2 * x;, Gekko will fail with an error if the timeseries y does not exist already

(else you must use CREATE to create y first). These restrictions alleviate some

common errors when modeling. But note that it is entirely possible to do modeling
in data- or mixed mode, and some users even prefer that. It is basically a matter
of taste.

To download and install Gekko, see the general installation section.

You may consult the page on interface, function keys, etc. to read more about how
the interface works. But for now, just note that you type statements in the lower part
of the window, and results are shown in the upper part. You issue statements with
[Enter], and if you omit the ending ; in a statement, the user interface will add it on

its own.

97Gekko User Guide

T-T Analyse

When Gekko starts up, it will start up in a 'working folder'. To run the modeling
guide, you will need some external files that can be downloaded from the following
link (these files should be downloaded to the newly created working folder. Right-
click the following zip-file, and choose "Save as…" or "Save link as…"):

· Example model and data files, demo.zip

The zip file contains the files gekko.frm (the model) and gekko.gbk (the databank).

You can typically just double-click the zip-file to open it, and then copy-paste the two
files into your working folder.

3.3.2 Modeling basics

Before we start out the modeling user guide, an explanation of some basic concepts
that are relevant when modeling in Gekko. You may skip this part if you prefer and
move directly to the next section with a more practical simulation example. (On the
contrary, to read even more about databanks, timeseries, lists, and other things, you
may consult the Data Management User Guide which has much more info and
examples regarding this).

Databanks

Databanks are containers of variables, for instance timeseries. Gekko always starts
out with two empty databanks (in memory): Work and Ref (reference). The Work

databank is where data is normally changed, unless otherwise stated. For instance,
simulations are always performed on Work databank data. The Ref databank can be

thought of as a background databank, being particularly handy when comparing two

http://www.t-t.dk/gekko/demo.zip

98 Gekko 3.1.x help system

T-T Analyse

scenarios. Try pressing the F2 key to see the open databanks (note: if the Ref

databank is empty, it does not show up in the F2 list). Since a READ statement wipes

out the contents of the Work and Ref databanks, it may be practical to put settings

etc. (for instance paths, time periods, etc.) into the so-called Global databank.

Databanks can contain many variables, so beware that the keys [Tab] or

[Ctrl+Space] offer autocompletion on timeseries names (cf. here).

Timeseries

Timeseries reside in a databanks. Timeseries may have frequency annual, quarterly,
monthly, weekly, daily or undated. If data has been read for timeseries y regarding

the period 2015-2020, printing out y for the period 2021 will show a missing value

('M').

When doing modeling (model simulations) with Gekko, timeseries are often called
"variables". Model files (.frm) files contain equations that describe relationships
between these variables (timeseries), and therefore timeseries are fundamental when
doing modeling.

Note that statements involving timeseries can have a local time period indicated, for
instance printing with prt <2020 2030> var1, var2;. Global time can be altered

with the TIME statement.

Ref databank and comparisons

When a databank is read (the READ statement), the Work databank is cleared, and
all the variables from the file are put into the Work databank (it is possible to merge

databanks if this behavior is preferred). After this, the Ref databank is also cleared,

and all variables are copied from Work to Ref. So after reading a databank file with

READ, the Work and Ref databanks are always identical (there are other ways of

opening databanks, but for now we focus on READ).

The Ref databank is typically used for multiplier analysis (i.e., experiments). Say you

read a databank and then perform some experiment. This experiment will only alter
variables in the Work databank, so after the experiment is finished, you can compare

the variables (timeseries) in the Work and Ref databanks (Gekko has a lot of

statements to do such comparisons, for instance MULPRT, DECOMP etc.).

The so-called operators are used for comparisons. For instance, m means absolute

multiplier, whereas d means absolute differences (or q and p in their relative

versions). You may consult the PRT (print) statement regarding this, but suffices to
say that you may write for instance prt <m> var1;, plot <d> var1;, sheet <q>

var1;, etc. There are also some more mnemotechnic ('long') operators availiable, for

instance abs or pch (try for instance prt<abs> or prt<pch>).

If, at some point, you wish to make sure that the Work and Ref databanks are

identical (for instance after a simulation), you can use the CLONE statement. This
statement clears the Ref databank, and copies the Work databank into it (in

99Gekko User Guide

T-T Analyse

memory). CLONE is typically used just after simulating (SIM) a baseline/reference
scenario.

Cleanup and restart

There is a cleanup-statement: RESTART. This statement clears the Work and Ref

databanks, in addition to clearing models, lists, options and other things. This
provides a clean state of Gekko, as if it had just been closed and reopened. If there is
a file with the name gekko.ini present in the working folder, the Gekko-statements

in this file will be run by RESTART, so gekko.ini can be used to contain options and

other statements (for instance a MODEL statement) that the user wishes to "survive"
a RESTART statement.). You may also use CLS ("clear screen") to clear the output
window.

In general, when doing simulations (in so-called sim-mode) and want to define a new
timeseries variable not already present in the model or databank, you will have to
CREATE it first (unless the timeseries starts with the letters xx). However, it should

be noted that when a databank is read, any model variables not present in the
databank will be auto-created as timeseries (with all observations set to missing
values). Because of this, it is often most convenient to put MODEL statements before
READ statements. Preferably use this order in Gekko program files: first the RESTART
statement, then the MODEL statement, and then the READ statement (or in the
gekko.ini file, put the MODEL statement before the READ statement).

Lists, filenames, etc

Regarding models, it should also be noted that the list of endogenous variables in a
model is simply the set of all the variables at the left-hand side of the equations. This
may be changed afterwards by means of the ENDO and EXO statements. Regarding
equation syntax, you may consult the latter part of the MODEL help file, if you need
more information on this.

The hash sign (#) is used for collections (lists, maps and matrices), and the percent

sign (%) is used for scalar variables (value, date and string). So in general you refer

to these with #x or %x, but note that in name composition using string/name scalars,

it is advised to use {}-curlies, for instance fK{%type}{%sector}, where %type and %

sector could be type and sector names (stored in strings).

Generally, list items are separated by commas, e.g. #mylist = var1, var2, var3;

(this stores the three strings 'var1', 'var2' and 'var3' in the list). This is also the

case when the list of items contains expressions: prt x/y, w/z;. Lags and fixed

dates are put inside brackets, for instance: var1[-1] or var1[2020]. You may use

x.1 or x.2 as short-hand for x[-1] or x[-2] and so on. Square brackets are also

used for wildcard-lists, so instead of a standard list (#mylist), you may use for

instance ['fX*'] to obtain a list (of strings) of all variables in the Work databank

beginning with fX.

100 Gekko 3.1.x help system

T-T Analyse

Regarding file names, you may use relative paths like \subfolder\filename.txt.

Using relative paths makes it easier to move a system of program files (using sub-
folders) to another location/computer if needed. Special user-paths can also be
designated by means of the option folder … settings.

3.3.3 Historical simulation

This section describes how to perform a historical simulation on a (historical)
databank. In order to follow the examples, you must first download the model and
databank (click demo.zip, and copy the two files gekko.frm and gekko.gbk into your
Gekko working folder). The example uses annual data, but other frequencies would
run very similarly.

(See the bottom of this page for the full code).

Start up Gekko in the working folder.

Then type this in the statement prompt (at the bottom):

restart;
mode sim;
time 2004 2016;

If you copy-paste these statements to Gekko, you may either execute them
individually one by one by pressing [Enter], or first mark them as a block and then

press [Enter] to execute them at once.

http://t-t.dk/gekko/demo.zip

101Gekko User Guide

T-T Analyse

The statements clear up the workspace, and set the global time period (for which we
will later simulate the model). At the bottom of the Gekko window, you can see that
this time period has been set ("Annual 2004 2016"). You may try to load the model,
read the data variables, and print them out:

model gekko;
read gekko;
prt <2004 2016> y, c, x, g;

The first statements load gekko.frm and read the gekko.gbk databank file. Note the
use of the < and > brackets denoting local options. In all relevant statements, you can

state a time period inside such brackets, and the given time period will only be used
in that statement. The PRT statement prints both levels and annual growth for the
variables. (Note the codes '(E)' for endogenous, and '(X)' for exogenous).

The data is articifial, and contains no growth. So the model can be envisioned as
either depicting a stationary-state model (with dynamics), or depicting growth-
corrected variables. Avoiding growth in the data is just to keep the model simple.

Lists may be used to avoid repetitive typing:

#vars = y, c, x, g;

Try printing out the current lists:

list ?;

This shows the newly created list #vars. There are also some model lists. For

instance, the list #all contains all model variables, #endo contains all endogenous

variables (i.e., variables at the left-side of an equation), and #exo contains all

exogenous variables (to see the contents of the #exo list, use PRT #exo;). Now you

may print the variables using the list (instead of prt y, c, x, g;):

102 Gekko 3.1.x help system

T-T Analyse

prt {#vars};

Note that prt #vars; would print out the list itself (that is, four strings). Instead of

lists, wild-cards can be used, for instance:

prt {'*'};

This will print out all timeseries in the Work databank. The alternative prt ['*'];

would print out the variables as strings (names). Note that there are some model-
created variables (dummies, add-factors, with missing values ('M')) — these will be
described later on. Wildcards follow the standard: * for any match, and ? for single

character match.

We will now try to simulate the model. It should be noted, that any READ statement
works like this: First the Work databank is cleared, and the databank file is read.
Next the Ref databank is cleared too, and all variables in Work are copied into Ref.
Hence, after any READ statement, the two databanks Work and Ref are always
identical. (You may use READ<merge> to merge data, or READ<ref> to load data
into the Base databank separately). To verify this, try to print a multiplier difference:

mulprt {#vars};

As you can see, there is no difference. This will change after we simulate the model:

sim;
mulprt {#vars};

The SIM and MULPRT statements are executed over the period 2004-2016 since this
is previously set as the global time period. As expected, for g there is no difference (it

is exogenous), whereas there are differences for the other variables (the simulation

103Gekko User Guide

T-T Analyse

is dynamic: a static simulation using historical values for lagged endogenous
variables can be done with SIM<static>). To see the data more clearly, you may try:

prt @y, y;

The symbol @ indicates that the value is taken from the Ref databank. Alternatively,

try:

mulprt <v> y;

which prints out both Work and Ref values, and multiplier differences (v means

'verbose'). Instead of printing, you may create a graph with PLOT:

plot @y, y;

104 Gekko 3.1.x help system

T-T Analyse

In general, you may substitute PLOT for PRT, since the syntax is identical. In the
window, you may for instance try to click the "Percent (%)" radio button, and you
may use [Esc] to close a graph window quickly. Instead of PLOT, you may also try

SHEET, which shows the data as an Excel table (if Excel is available on the computer,
else use CLIP).

In general, for statements like PRT, PLOT, SHEET and CLIP, you may use so-called
"operators". For instance, p means annual growth rate, m means absolute multiplier

differences, and q means relative multiplier differences. So this statement:

prt <p> {#vars};

will print percentage annual growth rates for the variables, and

plot <p> {#vars};

plots them. You may also use a r to indicate Ref databank, for instance:

105Gekko User Guide

T-T Analyse

prt <rp> {#vars};
prt <rn> {#vars};

This prints percentage change and levels for the Ref databank.

If you wish to store the result, you may write it to a databank (.gbk file):

write simple;

This will store the file simple.gbk in the Gekko working folder. Later on, you could
read it with read simple;.

In sim-mode, any new variable not present in the model should be created first
(unless the variable name starts with xx, in which case the variable will be auto-

created as a convenience):

create g2;
g2 <2002 2016> = g;

The statement makes g2 and g identical, for the given period. Another expample

could be this:

pch(g2) <2003 2016> = pch(c) - pch(y) + 2;
prt <2003 2016 p> c, y, g2;

The first statement (a SERIES statement) is set to start in 2003 — otherwise the
result will be missing values, since the pch() function uses lagged values. Note also in
the PRT statement the p inside the option brackets for indicating annual percentage

growth rate. As it is seen, the annual growth rate of the new g2 variable is set to the

growth rate of c minus the growth rate of y plus 2 (percentage points).

106 Gekko 3.1.x help system

T-T Analyse

The PRT/PLOT/SHEET/CLIP statements accept any expression, so the historical
consumption rate may be printed like this:

prt <r> c/y;

Where the operator r indicates reference (historical) values: prt @c/@y; or prt

ref:c/ref:y; could also be used. Another way of printing variables is the DISP

statement. This statement does not accept mathematical expressions, but prints the
equation (if it is an endogenous variable), variable explanations (labels), etc. Try:

disp y;

You can see the GDP equation, and the label associated with the y variable (this label

is taken from the .frm file, after the VARLIST$ tag). You may follow the links by

107Gekko User Guide

T-T Analyse

clicking the underlined variables, like in a web browser. Use the arrow buttons at the
top-left of the Gekko window to browse backwards and forwards.

Another way of showing information regarding endogenous variables is using the
DECOMP statement. Type:

decomp y;

This opens up the decomposition window, showing the variable values, and the values
of determining variables (precedents). Cells may be marked and copy-pasted to Excel
or other spreadsheets. The first line of the table is the dependent variable (left-hand
side of equation), whereas the following lines are the explanatory variables (right-
hand side of equation).

If you click "Growth rate" (p) in the "Raw" column under "Time-change", the values

are shown in annual percentage growth rates. For instance, in 2004, the simulated
value of y grows with 1.63%, whereas private consumption c grows with 3.17%. The

percentages regarding c, g and x obviously do not sum up to the 1.63%, which can

be verified by marking the three cells, and looking at the status bar at the bottom of
the window (reporting 8.27% in total). However, if you click the same button in the
"Decomp" column, the percentages regarding c, g and x sum up, because the

contributions in the equation are "decomposed". So, in 2004, the simulated value of
GDP growth (1.63%) is composed of +2.07% of c-contribution, +0.41% of g-

contribution, and -0.85% of x-contribution. That is, it is the private consumption (c)

that is driving the growth in y in 2004, whereas net exports (x) pulls in the opposite

direction (you may click "Show as shares" to easier spot which variables contribute
the most to the changes in y).

If you alternatively click the "Abs. multiplier" (m) in the "Raw" column under

"Multiplier", the absolute multiplier is shown (i.e., the absolute difference between
the historical databank and the simulated values, corresponding to MULPRT or
PRT<m>). For instance, in 2004, the simulated value of y is 33 units larger than the

databank value. The multiplier part of the decomposition window is most often used
in multiplier analysis, i.e. analyzing two simulated scenarios.

108 Gekko 3.1.x help system

T-T Analyse

The full code

restart;
mode sim;
time 2004 2016;
model gekko;
read gekko;
prt <2004 2016> y, c, x, g;
#vars = y, c, x, g;
list ?;
prt {#vars};
prt {'*'};
mulprt {#vars};
sim;
mulprt {#vars};
prt @y, y;
mulprt <v> y;
plot @y, y;
sheet @y, y;
prt <p> {#vars};
plot <p> {#vars};
prt <rp> {#vars};
prt <r> {#vars};
write simple;
create g2;
g2 <2002 2016> = g;
pch(g2) <2003 2016> = pch(c) - pch(y) + 2;
prt <2003 2016 p> c, y, g2;
prt <r> c/y;
disp y;
decomp y;

3.3.4 Multiplier analysis (shocks)

This section describes how to perform forecast scenarios, based on a historical
databank. In order to follow the examples, you must first download the model and
databank (click demo.zip and copy the two files gekko.frm and gekko.gbk into your
Gekko working folder).

(See the bottom of this page for the full code).

Next start up Gekko in the working folder, and type:

restart;
mode sim;
time 2017 2040;

This clears up the workspace, and sets the global time period (for which we will later
simulate the model).

http://t-t.dk/gekko/demo.zip

109Gekko User Guide

T-T Analyse

model gekko;
read gekko;

The first statements load gekko.frm and reads the gekko.gbk databank file. The

databank file only runs to 2016, since 2016 is the last historical data point. Like in
the previous section, create a list containing the variables:

#vars = y, c, x, g;
prt <2015 2040> {#vars};

As you can see, the variables contain all missings ('M') for the period 2017-2040. We
will now try to simulate the model (for 2017-2040):

sim;

Gekko will complain about missing data (click the link in "There were missing values
in 1 variables", and afterwards click the "Main" tab again to get back (or use
Ctrl+M)). So as stated in the Output tab, the problem is that the value of g for the

period 2017 is needed in order to simulate for 2017. Try setting g constant (for the

global period 2017-2040) by means of the SERIES statement:

g %= 0;
sim;
prt {#vars};

The %= operator in the first (SERIES) statement sets annual percentage growth, and

after this, the model can simulate. The model is really quite simple: as seen in the x-

equation, x will always change unless y = 500. So this value for y is an equilibrium

value (attractor), for instance corresponding to zero (or natural/structural)
unemployment level.

The equilibrium level of the consumption equation is given by c = 0.6/(1-0.1)*y,

corresponding to 0.6/0.9*500 = 333.33. Net exports are given residually, from the

GDP identity. Hence in equilibrium, x = y – c – g = 500 – 333.33 – 31 =

135.67. The interpretation is that in the long run there is perfect crowding-out

regarding public consumption g, since 1 extra unit of g will entail 1 less unit of x. As

it can be seen from the above PRT statement, the actual values converge slowly to
these long-run values.

If the best prognosis regarding future government consumption is that it is
unchanged at at 31 units, this simulation can be considered a reference scenario. In
order to perform a multiplier analysis on top of this reference scenario, we need to
put the scenario into the Ref databank (in order to be able to compare it to the
alternative scenario later on). Try printing all values for the variable y (operator v

means 'verbose'):

110 Gekko 3.1.x help system

T-T Analyse

mulprt <v> y;

As it is seen, there are missing values in the Ref databank. The CLONE statement
copies data from Work to Ref, so try this:

clone;
mulprt <v> y;

As it is seen, Work and Base databank values are now identical, and we are ready to
perform an alternative simulation.

The experiment is the following:

g += 100;

The operator += adds to the value in the Work databank, so in each year, g is

augmented by an absolute amount of 100 relative to the baseline values. The
alternative scenario is simulated:

sim;

Instead of printing, we will use the graph facilities. Try the following statement:

time 2016 2040;
plot {#vars};

We start out changing the global time period to 2016-40, so that the last historical
year is included in the following prints and plots. The plot shows the simulated values
(levels), not the multiplier (differences). For instance, you can see that g changes

from 31 in 2009 to 131 in 2016, as expected.

Now, in the graph window, try to select "Multiplier" and "Difference", in order to see
the multiplier.

111Gekko User Guide

T-T Analyse

Government spending (g) changes permanently with 100 units, and in the first year

this creates a Keynesian extra effect on production (y) which increases with 250

units. The effect on private consumption (c) is 150 units.

The effect is augmented a little bit more the following year, because of the lagged
endogenous term in the c-equation. From 2019 and on, however, the net exports

begin to decline (the effect propagates via the term y(–2) in the x-equation). The

underlying interpretation could be that — with some delay — the rising production
lowers the unemployment rate and thus augments the wage levels. This in terms puts
an upwards pressure on the domestic price level, lowering net exports. This negative
effect on x pulls y back downwards, and as it is seen, y oscillates slowly back to its

former level (i.e. the multiplier is 0 in the long run, corresponding to full crowding-
out).

So in the long run, y and c are unchanged, whereas g has been augmented by 100

and x reduced by 100. So, as mentioned above, in the long run the increased

government consumption is exactly crowded out by an equivalent reduction in net
exports.

If, instead of "Difference" you select "Percent (%)" in the graph window, you can see
the percentage multiplier differences. The effect on g is quite large in percentages,

whereas y and c follow each other quite closely in percentages.

It is worth noting that you may call PLOT with an operator to indicate how the data
should be presented, for instance:

plot <m> {#vars};

112 Gekko 3.1.x help system

T-T Analyse

The m operator code indicates absolute multiplier, i.e., the absolute difference

between the two databanks. The same code can be used for PRT, for example:

prt <m> {#vars};

Also, instead of PRT or PLOT, you may use SHEET, provided that Excel is installed on
your computer (otherwise use CLIP):

sheet <m> {#vars};

This creates an Excel sheet with the data. In Excel, a graph is easy to create from
this table (for instance, in Excel 2019, you can click on any cell inside the table,
choose "Insert", and then choose a graph). As a side note, you may create the Excel
file automatically without opening up Excel:

sheet <m> y 'GDP', c 'Priv. cons.', x 'Net exp.', g 'Gov. cons.'
file = simple;

This will silently create the file simple.xlsx and put it into your working folder. Note
the labels on each variable. You may also use expressions as you wish, for example:

sheet <m> c/y, x/y, g/y;

This show absolute multiplier changes in these three rates.

Other convenient operators in addition to m are p for annual percentage growth, and

q for multiplier percentage change. The PRT and MULPRT statements also have so-

called 'long' operators such as abs or pch. Please consult the PRT help file for more

on this (you may for instance use PRT<abs>, PRT<pch> or MULPRT<pch>).

You may also use the DECOMP facility to analyze equations and contributions. For
instance:

decomp <2017 2040> y;

This starts the decomp window: try clicking "Abs. multiplier" (m) in the "Raw" column

of the "Multiplier" section. This will show multiplier values related to the y-equation.

113Gekko User Guide

T-T Analyse

The full code

restart;
mode sim;
time 2017 2040;
model gekko;
read gekko;
#vars = y, c, x, g;
prt <2015 2040> {#vars};
sim;
g %= 0;
sim;
prt {#vars};
mulprt <v> y;
clone;
mulprt <v> y;
g += 100;
sim;
time 2016 2040;
plot {#vars};
plot <m> {#vars};
prt <m> {#vars};
sheet <m> {#vars};
sheet <m> y 'GDP', c 'Priv. cons.', x 'Net exp.', g 'Gov. cons.'
file = simple;
sheet <m> c/y, x/y, g/y;
decomp y;

3.3.5 Add-factors etc.

In order to follow the examples, you must first download the model and databank
(click demo.zip and copy the two files gekko.frm and gekko.gbk into your Gekko
working folder). Next start up Gekko in the working folder, and type:

(See the bottom of this page for the full code).

http://t-t.dk/gekko/demo.zip

114 Gekko 3.1.x help system

T-T Analyse

restart;
mode sim;
time 2017 2040;

This clears up the workspace, and sets the global time period (for which we will later
simulate the model). Next, issue these statements, in order to run the baseline
simulation with 0% growth in government consumption.

model gekko;
read gekko;
g %= 0;
sim;
clone;

Gekko auto-creates add-factors depending on formula codes. Imagine some stochastic
shock on the net exports (e) in 2017. The e-equation has equation code _GJ. You

may read more about such codes in the MODEL help file, but suffice to say that the
code means that the equation in reality reads:

FRML _GJD dif(x) = -0.2*(y[-2] -
500); //original
 x = x[-1] - 0.2 * (y[-2] - 500) +
JDx; //result

Note the add-factor JDx, and note also that the left-side dif()-function has also been

resolved. This latter equation is the one that Gekko actually simulates, and these
"detailed" equations can be shown by means of the DISP statement:

disp x;

Try click "Show detailed equation", in order to see the "full" equation. So even
though the variable JDx is not directly seen in simple.frm, it exists as a hidden

exogenous variable on the right-hand side of the x-equation. When simulating, the

value is automatically set to 0 if no other value is given.

Now, we may try to change the add-factor in the year 2017 (i.e., a temporary shock),
simulate and plot the result:

jdx <2017 2017> += 100;
sim;
plot <2016 2040 m> y, c, x, g;

115Gekko User Guide

T-T Analyse

In the first two periods (2017 and 2018), net exports x are augmented by 100, since

the two period lagged y does not begin to affect the equation before 2019. (Since the
equation is a difference equation (with dif(x) on the left side), augmenting the add-

factor in one year works the same way as augmenting an add-factor permanently in a
non-difference equation).

It is seen that there are no long-run effects — in the long run all effects are 0. So
temporary shocks on net exports only creates temporary fluctuations, but these are
still quite significant due to amplification via the Keynesian multiplier effect.

Gekko contains some more advanced possibilites regarding add-factors and formula
codes. The c equation has equation code _GJ_D, i.e. there is a D in the 5th position.

This implies that three variables are created: Dc, Jc, and Zc.The "full" c-equation is

this: c = (0.6*y + 0.1*c[-1] + Jc) * (1-Dc) + Dc*Zc. The variables Dc and Zc

can be used to exogenize an equation. If Dc is set to 1, the equation will reduce to c

= Zc, so that Zc can be used to set the target for c. See also the last part of the

MODEL help page.

The full code

restart;
mode sim;
time 2017 2040;
model gekko;

116 Gekko 3.1.x help system

T-T Analyse

read gekko;
g %= 0;
sim;
clone;
disp x;
jdx <2017 2017> += 100;
sim;
plot <2016 2040 m> y, c, x, g;

3.3.6 Goal-search etc.

In order to follow the examples, you must first download the model and databank
(click demo.zip and copy the two files gekko.frm and gekko.gbk into your Gekko
working folder).

(See the bottom of this page for the full code).

Start up Gekko in the working folder, and type:

restart;
mode sim;
time 2017 2040;

This clears up the workspace, and sets the global time period (for which we will later
simulate the model). Next, issue these statements, in order to run the baseline
simulation with 0% growth in government consumption.

model gekko;
read gekko;
g %= 0;
sim;
clone;

Gekko can do goals/means analysis, i.e. exogenizing some endogenous variables, and
endogenizing some exogenous variables. In other words: force some endogenous
variables to attain specific values, by means of some other (exogenous) variables. In
this scenario, how would you augment y with 250 units for a 7-year period relative to

the baseline scenario, by means of changing g? This experiment is done quite easily,

via the EXO and ENDO statements:

exo y;
endo g;

These statements state that y should be redefined as an exogenous (goal) variable,

whereas g is redefined as an endogenous variable (means). Note that when you

simulate, the number of exogenized and endogenized variables should always be the

http://t-t.dk/gekko/demo.zip

117Gekko User Guide

T-T Analyse

same, otherwise Gekko will complain. Note also that a small target icon appears at
the bottom right, to remind you that goals/means are set. After this, try to change y:

y <2017 2023> += 250;

You get a warning that you are updating a left-hand side variable. Now simulate (we
assume the global time period is still 2017-2040):

sim<fix>;

To make the means/goals bind, you must use the <fix> option in the SIM statement.

Plot the simulated variables (multiplier):

plot <2016 2040 m> y, c, x, g;

It is seen that in order to keep the production level 250 units higher for 7
consecutive years, government spending has to keep growing continually up to 2023.
In that period, net exports (x) get squeezed out, and the effect on x is negative from

2019 on (implying a likely trade deficit, depending upon the price of imports and
exports). When the y-effect ends after 2023, g stays at a permanently higher level

(350 units higher). The mirror-image of this is that net exports has diminished by the
same amout (-350). You may compare this graph to the similar experiment in section
4.

118 Gekko 3.1.x help system

T-T Analyse

To deactivate all goals/means, simply use SIM instead of SIM<fix>, or use the UNFIX
statement to remove the goals/means completely.

If you want to fix a certain endogenous variable at some predefined value, by means
of its add-factor, you may use ENDO/EXO for that, too. But in that case, there is an
often more convenient method, namely using the so-called exogenization dummies. If
the equation has a formula code implying exogenization dummy (the character D at

the 5th position), this is possible.

The private consumption function c has code _GJ_D, implying that it has an additive

add-factor (the J_ part of the code), and exogenization dummy (the last D in the

code). So the "full" c-equation really is c = (0.6*y + 0.1*c[-1] + Jc) * (1-Dc) +

Dc*Zc. The J_ part of the code "produces" the add-factor Jc, whereas the last D in

the code "produces" the terms containing the variables Dc and Zc. The variable Dc is

an exogenization dummy (normally 0), and the variable Zc can be used to set a value

for c (if Dc = 1, the equation reduces to c = Zc).

Try starting from scratch with the scenario again (you may mark a block of
statements and run them all when you hit [Enter]):

restart;
mode sim;
time 2017 2040;
model gekko;
read gekko;
g %= 0;
sim;
clone;

Now try the following statements:

Dc = 1;
Zc += 100;
sim;
plot <2016 2040 m> y, c, x, g;

119Gekko User Guide

T-T Analyse

As you can see, c is now fixed at a value 100 higher than in the baseline databank.

In the long run this crowds out net exports x, so that GDP (y) is unchanged near

2040. The functionality can for instance be used in forecasts, if some observations of
endogenous variables are known ahead of time (possibly tentatively, from other
sources, indicators etc.).

At this point it should also be mentioned that it is possible to re-endogenize the
variable c in a convenient fashion. If, after the above simulation, Dc is set to 0 again,

and the model simulated, one would expect c to return to its previous values. This is

not the case however: the value of c would stay at +100, even though the dummy

has been set back. The explanation is that the add-factor Jc is calculated in a way so

that the c-equation keeps it’s goal values. This trick of switching the dummy back and

forth while simulating is quite advanced, and should only be used if the user fully
understands the implications.

As you may have noted, in order to solve this goals/means problem, Gekko had to
switch to another solving algorithm (Newton). This is done automatically, when EXO
and ENDO statements are used. The Newton algorithm is more powerful that the
Gauss algorithm (and allows changing the set of endogenous/exogenous variables).
But for "normal" non-exogenized models, Newton is a bit slower, so for normal (non-
goal) purposes, the Gauss algorithm is typically used.

If, however, you encounter solving problems with the Gauss algoritm, try switching to
the Newton algorithm manually (option solve method = newton;). Also, the

Newton algorithm is much more precise. This has to do with the fact that for each
extra iteration, the Newton algorithm doubles the number of correct significant digits

120 Gekko 3.1.x help system

T-T Analyse

in the values of the endogenous variables. Gekko is designed for large-scale models,
so you may indicate hundreds or thousands of simultaneous goals/means at the same
time, if you like.

It should perhaps be noted that some kinds of equations can never be solved by
means of a Gauss-Seidel algorithm, no matter how much damping etc. might be used.
An example could be the one-equation model z = 1.1*z – 0.2*h. This model has

the solution z = 2*h, but this solution can only be found with the Newton algorithm.

If such equations are present in a model (possibly in hidden form), the solution space
becomes a saddle point, and that requires a Newton solver. However, many
macroeconomic models solve just fine with the (faster) Gauss solver.

The full code

restart;
mode sim;
time 2017 2040;
model gekko;
read gekko;
g %= 0;
sim;
clone;
exo y;
endo g;
y <2017 2023> += 250;
sim<fix>;
plot <2016 2040 m> y, c, x, g;

// -------------------------------

restart;
mode sim;
time 2017 2040;
model gekko;
read gekko;
g %= 0;
sim;
clone;
Dc = 1;
Zc += 100;
sim;
plot <2016 2040 m> y, c, x, g;

3.3.7 Forward-looking

Gekko can handle forward-looking models, that is, models where one or more of the
endogenous variables contain leads. There are different solvers regarding this, see
under SIM, and also under OPTION solve forward We will first try to perform a
multiplier analysis without leaded variables, similar to the shock shown in section 4:

121Gekko User Guide

T-T Analyse

restart;
mode sim;
time 2017 2040;
model gekko;
read gekko;
#vars = y, c, x, g;
g %= 0;
sim;
clone;
g <2025 2040> += 100;
sim;
plot <m> {#vars};

If you copy-paste these statements to Gekko, you may either execute them
individually one by one by pressing [Enter], or first mark them as a block and then

press [Enter] to execute them at once. The "multiplier" (difference between the two

simulations) looks like this:

This is the same effects as seen in section 4, were in this case, g is not augmented

until the year 2025. In the model (gekko.frm), there is the following equation:

FRML _GJ_D c = 0.6*y + 0.1*c[-1];

So if y is augmented by 1, c will augment by 0.6 in the same year. We will now

create a new model with a different equation regarding consumption, c.

122 Gekko 3.1.x help system

T-T Analyse

· In the file system, make a copy of gekko.frm and call it gekko2.frm
· In gekko2.frm, in the c equation, change 0.6*y into 0.6*y[+1].

So the equation now looks like this:

FRML _GJ_D c = 0.6*y[+1] + 0.1*c[-1];

This means that current consumption, c, now reacts to the expected income next

period, y[+1]. Next, run the following code:

restart;
option solve forward terminal = exo; //changed
mode sim;
time 2017 2040;
model gekko2; //changed
read gekko;
#vars = y, c, x, g;
g %= 0;
y[2041] = 500; //changed
sim;
clone;
g <2025 2040> += 100;
sim;
plot <m ymax = 300> {#vars};

123Gekko User Guide

T-T Analyse

This is quite different from before, and it is seen that both c and y start to increase

well before g increases in 2025. In the figure, it is seen that c now reacts to y in the

next period, for instance y decreases from 2025 to 2026, and hence c decreases the

year before that, from 2024 to 2025.

In the above code, we have set y[2041] = 500, since this is the long-run equilibrium
value (the only value for which the equation dif(x) = -0.2*(y[-2] - 500) is

stationary). Hence, we are setting the terminal condition manually for this problem.

Part IV

125Gekko User Manual

T-T Analyse

4 Gekko User Manual

The Gekko User Manual contains detailed descriptions of statements,
functions, and other components. In principle, these descriptions are
exhaustive, but for some of the components, the explanations may
provide too much detail.

If so, there are easier explanations available in the Gekko User Guide,
aimed at beginners and new users, and highlighting only the main
points.

The user manual contains the following sections:

· User manual introduction. Intro to some of the basic concepts.
· Syntax basics. The fundamental concepts of the syntax is described.
· Gekko statements. This section describes in detail the purpose of the different

Gekko statements, the syntax to be used, the results produced, together with
examples etc.

· Gekko functions. Gekko functions can be used in expressions. The input parameters
and the output type is described. The functions are divided into categories.

4.1 User manual introduction

This section describes some of the basic concepts used in Gekko. Beware that Gekko
also has a user guide, which is intended as an easier introduction with less details
(for new users). For new users, it is perhaps best to start with the user guide, to
avoid too many details.

The present introduction contains the following sections:

· Basic concepts. An overview of some of the main capabilities and concepts of
Gekko.

· Time periods. Explaining how global time and local time works.
· Databank search. Describes how databanks are searched for variables in Gekko.
· Wildcards. Explains the special rules concerning wildcards and type/frequency

symbols.
· Naked list. Explains the logic of 'naked lists' like #m = a, b, c;.

· Dynamic statements. How to handle statements like x = x[-1] + 1;?

· Missing values. The logic of missing values.
· Filenames. How filenames and paths are handled in Gekko.
· Help system. Description of the in-built help system.
· Under the hood. A short section on some of the main technologies/components

used in Gekko.

126 Gekko 3.1.x help system

T-T Analyse

4.1.1 Basic concepts

The following describes some of the fundamentals of Gekko.

Timeseries-oriented

Among other things, Gekko handles timeseries (often just called 'series' in this
documentation). Gekko is a timeseries-oriented software system, that is, it has easy
handling of timeseries as one of its main objectives. Because of this orientation, it is
often not necessary to indicate a time period when dealing with timeseries variables,
because the time dimension is implicitly understood. Gekko can operate on different
frequencies, at the moment annual (a), quarterly (q), monthly (m), weekly (w), daily

(d) or undated (u). IMPORT can handle (collapse) higher frequencies than daily, if

needed. Note that week numbering follows the ISO 8601 standard.

Gekko handles other kinds of variable types, too, as described in the next section.

Databanks

Databanks are in-memory storage of variables types series, value, date, string, list,
map, and matrix. The names of values, dates and strings (scalars) always start with
the % symbol, whereas the names of lists, maps and matrices (collections) always

start with the # symbol. Databanks are opened in a hierarchical list of open

databanks, where the first-position databank has number 1 (cf. the F2 window: click
F2 to see the list of open databanks).

Gekko can READ/WRITE such databanks as external Gekko databank files (.gbk
extension), or IMPORT/EXPORT data from/to other file formats. Gekko always starts
out with four empty databanks (in memory): Work (first-position bank), Ref

(reference bank), Local (local variables), and Global (global variables). At start up,

the Work databank has number 1 in the list of open databanks, with the Ref

(reference) databank shown just below. In addition, more databanks with different
names (so-called 'named' databanks) can be opened (OPEN), but note that the first-
position and reference databanks have special capabilities regarding
printing/plotting/comparing etc. The local and global databanks are used to store and
access temporary variables (local), or store settings etc. (global). See the LOCAL and
GLOBAL statements for more on this. Try to click F2 to see the list of open databanks
(note that reference, local and global databanks are only shown in that window, when
they contains data).

You may open other databanks as first-position databank with
OPEN<first>/OPEN<edit>. You may use CLOSE to close a databank (and possibly
write it to file, if it has been altered).

If you need to import data into a databank, you may use IMPORT for non-Gekko data,
or READ for Gekko databanks. For instance, IMPORT <xlsx> data.xlsx; imports

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/ISO_8601

127Gekko User Manual

T-T Analyse

Excel-data into the first-position databank, but you could alternatively use
IMPORT<ref xlsx> data.xlsx; to import the data into the reference databank. For

simulation purposes, the READ statement is often practical. You may use WRITE to
write the contents of the first-position databank to an external .gbk file.

As mentioned, in the F2 window, the first-position databank has number 1, whereas
other 'named' databanks have numbers 2, 3, etc. If the local databank contains data,
it will show up in the list above the first-position databank, and if the global databank
has data, it will show up last in the databank list. When issuing a statement like prt

x; or y = 2 * x;, the way Gekko looks for x depends upon databank search options.

In sim-mode, Gekko will only look for x in the first-position and local/global

databank, whereas in data- and mixed mode, Gekko will look for x first in the local

databank (first bank in the databank list), then in the first-position databank (number
1 in the databank list), then in other open databanks (numbers 2, 3, ... etc. in the
databank list), and finally in the global databank (last bank in the databank list).
Note here that the reference databank is never searched for variables without
databank indication, since this databank is only used for comparison purposes, cf.
MULPRT, PLOT<m>, COMPARE, and similar statements. You may refer to a variable
in the reference databank with ref:x or the shorter @x. In general, you can use colon

(:) to refer to a particular databank, for instance b1:x tries to find x in the b1

databank.

Timeseries variables

A timeseries (or just: series) can can have frequency annual, quarterly, monthly,
weekly, daily, or undated, and it may contain any number of observations. If data has
been read for timeseries x regarding the period 2010-2015, printing out x for the

period 2016 will show a missing value ('M'). Series can be lagged and leaded, for
instance x[-1] or x[+1] in the sense that if x corresponds to x(t) , x[-1]

corresponds to x(t–1), and x[+1] corresponds to x(t+1). Note that lags must start

with the symbol -, and leads with +, these may no be omitted. Individual

observations can be picked out with for instance x[2020], or x[2020q3], the latter

being the third quarter of 2020, if x is a quarterly series. If you need accumulating

lags like x = x[-1] + 1, consider using x <dyn> = x[-1] + 1, or a BLOCK with

series dynamic = yes. Accumulating lags are explained in more depth here.

Array-series

An array-series is a special kind of multidimensional timeseries, where indexing with
for instance x[a] or y[b, c] is possible. You may use x['a'] or y['b', 'c'] as

synonyms in that case, and array-series are practical for many purposes, instead of
for instance using naming conventions like xa or ybc. In general, you can perform

the same operations with the array-series x[a] as you would be able to do with a

normal timeseries. Array-series must be defined before they are used, for instance x

= series(1); y = series(2); to state the dimensionality.

128 Gekko 3.1.x help system

T-T Analyse

Scalars

Gekko scalars are the types value, date or string. Scalars names must begin with the
symbol %. Scalars can be thought of as containing just one element: the single value,

the single date, or the single string. Values are numeric values like 1.2 or 2e8, dates

are for instance 2020 or 2020q3, and strings use single quotes like 'dk'.

Collections

Gekko collections are of the type list, map or matrix. Collection names must begin
with the symbol #. Collections can be thought of as a number of elements bundled

together inside the collection. A list stores variables in a sequence (by numbers 1, 2,
etc.), a map stores variables by name (like dkk, eur, usd), and matrices are 2-

dimensional structures of numeric values, also ordered by numbers 1, 2, etc. So for a
list, #x[2] refers to the second element. For a map, #x[dkk] refers to the element

that has this name, and for a matrix, #x[2, 1] refers to the numeric value stored in

row 2, column 1. It should be mentioned that it is possible to write #x[dkk] as

#x['dkk'] or #x.dkk, too.

Lists and maps can store any other variable types as elements, whereas matrices only
store values (for the time being).

Banks, maps, and array-series

Note: all these three datastructures look up elements by means of names (also called
look-up keys). For instance, b2:x looks up x in bank b2, #m['x'] looks up x in the

map #m, whereas y['a', 'x'] looks up ('a', 'x') in the two-dimensional array-

series y. Inside Gekko, banks and maps are built in the same way, whereas array-

series are a bit differrent in that they (a) only store series inside, and (b) allow
several dimensions of look-up keys.

Strings as name references

Scalar strings (or a list of strings) may refer to other variables. Consider the string %s

= 'b2:x!m';. If you state prt %s;, Gekko will just print out the raw string. But if

you use prt {%s};, Gekko will instead print out the monthly series x from the b2

databank (in a sense performing a forwarding operation, forwarding from the variable

%s to the variable b2:x!m). Therefore, the curly {}-braces are handy regarding name

composition. Also, if %i = 'b', and %j = 'd', the variable a{%i}c{%j}e is equal to

abcde, and in general one should read the curly braces {} as if they are simply a

129Gekko User Manual

T-T Analyse

sequence of unknown characters that are glued to other characters (or other {}-

braces). See more on strings, or see the syntax diagrams.

A list of strings may be used in the same way. Consider the list of strings #m =

('b2:x!m', 'y');. If you state prt #m;, raw strings are printed out, whereas prt

{#m}; will print out the variables corresponding to the strings (monthly series x from

the b2 databank, and the series y, and again performing a forwarding operation). In

general, list definitions are enclosed in parentheses, like #m = ('a', 'b', 'c');,

but for simple strings, the equivalent 'naked' list #m = a, b, c; is legal, too. In the

latter case (naked list), it should be emphasized that the list elements are still three

strings 'a', 'b', 'c', not the variables themselves.

Sometimes the user may be in doubt whether he or she should use a normal string %

s, or a name-reference {%s}? In such cases, the "abc test" may be performed. Would

it be natural to use a quoted string like 'abc' in the statement, or would it be natural

to use a name like abc instead? If the former is the case, use %s -- if the latter is the

case, use {%s}.

Wildcards

In general, wildcards are stated with the ['...'] or {'...'} patterns, depending

upon the context. For instance, you can use #m = ['a*x'] to obtain a list of strings

of variables starting with a and ending with x (from the first-position databank, with

the current frequency). If you need to for instance print out the variables in this list,

prt ['a*x'] will just print out the raw strings corresponding to the matched

wildcard. Instead, prt {'a*x'} should be used to print out the variables themselves.

Ranges can be stated as for instance 'pxa..pxe', or 'bank:pxa..bank:pxe'.

In INDEX, COPY, RENAME, DISP and similar statements, you can omit the curlies and

single quotes, for instance INDEX a*x; (a*b will not be interpreted as a mathematical

product in that statement). You can also use ? to select a single character, and

wildcards can also be used to search for banks, frequencies, and indexes. See the

INDEX and COPY statement for more on this.

Much more on wildcards on the wildcards page.

Analysis

In sim-mode, the reference databank is typically used for multiplier analysis (i.e.,

experiments). Say you read a databank and then perform some experiment. This

experiment will only alter timeseries in the first-position databank, so after the

experiment is finished, you can compare the timeseries in the first-position and

reference databanks (Gekko has a lot of statements to do such comparisons, for

130 Gekko 3.1.x help system

T-T Analyse

instance MULPRT, DECOMP etc.). If, at some point, you wish to make sure that the

first-position and reference databanks are identical (for instance after a simulation),

you can use the CLONE statement. This statement clears the reference databank, and

copies the first-position databank into it (in memory). You may alternatively read a

file directly into the reference databank by means of READ<ref>.

There is also a cleanup-statement: RESTART. This statement clears the first-position

and reference databanks, in addition to clearing models, variables, user functions,

procedures, and other things. The operation provides a clean state of Gekko, as if it

had been closed and reopened (if there is a file with the name gekko.ini in the

program and/or working folder, this file will be re-read, so gekko.ini can be used to

contain options and other statements, for instance MODEL and READ statements, that

the user wishes to "survive" a RESTART). If you wish a clean state without any

potential gekko.ini file, use RESET.

Creation and sim-mode

In sim-mode you have to CREATE a series before you update its values/observations

with the SERIES statements (unless the timeseries starts with the letters xx,

indicating that it is to be thought of as a temporary variable). However, it should be

noted that when a databank is read (READ), after a model has been loaded previously

(MODEL), any model variables not present in the databank will be auto-created as

timeseries (with all observations set to missing values). Because of this, it may often

be convenient to put MODEL statements before READ statements. In data- and mixed

mode, timeseries are auto-created with the SERIES statement.

Periods

Note that statements involving series variables can include a local time period, like
for instance prt <2010 2020> x, y;. The local time period will overrule the global

time period, which can only be set via the TIME statement.

There are some details regarding periods. Most statements that involve timeseries
use the global time period if no local time period is stated, for instance statements
like PRT, IMPORT, EXPORT, etc. For some of these statements, you may use local
option <all> to use all existing data points (observations). You cannot combine <all>

with a local time period.

But for the statements COPY, READ and WRITE, omitting a local time period does not
entail the use of the global time period. These statements will use all existing data
points (observations) for all series, if no local time period is stated. If a local time
period is stated, only the local sample is used, and if you need to observe the global
time period, you can use the <respect> option. You cannot combine <respect> with

a local time period.

131Gekko User Manual

T-T Analyse

For some statements, you may use a time period with another frequency than the
series object used. In that case, Gekko will try to convert the frequency meaningfully.
For instance, prt <2010q2 2010q3> x!q, x!m; will just use 2010q2-q3 for the

quarterly series x!q, whereas 2010q2-q3 is converted to 2010m4-m9 for the monthly

series x!m (covering from the start of q2 to the end of q3).

If you need to change the time period temporarily, you may use the BLOCK structure.
Also, user defined functions and procedures may use a <>-field to indicate time period

arguments.

Operators

The so-called operators are used in many places, in order to perform easy
transformations (for instance percentage growth rate, or multiplier difference
between first-position and reference databank values). The operators come in two
versions: 'long' and 'short'. The 'long' ones are used in the PRT and MULPRT
statements (for instance prt<abs> var1; to only print the absolute level, and not

percentage growth), whereas the 'short' ones can be applied more generally (for
instance plot<p> var1; to graph the growth rate of var1). The most important of

the 'long' ones are dif and pch, and the most important of the 'short' ones are d, p,

m, q. The functionality of the 'long' and 'short' operators overlap: see PRT for more

details. The short operators will also show up in TABLEs and the DECOMP window,
and can also be used in SERIES, PLOT and SHEET.

Models

Regarding models, it should also be noted that the list of endogenous variables in a
model is simply the set of all the variables at the left-hand side of the equations. This
may be changed afterwards by means of the ENDO and EXO statements. Regarding
equation syntax, you may consult the latter part of the MODEL help file, if you need
more information on this.

Files

Regarding file names, you may use relative paths like \subfolder\data.txt. Using

relative paths makes it easier to move a system of Gekko program files to another
location/computer if needed. Special user-paths can also be given by means of the
OPTION folder ... settings. If the path or filename contains blanks or special

characters, you may enclose it in single quotes.

Gekko program files/batch jobs

132 Gekko 3.1.x help system

T-T Analyse

Gekko programs can either be run directly from the Gekko main window, or

assembled in a program file (script file) for later execution. Gekko program files can

be run with the RUN statement. This is also called a batch job (also possible by means

of calling gekko.exe with parameters, see more in the RUN help file). You may track

the execution of jobs via 'Utilities' --> 'Run status...' in the Gekko menu (or double-

click on the traffic light in the lower right corner of Gekko).

Gekko also provides user-defined functions and procedures to deal with repetitive

tasks.

133Gekko User Manual

T-T Analyse

4.1.2 Time periods

Many Gekko statements accept a local time period stated inside the <>-brackets. For

such statements, omitting a local time period generally means that the global time

period (cf. TIME) is used instead. There are the following exceptions to that rule:

List of statements where lack of local period means all observations

COPY Handling variable objects, copying them inside
the same databank or between databanks.

READ, WRITE Read or write variables from an external file.

For instance, copy x to y; will copy the entire object, including all observations

(and not just the observations corresponding to the global time period), whereas
copy <2010 2020> x to y; will only copy the observations 2010-20. To copy only

the observations corresponding to the global time period, use copy <respect> x to

y;. Similarly, READ<respect> and WRITE<respect> can be used.

It should be noted that the similar statements IMPORT and EXPORT respect the global
time period, in contrast to READ and WRITE. To force IMPORT and EXPORT to use all
observations, IMPORT<all> and EXPORT<all> can be used.

Note

User defined functions and procedures may also use a <>-field to indicate time period
arguments. This can be used to define a local time period to be used inside the
function/procedure.

4.1.3 Databank search

Databank search is an important concept in Gekko, alleviating the burden of always
having to state the databank name when variables in other databanks than the first-
position databank are used.

Databanks search can be controlled with an option, or via the MODE statement, cf.
the next section. In general, databank search can be practical, but the user should be
aware of the pitfalls, especially if several open databanks contain variables with the
same names.

134 Gekko 3.1.x help system

T-T Analyse

The remainder of this page tries to answer the following question: In statements like
y = x; or prt x;, where should Gekko look for the variable x, if it is not found in the

first-position databank?

The option and MODE

The option that controls databank searching is the following:

option databank search = yes; //yes|no

Per default, this option is set to yes, since Gekko starts up in data-mode. In sim-

mode, the option is set to no, so prt x; will fail in sim-mode, if x is not found in the

first-position or local/global databank (in that case, Gekko will not look for x
elsewhere).

The mode can be switched like this:

mode sim; //sim|data|mixed

Among other things, the MODE statement controls OPTION databank search, and a

few other options.

How does databank searching work?

When databank searching is active (option databank search = yes), Gekko will

look for a variable x in the hierarchical list of open databanks (cf. the F2 window that

is opened when pressing the F2 key). As shown on the page about OPEN, Gekko
operates with the following databanks:

Number Searchable Non-searchable

Local

1. First Ref

2. Another databank

3. Another databank

... ...

135Gekko User Manual

T-T Analyse

n'th Last databank

Global

So if databank searching is active, Gekko will first look for a variable x in the Local

databank. This is often empty, since it is only used for temporary (discardable)
variables. Next, Gekko looks in the first-position databank, which is often the Work

databank. If not found in any of these databanks, Gekko looks in any other databank
opened with the OPEN statement. If not found in any of these, the Global databank is
queried at last. Note that the Ref databank is never searcheable, so a variable x

without databank indicator (a 'bankless' variable) will never be looked for in the Ref

databank.

The search hierarchy means that variables may shadow/mask each other. If
searching is active, the user may put a variable x in the Global databank for later

use in a system of Gekko program files (the Global databank is not affected by

READ, CLEAR, etc. and is therefore practical for long-term storage of global
variables). But if the system of program files creates a variable x, or opens a

databank containing a variable x, the x in the Global databank is masked. For

instance, the user may state x = 100;, creating a series x with the value 100 in the

first-position databank. After this, prt x; will refer to this variable, not the variable

in the Global databank (to refer to that variable, global:x could be used). So when

databank searching is active, and databank indicators are omitted, the user should
keep name collisions in mind.

There is another pitfall regarding databank searching, namely that deleting a variable
may bring back another variable from being masked. Consider this example:

reset;
open <edit> bk1; clear bk1; x = 100; close bk1;
open <edit> bk2; clear bk2; x = 200; close bk2;
open bk1, bk2; //press F2 to see the databank list
prt x;
close bk1;
prt x;

The first PRT prints x as 100, whereas the second print prints x as 200. The reason is

that in the first print, x is first found in the bk1 databank, whereas in the second

print, x is first found in the bk2 databank (because bk1 was closed). So closing a

databank, or deleting a variable may have the consequence that a variable with the
same name is unmasked in some databank lower in the search hierarchy.

If the variable names in the different databanks are distinct, this is not a problem,
and it is practical to be able to refer to variables without always having to write the
databank name. Also, in some circumstances, databank masking can be used for
selection. Consider two databanks, bk1 and bk2, where the quality of the data in bk2

is inferior to the quality of the data in bk1 (for instance because bk2 is an older

databank). In that case, if the databanks are opened with bk1 before bk2, databank

136 Gekko 3.1.x help system

T-T Analyse

searching works as a quality filter. If a variable x exists in bk1, this version is always

used. If it does not exist in bk1, Gekko will look for it in bk2 instead. If it does not

exist in bk2 either, an error will be issued. In that way, the newest version of x is

always found (or an error occurs).

Statements without databank search

A few statements disallow databank searching completely in order to avoid

ambiguities. In these statements, bk1:x is still understood as x from the bk1

databank, but x without databank indicator will be understood as x from the first-

position databank, without looking elsewhere for the variable.

List of statements where bankless variables are never searched for

COPY, DELETE,

RENAME

Handling variable objects

COUNT, INDEX,

DISP

Finding and displaying variables.

EXPORT, WRITE External file storage

DOC, REBASE,
TRUNCATE

Similar to the left-hand side in assignments, therefore no
databank searching.

Note: Wildcards without databank indicator are never searched for in other databanks than the
first-position databank. So the table deals with 'normal' bankless variables. In some of these
statements, *:x can be used to indicate the occurrence of x in all databanks.

As an example, copy x to y; only looks for x in the first-position databank, and if it

is not found, an error is issued. If it is found, it is copied as a new variable y, also in

the first-position databank. If the COPY statement allowed searching, the origin of y

would be unclear, since it could origin from some other open databank than the first-
position databank.

Note

Note that a bankless variable on the left-hand side of an expression is always
interpreted as residing in the first-position databank. For instance, x = 100; will

always put the series x into the first-position databank (implicitly using first:x =

100").

Note that the Local or Global databanks are always searchable, independent upon

MODE etc.

137Gekko User Manual

T-T Analyse

4.1.4 Wildcards

Wildcards are used to search for variables in one or more databanks. Internally i
Gekko, a wildcard search returns a list of variables in the form of strings, possibly
with databank names and frequencies. There are special rules present regarding how
these wildcards work regarding type and frequency symbols.

Array-series can be searched quite straight-forwardly with syntax like x[a*], cf. the

INDEX statement. Wildcards can also be used to search inside a list of strings (cf.
LIST).

Beware that the keys [Tab] or [Ctrl+Space] offer autocompletion on timeseries

names (cf. here), which implicitly amounts to a wildcard search.

In the following, the logic of databank search is described.

Basics

Wildcards for bank searching come in three flavors (here matching variables starting
with 'x' and ending with 'y'):

· String wildcards: ['x*y']. Returns matching strings

· Name wildcards: {'x*y'}. Returns matching names. Actually short for {['x*y']},

cf. the note at the end.
· Naked wildcards: x*y. Returns matching names, short for {'x*y'}.

· Note that wildcards can be used for array-subseries too, for instance index

x[x*y]; (cf. INDEX).

Ranges and single character matches are possible too, for instance 'x1a..x2z' or

'x?y'.

The difference between returning strings or names can be seen in this example:

time 2010 2012;
create x1y, x2y; //only necessary in sim-mode
x1y = 1; x2y = 2;
prt ['x*y'];
prt {'x*y'};
prt x*y; //fails

Result:

 ['x*y']
 'x1y', 'x2y' [2 items]

 x1y % x1y %
 2010 1.0000 M 2.0000 M

138 Gekko 3.1.x help system

T-T Analyse

 2011 1.0000 0.00 2.0000 0.00
 2012 1.0000 0.00 2.0000 0.00

So the first PRT prints out a list of strings equal to ('x1y', 'x2y'), whereas the

second PRT prints out the two timeseries x1y and x2y. The third PRT fails, since it

expects to multiply two timeseries x and y.

However, in some statements like COPY, RENAME, INDEX, DISP, etc., naked wildcards

are allowed, for instance index x*y; to get a list of variables starting with x and

ending with y.

time 2010 2012; create x1y, x2y; x1y = 1; x2y = 2;
index {'x*y'};
index x*y; //same: naked form

Both INDEX statements print out x1y, x2y as matching items, DISP would print the

two series.

Wildcards without bank indicator only search for the variables in the first-position

databank. To search in all databanks, use for instance index *:x*y; or prt

{'*:x*y'};. As an example, consider the case where there are the following

databanks present:

Databank Variables

1. Work x1y x2y

2. bk1 x1y x3y

3. bk2 x2y a3y

Note: the variables in red are the ones that are found first in a databank search

time 2010 2012;
x1y = 1; x2y = 2;
open<edit>bk1; clear bk1; x1y = 10; x3y = 30; close bk1;
open<edit>bk2; clear bk2; x2y = 200; x3y = 300; close bk2;
open bk1, bk2;
prt <n> {'x*y'};
prt <n> {'*:x*y'};
prt <n> x1y, x2y, x3y;

Examples:

139Gekko User Manual

T-T Analyse

· prt {'x*y'}; prints Work:x1y, Work:x2y (only variables from the Work bank)

· prt {'*:x*y'}; prints Work:x1y, Work:x2y, bk1:x1y, bk1:x3y, bk2:x2y, bk2:x3y

(all 6 variables in the table)

· prt x1y, x2y, x3y; prints the variables Work:x1y, Work:x2y, bk1:x3y (shown in

red, provided that databank searching is active, else the statement fails regarding

x3y).

While databank searching has advantages regarding concrete variables like x1y, x2y,

x3y, using such a search logic regarding wildcards would be both confusing and error-

prone.

Use of '%', '#', '!', and stars

In their most strict form, wildcards for bank searching are stated like this:

#m = ['x*y'];

This particular wildcard will return a list of strings containing the names that match

the 'x*y' wildcard, that is, names that start with 'x' and end with 'y'. This wildcard

only matches variables from the first-position databank, with the current frequency.

So if the first-position databank is b1, and the current frequency is annual (!a), the

wildcard matches the same variables as ['b1:x*y!a']. If you need to match all

series of all frequencies (in all open databanks), you can use ['*:*!*']. All scalars

and collections are matched with ['*:%*] and ['*:#*], respectively, so to match

scalars or collections, you need to use % or # in the wildcard. However, to match all

variables in a given databank, you may use the special '**' wildcard, so ['*:**']

matches all variables in all databanks.

The following finds all variables in all banks (as a list of string names):

#a = ['*:*!*'] + ['*:%*'] + ['*:#*']; //+ operator concatenates
#a = ['*:**']; //same: '**' matches all
variables in a bank
#a = ['***']; //same: '***' matches all
variables in all banks

Similarly, the following will match all items in the first-position databank:

#w = ['*!*'] + ['%*'] + ['#*'];
#w = ['**'];

140 Gekko 3.1.x help system

T-T Analyse

whereas

#ws = ['*'];

matches all series with the same frequency as the current frequency in the first-

position databank.

Bank ranges

Ranges work much like wildcards, using dots in a ['start' .. 'stop']-range. For

instance:

#az1 = ['xa'..'xz'];

will match all series of the current frequency in the alphabetical range xa-xz in the

first-position databank. To match a range in another databank, use for instance:

#az2 = ['b1:xa'..'b1:xz'];

Note that you must state the bankname both before and after the dots.

List searching

You may use wildcards and ranges on lists of strings, for instance:

#m = xa, xay, xdy, xey; //or: #m = ('xa', 'xay', 'xdy', 'xey');
#m1 = #m['x*y']; //matches 'xay', 'xdy', 'xey'
#m2 = #m['xa'..'xe']; //matches 'xa', 'xay', 'xdy'

When used on lists, wildcards and ranges work normally, that is, there are no special

rules regarding bank colon :, frequency ! or type symbols (% and #). The strings in

the list are matched as they are.

Details: why the special logic?

141Gekko User Manual

T-T Analyse

The reader may wonder why wildcard search in databanks has a special kind of logic

regarding symbols %, #, and !? This is explained below.

Imagine a databank containing these variables:

· fy!a, an annual series

· fy!q, a quarterly series

· %y, a string

· #y, a list

If we use 'naive' wildcards without special rules, we get this (for instance with INDEX

*;):

INDEX *; // --> fy!a, fy!q, %y, #y

Everything is matched. This may seem ok, but then what about this:

INDEX f*y; // --> nothing

Here, the user may wonder why nothing is matched, but this is because of the

frequency symbols !. If, instead, the search pattern ended on a star:

INDEX f*; // --> fy!a, fy!q

Suddently the two series match again, because the star matches !a and !q. But if the

star is first, we get:

INDEX *y; // --> %y, #y

Now !a and !q are not matched, but on the contrary, the star matches % and #, so

the string and list are matched.

The reader might object that one could just end the wildcard with !*, and the

timeseries would be matched as expected. But the user has become accustomed to

not having to write frequency indicators on timeseries of the same frequency as the

global frequency. This is one of the advantages of Gekko, being able to write prt fy;

and imply fy!a (if the global frequency is annual), so there would be the risk of users

142 Gekko 3.1.x help system

T-T Analyse

forgetting about frequencies when using wildcards (especially if they work in the

same frequency most of the time).

Therefore, in Gekko 3.0, the !, % and # symbols are treated in a special manner when

matching wildcards. In Gekko 3.0, the following is the case (withe the same four

variables as above):

INDEX *; // --> fy!a

Only the active frequency is matched (we assume it is annual). No starting % or # are

matched.

INDEX *!*; // --> fy!a, fy!q

Above, all frequencies are matched.

INDEX %*; // --> %y

This is how to match scalars. Collections match with #*.

The rationale behind these rules is that much wildcard search takes places regarding

series of a given frequency, and it is therefore beneficial that such wildcard search

works as expected. The users would want to be able to write for instance prt

{'f*'}; or prt {'*y'}; without worrying about frequency indicators and

scalars/collection types.

Instead of the tedious ['*!*'] + ['%*'] + ['#*'], matching all series, scalars and

collections in a bank, ['**'] is offered as a shortcut to match all variables in a

databank. In the same vein, ['***'] is a shortcut to ['*:**'], matching all

variables in all databanks, that is, 'everything'.

To match all series of all frequencies and all scalars in the first-position databank,

you may use **:

INDEX **; // --> All variables i first-position databank
INDEX ***; // --> Same, but would also match variables in other
databanks

Note

143Gekko User Manual

T-T Analyse

The form {'a*b'} is actually short for {['a*b']}. In the last version, the inside of {}

is seen to be a list of strings which is converted into a list of names, just like {#m}

converts a list of strings #m into a list of names. For example, #m = ['a*b']; prt

{#m}; illustrates this, where prt #m; would just print the list itself, not the variables

referred to by the list elements. Therefore, prt {['a*b']} prints the variables, and

as noted, Gekko allows prt {'a*b'}; as short for {['a*b']}.

4.1.5 Naked list

Naked lists are used to avoid unnecessary typing of parentheses and single quotes,
for lists of strings or numbers. Naked lists can only be used on the right-hand side in
assignments (typically list or series definitions), or on the right-hand side in FOR loop
definitions. If a naked list contains only one element, it must contain a trailing
comma (see the 'singletons' section below).

Naked list vs. normal list

· A naked list always appears on the right-hand side of an assignment

statement, it never uses normal parentheses (...), and it always contains at

least one comma ,. Examples: #m = a, b, c; or #m += 1, 2, 3;. Quotes are

omitted for strings.

· A normal list can appear anywhere in an expression, it is always enclosed in

normal parentheses (...), and it contains at least one comma ,. Examples: #m

= ('a', 'b', 'c'); or #m += (1, 2, 3);. Quotes must be used for strings.

Naked lists are naked in the sense that the normal list definition parentheses (...)

are omitted, and strings inside the naked list are stated without single quotes.
Therefore, the strict list definition #m = ('a', 'b', 'c'); may be replaced by the

'naked' #m = a, b, c;, saving a bit of typing. A "naked" list of values can be used to

construct either a list of values or a timeseries, cf. #m = 1, 2, 3; or x = 1, 2, 3;,

where #m is a list, and x is a timeseries.

Curlies in naked lists

In a naked list definition, if a list #m is present inside {}-curlies, it is the elements

of #m that are added, not the list #m itself. For instance:

#m1 = b, c;
#m2 = a, {#m1}, d; //result: 'a', 'b', 'c', 'd'

So #m2 does not become a nested list ('a', ('b', 'c'), 'd').

Example: naked list for strings:

144 Gekko 3.1.x help system

T-T Analyse

#m = a, b, c; //same as #m = ('a', 'b', 'c');
for string %i = a, b, c; //same as ... = ('a', 'b', 'c')
 tell %i;
end;

Example: naked list for values:

y <2010 2012> = 1, 2, 3; //same as ... = (1, 2, 3)
#m = 1, 2, 3; //same as #m = (1, 2, 3);

The following elements are legal in naked lists:

· Normal names like a1, including underscore character (_).

· Normal names with bank, frequency and index, like b:a!q[i,j].

· Names/words starting with a digit, like 1a or 1e5.

· Normal integers like 123

· Integers starting with zero, like 007

· Floating point values like 1.2 or 1.2e5

· Any character(s) may be replaced by {}-curlies, for instance a{%s}b, where the

inside of {} may be any mathematical expression.
· If a list is present inside {}-curlies, the list items are added one by one, and

characters may be prefixed or suffixed. For instance: #m1 = b, c; #m2 = a,

{#m1}, d; will create the list 'a', 'b', 'c', 'd', whereas #m1 = b, c; #m2 =

a, x{#m1}y, d; will create the list 'a', 'xby', 'xcy', 'd'. (This will also work

if the list items are numbers, but the primary use is for strings).
· Any element may use a prepended with a minus (-), for instance -a1 or -123 or -

1.23.

· Any element may be repeated with rep, for instance 1, 2 rep 3, 3 or 1, 2, 3

rep *.

· Missings: use m() or miss().

Special rules:

· If all elements are either normal integers or contain a decimal point (.), the list

becomes a list of values. The elements may contain a minus sign (-). For instance,

1, 2 or 1.2, 3 or 1, 1.2e5 all become lists of values. But beware that a list like

12, 02 will become a list of the strings '12', '02', and a list like 12, 1e5

becomes a list of the strings '12', '1e5'. The reason for this is stated below.

· An integer starting with 0 (except the integer 0 itself) is not interpreted as a value

in a naked list. So for instance, 01 is not interpreted as the value 1, and 007 not as

the value 7.
· An element composed of integers + e/E + integers will be interpreted as a string,

for instance 1e5 is interpreted as the string '1e5', not the value 100000. On the

contrary, 1.0e5 is interpreted as 100000, not '1.0e5'.

· A list of integers like 1, 2, 3 will become a list of the values 1, 2, 3, not the

strings '1', '2', '3'. But you may easily and without loss transform such a list of

145Gekko User Manual

T-T Analyse

integers into the list of strings '1', '2', '3' via the strings() function. For

instance: #m = 1, 2, 3; #m = #m.strings();.

· Single-element naked lists can be defined with trailing comma, for instance #m =

a,;. See the 'singletons' section below.

The reason for the above rules is that naked lists are often used to define codes, for
instance sequences of 3-character words consisting of alphanumerical characters,
such as ab7, 7dy, 638, 02e, 058, 1e5. These are all three-character codes, and

may represent, for instance, commodity codes for a large number of commodities.
Regarding the last two codes, it would be unfortunate if a naked list consisting of
058, 1e5 was understood as a list of the values 58, 100000, because then it could

not be converted back into the list of strings '058', '1e5' via the strings() function.

This could lead to subtle hard-to-find bugs. So in a sense, the naked list logic is loss-
less. It may spring a surprise that for instance the naked list 483, 582, 3b5 becomes

a list of strings, whereas the naked list 483, 582, 385

becomes a list of integers. But these integers can be converted back into
corresponding strings without loss or alteration of any kind.

To sum up, if you are dealing with lists of codes, you do not need to worry about
some codes losing leading zeroes, or some codes being interpreted as mathematical
exponents. If your list of codes contain digits only (without leading zeroes), it
becomes a list of values, and Gekko will abort with a type error, if you try to use the
elements as strings. In that case, you can just convert them into strings with the
strings() function.

Singletons

Beware that single-element lists (singletons) are special. The following will not work:

#m1 = a; //error
#m2 = 100; //error

In that case, you can use a trailing comma to indicate that you are defining a list.

#m1 = a,; //or: ('a',) or list('a')
#m2 = 100,; //or: (100,) or list(100)

The use of trailing comma for singleton lists is ugly, but necessary for the clarity of
the syntax (the user can always use the comma to spot whether a right-hand side is
a list or not). Such an "ugly" trailing comma is not unheard of in programming
languages, cf. for instance 1-element tuples in Python.

Conclusion

Regarding naked lists, there are three important things to remember. (1) If an
element is an integer with leading superfluous zeroes (for instance 01 or 007), all

146 Gekko 3.1.x help system

T-T Analyse

elements are interpreted as strings. (2) If an element is an integer followed by an e

or E followed by an integer (for instance 1e5), all elements are interpreted as strings.

These rules are to avoid potential loss of or scrambling of information, for instance if
the elements are codes. (3) If all elements are integers, these are transformed into
values. Sometimes codes look like this, for instance 123, 234, 345, but in that case,

they can be transformed back into strings (without information loss) via the strings()
function.

Note

Naked lists do not allow type symbols % or # (except if they are inside {}-curlies).

This is to avoid confusion.

A naked list cannot contain elements with differing types, for instance #m = a, 1.1;.

This will trigger an error, and again this is to avoid confusion.

4.1.6 Dynamic statements

Timeseries statements may contain accumulating lags like the following:

x = x[-1] + 1;

This basically says: take the value of x in the previous period, add 1, and assign the

result back into x. If this is only done regarding one period, there is no ambiguity.

But with several periods, how should such accumulation work?

The problem

In Gekko 3.0/3.1.x, such an assignment statement (containing the lagged
dependent/endogenous variable on the right-hand side) will operate on blocks of data
in a vector-like fashion. This is shown in the following diagram, running a series
statement x = x[-1] + 1 over the time period 2001-2003.

Figure 1: vector-like

147Gekko User Manual

T-T Analyse

Imagine the series x containing the values 17, 14, 11, and 13 over the period 2000-

2003 (shown as red vector of values on the left). Now, when the statement x = x[-

1] + 1 is executed over the period 2001-2003, first an intermediate vector x[-1] is

calculated, shifting the values of x one position downwards. This is shown as the

yellow values 17, 14, and 11, and when 1 is added to these, we obtain the expression
x[-1] + 1 as the fourth vector of values (18, 15 and 12). These values are assigned

back into the original series x, and the end result is shown as the red vector of values

on the right. Except for the first period 2001, this does not accumulate as the user
might expect; the expectation being that x augments by 1 for each of the years

2001, 2002, and 2003.

If instead we run the statement x = x[-1] + 1 period by period, we get the

following three tempi, corresponding to 2001, 2002, and 2003:

Figure 2: time looping

In the first period (2001), x[-1] is fetched as the value 17, x[-1]+1 is therefore 18,

and 18 is immediately fed back into the x vector. Therefore, when the second period

(2002) is about to be calculated, the lagged value x[-1] is not 14 as in Figure 1, but

instead the just calculated value 18. This goes on for 2003 too, and the end result
(the red vector at the bottom right) is that x augments by 1 each year over the

period 2001-2003. Prior to this calculation, only x[2000] has relevance regarding the

result, since this period acts as a starting point.

As it should hopefully be clear, the way lags are handled in Figure 1 and 2 are
different, and hence the results are also different in this particular case. But note
that these differences only occur if there are more than one period calculated, and if

148 Gekko 3.1.x help system

T-T Analyse

the left-hand side variable x appears with lags on the right-hand side. Therefore, lags

in an expression like y = x[-1] + 1 or similar would yield the same result in Figures

1 and 2. Some timeseries-oriented software packages like for instance AREMOS or
Gekko 2.x will accumulate as in Figure 2, where timeseries expressions are basically
run period by period in an outer time loop, instead of operating on blocks/vectors of
data.

There are many advantages regarding the calculation of timeseries expressions in a
vector-like fashion, because it makes it clear exactly what the input and the output of
a particular function or expression is, and there are no ambiguities as to whether
some particular expression ought to be run only once (for instance a string or value
expression), or should be calculated several times successively over a time period
because timeseries are involved. Handling timeseries calculations in a vector-like
fashion makes the flow of timeseries in and out of functions and procedures work in a
much more transparent and encapsulated fashion. In addition to this, vector-like
calculations run much faster than implicit time-looping, and the underlying Gekko
source code becomes more simple, too.

Dynamizing with <dyn>, and the speed penalty

In Gekko 3.0/3.1.x, Gekko will handle series expressions in a vector-like fashion
unless stated otherwise. So out of the box, dynamic statements with lagged
dependent/endogenous variables will work as shown in Figure 1. However, it is
possible to run a series expression with implicit time looping, corresponding to Figure
2. There are two equivalent ways to do this:

x <dyn> = x[-1] + 1;

Here, the <dyn> local option activates time looping. Run this way, you would get 18,

19 and 20 in the example in the beginning of this page, where x is augmented by 1

year period. Alternatively the following yields the same:

block series dyn = yes;
 x = x[-1] + 1;
end;

The effect of using block series dyn = yes is exactly the same as using the <dyn>

option. There does not exist a any option series dyn = yes to set time looping

globally, because it is deemed important to make sure that this functionality is only
used where it is really necessary, so block series dyn = no is intended for a block

of series statements that all should be run dynamically, and where it would be
tedious to put <dyn> tags on each of these statements. Unnecessary dynamic tags

(<dyn> or block series dyn = yes) waste a lot of time, and therefore slows down

the execution Gekko programs. This is important enough to warrant a bullet point:

· When running a series statement over n observations, unnecessarily using <dyn>

or block series dyn = yes on this statement typically makes the statement take

n times longer to evaluate than without dynamization. Therefore, if you are

https://en.wikipedia.org/wiki/AREMOS

149Gekko User Manual

T-T Analyse

evaluating series statements over, say, a period like 1970-2020, you should expect
these to run around 50 times slower, if these expressions are unnecessarily
dynamized (like in y <dyn> = x[-1] + 1;, where <dyn> is completely

unnecessary).

Such inefficiency would make Gekko seem sluggish, and therefore it is not possible to
dynamize via a global option. In general, dynamization should only be used when
necessary, and be omitted when not. Often dynamization is not necessary at all, cf.
the next paragraph.

Alternative syntax

Before moving on, it is worth mentioning that quite a lot of accumulating behavior
can be implemented using operators or left-hand side functions (cf. descriptions on
the SERIES page). For instance, the following are all equivalent:

x <dyn> = x[-1] + 1;
x <d>= 1;
x ^= 1;
dif(x) = 1;

For simple accumulations (relative accumulation is possible, too, cf. SERIES), it is
often easier to use operators or left-hand side functions (note that the three last
expressions do not need <dyn> keyword). Also note that accumulations like dif(x) =

dif(x) + 1; (adding 1 to the absolute growth) or pch(x) = pch(x) + 1; (adding

1%-point to the percentage growth) work fine out of the box, and should be used
without <dyn> tags.

But for more complicated accumulations, or when the equations are taken from
model equations, using <dyn> may be the best way to go.

Dynamics checking and dynamics errors

As a convenience for the users, Gekko versions starting from version 3.1.7
implement automatic checking for the presence of lagged dependent/endogenous
variables in a series statement. Therefore, in Gekko >= 3.1.7, the following
statement:

x = x[-1] + 1;

will fail with a 'dynamics error', explaining that the user must decorate the statement
with one of the following:

· <dyn>
· <dyn = no>
· block series dyn = yes
· block series dyn = no

150 Gekko 3.1.x help system

T-T Analyse

In other words, when a lag like x[-1] is present in a series statement, the user must

take a stand on whether the statement is to be calculated in a vector-like fashion
(like Figure 1 above), or as an implicit time loop (like Figure 2 above). The following
conditions will trigger the dynamics error on an assignment statement (that is, a
statement of the form something = something;).

· The right-hand side must evaluate to a series, and the time period must have > 1
observations.

· The left-hand side must be a series variable.
· The left-hand side series must be used with a lag on the right-hand side. Lags may

be in the form x[-1], x[-2], etc., or alternatively formulated as x.1, or lag(x, 1).

· Right-hand side functions that can be interpreted as containing implicit lags like
dif(), pch(), movavg(), etc. will not trigger the dynamics error.

· Left-hand side functions like dif() or pch() do not trigger the dynamics error

either (these functions are built to deal with dynamics in an accumulating way).

In conclusion, the dynamics error is triggered if the user forgets to deal with the
existence of a 'normal' endogenous lagged variable on the right-hand side, and this is
the most common error regarding dynamic statements.

If you prefer to switch off automatic dynamics checking, you may use option series

dyn check = no;, and in this case a statement like x = x[-1] + 1 will proceed

without error (as in Gekko versions prior to 3.1.7), and will be evaluated like in
Figure 1 above (vector-like).

Backwards incompatibility, or how to ignore

In Gekko 3.1.7 and above, automatic checking for the existence of lagged
dependent/endogenous variables is implemented and switched on, since option

series dyn check = yes is set as default value. This may break existing programs

in the sense that programs written for Gekko versions lower than 3.1.7 may allow a
'naked' statement like x = x[-1] + 1 (omitting <dyn> or block series dyn),

whereas in Gekko 3.1.7 and above, a 'naked' dynamic statement like that will fail
with a dynamics error.

Because dynamics checking is not backwards compatible, it is entirely possible that a
system of Gekko program files runs without error in a Gekko version < 3.1.7,
whereas running the same system on Gekko >= 3.1.7 results in dynamics errors. If
this is the case, there are different possibilities:

· Ignore 1: The most radical fix for such problems is to put an option series dyn

check = no in the beginning of the program file or system of program files. This

way, the behavior of Gekko < 3.1.7 is emulated completely, and the errors should
dissolve.

· Ignore 2: Less dramatic is to decorate the problematic statements one by one with
<dyn = no>, which would emulate pre 3.1.7 behavior, too. When in a hurry, this

could be a short term fix, but the statements ought to be marked for later
investigation.

151Gekko User Manual

T-T Analyse

· Fix: Better than ignoring the problems, the user could try to fix them. This means
taking a look at the statements and judging whether the lagged
dependent/endogenous variable really should not accumulate (that is, work as in
Figure 1), or -- more likely -- whether it is indeed an accumulating expression. In
the former case, the user can just insert a <dyn = no>, after which the error would

dissolve, and Gekko would replicate former results. In the latter case, the user
should insert a <dyn>, which will dissolve the error, but not necessarily replicate

former results. Not replicating is of course annoying, but most likely it will stem
from dynamics being erroneously omitted from some series statements, and
therefore the check might identify errors that otherwise might have gone
unnoticed.

Conclusion

Dynamics checking in Gekko versions 3.1.7 and above is convenient in the sense that
the user needs to worry less about forgetting to put <dyn> option on normal

accumulating statements like x = x[-1] +1. This eliminates a rather large source of

potential bugs.

On the other hand, dynamics checking may also be inconvenient, when upgrading
from a Gekko version < 3.1.7 to a Gekko version >= 3.1.7. In that case, dynamics
errors may be reported, and these errors may be real errors that have gone
unnoticed hitherto. Fixing errors is always a good thing, so even if upgrading to a
Gekko version >= 3.1.7 may be inconvenient because of sudden dynamics errors,
getting the potential errors sorted out is still good.

Technical note

When issuing a <dyn> or block series dyn = yes, over some time period %t1 to %

t2, Gekko basically runs the expression first for the period %t1 to %t1, then for %

t1+1 to %t1+1, and so on, ending up with %t2 to %t2. As noted above, there is a

speed penalty regarding this, but the change of time periods may also affect the way
the expression is interpreted in some (probably rare) cases. For instance:

time 2000 2003;
x = 17, 14, 11, 13;
time 2001 2003;
#m = 1, 2, 3;
x <dyn = no> = x[-1] + #m; //18, 16, 14 = 17+1, 14+2, 11+3

Note that omitting the <dyn = no> tag in Gekko versions >= 3.1.7 would fail with a

dynamics error, because of the lag x[-1]. If the user instead wants this to

accumulate, the following could be tried as an alternative to the last line:

x <dyn> = x[-1] + #m; //error

152 Gekko 3.1.x help system

T-T Analyse

Now, this line fails with an error stating that Gekko expects that the list has 1
element only, because Gekko runs the expression via implicit time looping in three
tempi: 2001-2001, 2002-2002, and 2003-2003. Therefore, in cases like this,
decorating with <dyn> or block series dyn = yes may fail because of the implicit

time looping. Such cases are probably quite rare, and in this particular case, the
remedy could be to use a series to store the three numbers 1, 2, and 3 instead:

time 2000 2003;
x = 17, 14, 11, 13;
time 2001 2003;
m = 1, 2, 3;
x <dyn> = x[-1] + m; //18, 20, 23

For instance, for the period 2001-2001 in the implicit time loop, Gekko knows which
value to fetch out of m, since m is a timeseries, not a list. The result is as expected,

where x first augments with 1, then with 2, and finally with 3.

4.1.7 Missing values

Missing values can be stated using the m() function in Gekko. For instance:

time 2021 2023;
x = 1, m(), 3;
prt x;

// x
// 2021 1.0000
// 2022 M
// 2023 3.0000

If, in the above example, you set x[2020] = m(); and write a databank, the

databank will be exactly the same as if you had not set the missing value for 2020.
This is because, for timeseries, 'real' data starts from the first non-missing value, and
ends with the last non-missing value. This 'real' data period is 2021-2023 in the
above example, and setting x[2020] to missing does not change that. After running

the above example, before 2021 and after 2023, the x series can be thought of as

containg an infinite number of missing values, and setting a missing value before
2021 or after 2023 does not change that. To get the 'real' start and end period for a
timeseries, you may use the functions x.fromseries('datastart') and

x.fromseries('dataend').

You may transform missing values and non-missing values into 1's and 0's using the
isMiss() function.

time 2021 2026;
x = m(), 1, m(), 3, m(), 5;
prt <n> x, x.isMiss(), x.isMiss('all');

153Gekko User Manual

T-T Analyse

// x.
// x x.isMiss() isMiss('all')
// 2021 M M 1.0000
// 2022 1.0000 0.0000 0.0000
// 2023 M 1.0000 1.0000
// 2024 3.0000 0.0000 0.0000
// 2025 M 1.0000 1.0000
// 2026 5.0000 0.0000 0.0000

prt x.ismiss('all').sumt(); //3

Without 'all' argument, the isMiss() function only looks at the 'real' data period

(2022-2026), whereas with 'all' option, the 2021 value is identified as missing,

too. The last PRT statement prints the sum of the third column above, identifying 3
missing values (including the 2021 value). This can be used to check for the
existence of missing values, for instanceif (x.ismiss('all').sumt() > 0).

All this is relatively straightforward. Questions arise, however, when comparing
missing values with other missing values.

reset; time 2001 2003;

x1 = 1, 2, 3;
x2 = 1, 2, 3;
y1 = 1, m(), 3;
y2 = 1, m(), 3;

if (x1 == x2); tell '1'; else; tell '0'; end; // 1
if (x1 <> x2); tell '1'; else; tell '0'; end; // 0
if (x1 < x2); tell '1'; else; tell '0'; end; // 0
if (x1 <= x2); tell '1'; else; tell '0'; end; // 1
if (x1 >= x2); tell '1'; else; tell '0'; end; // 1
if (x1 > x2); tell '1'; else; tell '0'; end; // 0

if (y1 == y2); tell '1'; else; tell '0'; end; // 1 (*)
if (y1 <> y2); tell '1'; else; tell '0'; end; // 0
if (y1 < y2); tell '1'; else; tell '0'; end; // 0
if (y1 <= y2); tell '1'; else; tell '0'; end; // 0
if (y1 >= y2); tell '1'; else; tell '0'; end; // 0
if (y1 > y2); tell '1'; else; tell '0'; end; // 0

The first six IF statements are hardly surprising. However, regarding y1 and y2, it is

seen that the == and <> operators treat the missing value in 2002 as if it was just

some special number. However, this is only the case regarding == and <>, not the

operators <, <=, >= or >. For these operators, comparing a missing value with a

missing value always results in false (or 0). Note that for an IF involving two

timeseries to be true, the IF must be true for all observations (cf. IF).

Compatibility issues

154 Gekko 3.1.x help system

T-T Analyse

In Gekko versions < 3.1.8, the IF statement marked with (*) would have returned 0

instead of 1, because the two missing values in 2002 would have been considered
non-equal. This has been changed in Gekko versions >= 3.1.8, and if Gekko detects
that an IF contains a series comparison with missing values, a warning will be issued.
The old behavior can be emulated by using IF_OLD instead of IF, but be warned that
IF_OLD may not live on forever, and it is therefore better to think about the problem
and adapt to the 'new' IF logic regarding missing values. If you have been using the
idiom if(x == x); ... ; end; to check for the existence of missing values in the

series x, this will no longer work in Gekko >= 3.1.8, and you should replace it with

if(x.ismiss('all').sumt() > 0); ... ; end;, where the meaning is also much

more clear. A radical solution to the compatibility issue would be to set option

bugfix missing = no, which would emulate Gekko < 3.1.8 completely regarding IF

and series with missing values. Setting this option generally is not recommended,
however.

Perhaps the following three steps could be sensible, if a warning is encountered.

· If in a hurry, set option bugfix missing = no. Afterwards, the programs should

run as before. However, this is not a good long-term solution, and doesn't really fix
the issue.

· When more time is available, remove option bugfix missing = no and identify

the IF statements where there is a difference (when Gekko warns about the
problem, it shows a list with the problematic if statements). In these statements,
replace if(...) with if_old(...), which should replicate the former results. This,

too, is not a good long-term solution either.
· Finally, resolve the IF_OLD(...) statements one by one. This may imply using

if(x.ismiss('all').sumt() > 0) instead of if(x == x) to test for missing

values, or in other ways changing the program to handle the presence of missing
values.

The compatibility issue does not affect scalar comparisons, so if(%x1 == %x2) or

if(y1[2002] == y2[2002]) behave in exactly the same way in Gekko < 3.1.8 and

Gekko >= 3.1.8 (the latter of these IF's is true in all Gekko 3.1.x versions).

4.1.8 Filenames

Gekko accepts relative paths, relative to the Gekko working folder. Consider, for
instance, that you have a Gekko program file job.gcm with the following READ-

statement inside the job.gcm file:

read \banks\data.gbk;

Now, Gekko will add the sub-folder \banks to the Gekko working folder path. If the

Gekko working folder is C:\Projects\Model1, the READ statement is translated into:

read c:\Projects\Model1\banks\data.gbk;

155Gekko User Manual

T-T Analyse

You may use strings to compose file paths and names:

%s1 = 'Projects';
%s2 = 'Model1';
%s3 = 'banks';
%s4 = 'data';
read c:\{%s1}\{%s2}\{%s3}\{%s4};
read 'c:\{%s1}\{%s2}\{%s3}\{%s4}';

The two READ statements are equivalent: you may always use a string as a filename.
More on string in the section on the STRING statement. Paths must use the \

(backslash) or / (forward slash), and it is recommended to begin a relative path with

the \ or / character for clarity. It may be omitted though: for instance read

banks\data; is equivalent to read \banks\data;. Double dots (..) can be used to

indicate a parent folder, for instance \..\banks\bank.gbk. Example using forward

slashes:

read c:/Projects/Model1/banks/data.gbk;

Valid file names consist of alphanumeric characters or the _ character. If the file

name contains blanks or special characters (for instance the Danish æ, ø or å), you

may enclose the file name in single quotes (read 'last year.gbk';).

See also the root() function that makes it easier to work with relative paths, making

it possible to write for instance read {root()}\banks\data.gbk;., where the root is

determined from the location of a special root.ini file.

Note that a path may "pass through" a zip file, like read c:

\Projects\Model1\banks.zip\data.gbk;, where data.gbk is automatically

extracted from the zip-file banks.zip. Such zip-file paths are only possible regarding

the reading of different kinds of data files, and will not work for writing (repacking a
file into a zip file).

At some point it may be preferable to add the sub-folder to the path of the executing
Gekko program file, rather than to the Gekko working folder. Choosing between the
two ways of interpreting relative path’s is not completely obvious, however.

156 Gekko 3.1.x help system

T-T Analyse

4.1.9 Help system

It may be difficult to remember all the statements and the exact syntax for each
statement. The function key F1 (or typing help;) accesses the Gekko help system. If

you cannot remember the exact syntax for a particular statement, you can try typing
help [commandname];, for instance help sim; (or you may search the help files for

particular phrases).

The help system is contained in a file gekko.chm. (Note: opening this file stand-alone

from a network drive may sometimes pose problems on Windows, due to security
reasons).

The help system is also available online here, and a pdf version is also available.

4.1.10 Restore session

Gekko remembers statements from the previous interactive Gekko session. After the
Gekko application has been closed and reopened, a line like the following allows old
statements to be reloaded into the current input window (the "more" link points to
the current help system page):

The statements are stored in two versions:

· Snapshot. The contents of the entire input window (the lower part of the main
Gekko window) is stored as a snapshot.

· History. The issued Gekko statements are stored/recorded as a chronological list of
statements.

The difference between "snapshot" and "history" can be illustrated in the following
way (using a freshly opened Gekko):

1. In the input window, type x = 2; followed by [Enter]. (Gekko will add the ; if

omitted).
2. In line 2, type y = 2 * x; followed by [Enter].

3. In line 3, type x = 3; followed by [Enter].

4. Move the cursor two lines up to line 2 and issue the y = 2 * x; line again with

[Enter].

5. Move the cursor two lines down to line 4, and type prt y; followed by [Enter].

The output window will show y with the value 6 (we will think of x = 3 and y = 6 as

the current "state" of Gekko). Try closing and reopening the Gekko application. When
starting up, you should now see something like the following:

http://t-t.dk/gekko/docs/user-manual/index.html?introduction.htm

157Gekko User Manual

T-T Analyse

If you click the "snapshot" link, the following lines will be put into the input window:

x = 2;
y = 2 * x;
x = 3;
prt y;

This is a snapshot of how the input window looked when ending the previous Gekko
session. If you mark all the statements (Ctrl+A) and run them with [Enter], the

output window will show y with the value 4. So you cannot restore the exact previous

state by issuing these snapshot statements in succession.

In contrast, the "history" link can restore the state. After clicking the "history" link,
the following lines will be put into the input window:

x = 2;
y = 2 * x;
x = 3;
y = 2 * x;
prt y;

This is a chronological recording of the statements that were issued. If you mark all
these statements (Ctrl+A) and run them with [Enter], the output window will show

y with the value 6. In that sense, the "history" link permits reestablishing the state of

Gekko, as it was when ending the previous Gekko session. Obviously, the first two
lines of the above history can be (and should be) deleted, so sometimes the history
may be longer than really needed to recreate the state. This is normal when using
Gekko in an interactive way.

When restoring, sometimes it may be most practical to just recreate the input window
as a snapshot like it was at the end of the previous session, and sometimes the
history may be more useful to recreate the state of the program.

Details

· Gekko stores snapshot and history in external files each time statement(s) are
issued with [Enter] in the input window.

· If Gekko crashes badly or becomes unresponsive, you should still be able to restore
snapshot/history.

· The history is recorded from when the Gekko application starts up. The history is
cleared each time a RESET or RESTART statement is encountered, so that the
history does not become unnecessarily long.

· When the snapshot or history link is clicked, existing code in the input window is
first cleared.

· The statement history of the current session is generally available from the Gekko
menu: Edit --> statement history... .

158 Gekko 3.1.x help system

T-T Analyse

· The files that store the restore info are called GekkoSnapshot.gcm and

GekkoHistory.gcm. The location of these can be found in the Gekko menu: choose

Help --> About... --> and see the path under "Temporary files".

4.1.11 Under the hood

Language, licence etc.

Gekko is written in C#.NET, which together with VB.NET and Java are among the
most used programming languages for pc's. Due to C# being object-oriented,
development and redesign is flexible and efficient. The software is written for
Windows .NET, so in order to run on Mac or Linux, the user has to use virtualization
software. Gekko is open-source (public domain, GNU GPL licence), implying that
anybody can use the code for free, but any enhancements must be put into the public
domain as well.

Parser, structure etc.

The databanks and variables in Gekko are object-oriented internally. There can be
any number of databanks, with any number of time series for any given periods
(including quarters, months and other frequencies), only constrained by working
memory. All values and calculations are double-precision (64-bit) internally, and
missing values are handled consistently. Timeseries variables can contain labels,
source etc., and the underlying data structures are dynamically resizing arrays, in
order to keep the system fast. Models and command-scripts (Gekko program
files, .gcm) are parsed and dynamically translated into C# code by means of ANTLR,
providing fast and reliable parsing.

A model can be loaded dynamically without leaving Gekko. This means richer options
for using different models at the same time, if needed. It also permits for instance
optional fail-safe mode, where the model checks more strictly for illegal values while
running (at a small speed penalty).

Solvers

At the moment, four algorithms for solving a model are provided.:

· First, standard Gauss-Seidel, where damping is supported via the formula codes.
The program solves a large model like ADAM quite quickly with the Gauss-Seidel
algorithm.

· In addition, a Newton method with line-search is implemented. This method does
not depend upon the distinction between left- and right-hand side variables, and so
can be used to solve difficult models or goals/means problems. The Newton solver
uses a decomposition of the simultaneous block into a feedback set and the rest of
the simultaneous block, reducing the dimension of the jacobian matrix

http://www.antlr.org/

159Gekko User Manual

T-T Analyse

considerably. The Newton solver can handle any number of means/goals simply by
changing the set of endogenous variables.

· The Fair-Taylor method ('fair') is used if the model contains leaded endogenous
variables

· Newton Fair-Taylor ('nfair') is used for harder problems, using the Newton method
to accelerate the Fair-Taylor iterations.

Graphics, tables

Graphics (PLOT) are done with gnuplot as the underlying engine. Gnuplot is installed
together with the rest of the program. Printing and plotting uses the same
syntax/options and underlying code. Graphs can be exported to Word via the
clipboard, or saved to disk as for instance .emf or .svg files. Data tables can be
exported directly to Excel, or via the clipboard to any spreadsheet software accepting
tab-delimited input.

File formats and interfaces
Gekko databanks (.gbk) are zipped protobuffers, so the format is open, well-
documented and easy to interface. Protobuffers are also used internally for caching
models, so that they load faster.

Gekko 3.0 uses an internal Excel engine to read and write to Excel. This is fast and
reliable, but only works for the newer .xlsx format. To read/write the older .xls files,
an interface to Excel via COM Interop is possible, too.

The R interface is deliberately without COM Interop, but relies instead upon simple
file exchange, and the gnuplot and X12A interfaces are similar.

Name

Why was Gekko called Gekko? One of the first versions, from early 2008, was called
Echo. The intention was to find a suitable acronym afterwards, where 'ec' would be
'economic' or 'econometric'. However, Echo sounded a bit too much like the Danish
shoemaker Ecco. Thus, the similarly sounding Gekko was chosen, partly because a
gecko is a nice and helpful animal, and intentionally choosing the Danish spelling to
distinguish it from, among other things, the Gecko browser engine. The intention was
still to find a suitable acronym, with the 'e' being 'economic' or 'econometric', but the
search for a suitable acronym is still ongoing. Gekko supposedly means something
like 'moonlight' in Japanese (which gives better associations than, for instance,
Gordon Gekko, who did not inspire the name).

http://www.gnuplot.info/
http://www.ecco.com
https://en.wikipedia.org/wiki/Gecko
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Gordon_Gekko

160 Gekko 3.1.x help system

T-T Analyse

4.2 Syntax basics

This section describes some of the syntax rules in Gekko 3.0, including the
differences relative to the 'older' syntax of Gekko 2.0 (2.4) and earlier. For an easier
and more hands-on introduction to the syntax and the most basic concepts, see the
elevator pitch and the user guide section.

The section contains the following sections:

· Basic syntax rules. A section on syntax basics.
· More about syntax. More details about how the syntax works.
· Indexing: list, matrix, map. How indexing works for these variable types.
· Syntax diagrams. Diagrams the explain the basic components of the syntax.

161Gekko User Manual

T-T Analyse

4.2.1 Basic syntax rules

This section tries to explain some of the syntax basics.

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

Basic syntax

Most statements start with a statement name, for instance PRT (for printing). You

can see the statements sorted into categories here, or the alphabetical list of

statements here. Beware that user-defined procedures may look similar to

statements. Assignments like SERIES, VAL, LIST, etc. may omit the statement name.

Many statements accept an option field right after the statement name, for instance

prt <2015 2020>. The option field always uses angle brackets <>, and is often used

to state the local time period used in the particular statement. But many other

options may be set, for instance prt <p> for percentage printing, or prt

<filter=avg>. In prt <filter = avg>, the option type is filter and option

value is avg, whereas in prt <p>, the option type is p, and the option should be

understood as short-hand for p = yes. Many of the options are of yes/no-type

(boolean).

After the option field, some variables or expressions are typically stated, like for

instance prt <2015 2020> x, y;. In this case, the timeseries x and y are printed. To

delimit elements, you typically use a comma (,), but blanks may also be used as

delimiter.

All statements end with a semicolon (;), and the statements may span multiple

lines. (If you need a multi-line statement in the user interface, use [Ctrl+Enter] to

add newlines, and then mark the whole block and press [Enter]). Note that you may

change the way [Enter] vs. [Ctrl+Enter] works, see option interface edit

style = ... , or under Edit --> Editor style in the Gekko menu.

You may sometimes add extra options at the end of the statement, for instance prt

<2015 2020> x, y file = print.lst;. Such extra options use the equal sign (=),

similar to options in the <>-option field.

Gekko operates with seven types of variables: scalars (value, date or string),

collections (list, map, matrix), or series. When referring to a scalar, you must use the

%-symbol, for instance %v. When referring to a collection, you must use the #-symbol,

for instance #m, whereas timeseries do not use prefix symbols. Using such symbols is

helpful when reading expressions like x + %y + #z[2], because x is known to be a

timeseries, %y is known to be a scalar (probably a value, else the expression will fail),

and #z is known to be a collection (from which the second item is selected, so in this

162 Gekko 3.1.x help system

T-T Analyse

case #z is probably a list). In Gekko 3.0, the prefix symbols must also be stated on

the left-hand side of assigments like for instance %v = 100.

As anticipated above, you can use []-brackets to select items. For timeseries, []-

brackets can be used for lags/leads, for instance gdp[-1] or gdp[+1], or for picking

out an observation like gdp[2015] or gdp[2015q3]. For lists, []-brackets are used for

selecting items in the list, for instance #m[2] or #m[1..%n], and for maps, brackets

are used to select elements by name (for instance #m[d] or the equivalent #m['d']

or #m.d). Matrices use two dimensions, for instance #a[2..3, 1..%n]. You can use

brackets on strings when selecting individual characters, for instance %s[3] or %

s[3..5].

Wildcards either use the ['...'] or {'...'} pattern or are 'naked'. For instance,

prt {'y*'}; will print all timeseries starting with y. Such wildcards can also be used

with lists, for instance #m['y*'], selecting all elements starting with y. In some

statements, the stand-alone brackets are not mandatory, for instance index y*;

instead of the more tedious index {'y*'};. The reason why for instance {'a*b'} is

used in prt {'a*b'}; is that otherwise the expression prt a*b; would be

ambiguous (does it mean the mathematical product of two timeseries, or is it a

wildcard matching variables starting with a and ending with b?). See more on the

wildcard page.

The colon (:) is used to access open databanks, for instance prt bk7:pxa;, where

bk7 is the databank, and pxa is the timeseries. When writing prt pxa;, the first-

position databank is implicitly understood if databank searching is inactive, and if

databank searching is active (which is default), Gekko will first look for pxa in the

first-position databank (or in the Local databank if this contains variables), and

afterwards in the other open databanks, ending with the Global databank (the Ref is

never searched like this). You may use prt bank2:pxa; to obtain the values from the

bank2 databank. Alternatively, use the at symbol (@) to indicate the reference

databank, for instance: prt @pxa;.

You may use dot (.) to indicate lags, for instance prt pxa.1; instead of prt pxa[-

1];. Dots can also be used to select items from a MAP, for instance #m.x picks out

element x in the map (alternatively, #m[x] or #m['x'] can be used). Dots are also

used for functions, for instance %s.length() for the length of a string %s.

Exclamation mark (!) is used to indicate frequency, for instance prt pxa!q,

pxa!m; refers to the quarterly or monthly versions of the series pxa.

Strings should always be stated inside single quotes ('), for instance %s = 'Hello

from Gekko.';. Double quotes (") are not used to define strings in Gekko, but may

be put inside Gekko strings (the string 'The name "Peter" har 5 characters' is

legal). If you need to insert a scalar or an expressions into a string, the most

practical way is via {}-braces, for instance 'the {%s} car', where %s = 'blue'.

163Gekko User Manual

T-T Analyse

This is more readable than the alternative: 'the ' + %s + ' car'. Note also that if

%s is a string, there is the equivalence '{%s}' = %s.

{}-braces are also used for name-composition. For instance prt px{%s}; will be

equivalent to prt pxa;, if %s = 'a'. When reading Gekko 3.0 code containing {}-

curlies, these curlies can be thought of as some sequence of characters, for instance

abc. So if in doubt regarding the use of {...}, for instance whether some string %s

must be put inside {...} or not, try to first consider whether the

statement/expression would use a name like abc, or a string like 'abc'? If you would

use the former, you must correspondingly use {%s}, and if you would use the latter,

you must correspondingly use %s. Note that there is the following equivalence: abc =

 {'abc'}, so in a way the {...}-curlies 'eat' the single quotes belonging to a string,

and inside the {...}-curlies, you may put any expression, as long as it evaluates to a

string. Another interpretation is that the {}-curlies perform a forwarding operation. If

%s = 'abc', the expression {%s} forwards from the variable %s to the variable abc.

See also the syntax diagrams.

Functions use normal parentheses, for instance movavg(x, 3). You may define your

own functions (see here). All functions, both in-built and user-defined, implement so-

called UFCS, so movavg(x, 3) can alternatively be written as x.movavg(3), using a

dot and putting the first argument on the left.

Power operators are either ** or ^, for instance prt a**b; or prt a^b;.

Logical operators use <, <=, ==, >=, >, <>; note in particular that the equivalence

operator is == and not =, see also IF.

$-conditionals can be used in the same way as in the GAMS software package. So

you can write for instance %x = 1 $ (%x < 0); which sets %x = 1 if %x < 0. This is

equivalent to if(%x < 0); %x = 1; end;. The $-conditionals are often used in

conjunction with lists, for instance y[#i] = 100 $ (#i in #i1); which sets the

array-timeseries y[#i] to 100 for the elements of #i that are part of the subset #i1.

Variable names must start with %, #, a letter or an underscore, and are

subsequently composed of letters, underscore or digits, for instance f16, _temp, %f16,

%_temp, #f16, #_temp. Names may also contain {}-braces. Timeseries names starting

with xx are often of temporary nature (see CREATE).

// and /* ... */ are used for out-commenting lines of code, or blocks of code.

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

164 Gekko 3.1.x help system

T-T Analyse

4.2.2 More about syntax

Below, some of the main concepts of the Gekko 3.0 syntax are explained in more

detail. The descriptions in this section are quite advanced. So as mentioned before,

for new users it is perhaps better to read the easier to understand Gekko guides, for

instance starting out with reading the elevator pitch, and then moving on to the Data

Management User Guide, perhaps followed by the Modeling User Guide.

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

Banks, symbols, names, frequencies, indexes

A variable may be referred to in the following way:

 bank + : + symbol + variable + ! + freq

First a databank name (optional), followed by a colon (:). Next an optional prefix

symbol (% for scalars, # for collections, and no symbol for timeseries). The the

variable name followed by an optional ! and a frequency (only for timeseries). For

instance, b1:x!q refers to the quarterly (!q) series x in the b1 databank.

Array-series allow indexing, for instance b1:x!q[a, b] would refer to the sub-series

[a, b] (that is, with two-dimensional indices a, b) of x!q. But other variable types

allow indexing too, for instance b1:#m[2, 3], picking out row 2, column 3 from the

matrix #m residing in the databank b1.

If the databank is omitted on a variable in a statement or on the right-hand side of

an expression, the following will take place (depending upon mode, cf. also the

databank search page):

· sim-mode: If sim-mode is active, Gekko will look for the variable in the first-

position or local/global databank.

· data- and mixed mode: Gekko will first look for the variable in the local databank,

then in the first-position databank, then in subsequent open databanks, and finally

in the global databank. Gekko will never search for a bank-less variable in the

reference (Ref) databank.

In some cases, omitting the databank is silently interpreted as adding first: to the

name, independent of mode settings. For instance copy x to y; is interpreted as

copy first:x to first:y;, where first: refers to the first-position databank

(often Work).

If the frequency is omitted for variables of series type, the current frequency will be

silently added. So if the frequency is set to quarterly (option freq q;), you may use

x1 as short-hand for x1!q.

165Gekko User Manual

T-T Analyse

For array-series, the array indexes may sometimes be omitted, so that you may write

prt x; instead of prt x[#i, #j];, printing out all the elements inside the array-

series.

Names and quotes

In general, a string is enclosed in single quotes, for instance: 'x', whereas a name is

not, for instance: x. Because of the use of prefix symbols in Gekko (% and # to start

scalar and collection names), the single quotes may omitted in those cases where a

series would not make sense. For instance, for array-series, using the shorter x[a]

instead of the more strict x['a'] is legal, because in the former variant it would not

make sense to use an index with a series argument. Using x[%a] is another story,

because %a could be a string, so the rule only applies to simple names without prefix

symbols (that is, sequences of characters that are either alphanumeric or '_').

In the same manner, a lot of options accept string arguments, for instance COMPARE

<sort=rel>;, where rel is the argument (relative sorting). It would not make sense

for rel to be a timeseries, since a string is expected, and therefore the shorter

<sort=rel> can be used as short-cut for the more strict <sort='rel'>. If the type

needs to be controlled, you could use a string variable, so %s = 'rel'; compare

<sort=%s>; would work fine. This is still work in progress.

Omitting single quotes is possible regarding list definitions and loops too, as seen in

the following section.

Names, lists and loops

In general, lists are defined as comma-separated variables, enclosed in parentheses.

For instance, #m may be a list of strings:

#m = ('a', 'b', 'c'); //strict
#m = a, b, c; //naked list, NOT equal to (a, b, c)

As seen, a naked list variant is allowed, in the special case where all of the list

elements are simple strings or simple values. Note that the syntax for a naked list of

strings is always without parentheses in the list definition. The list #m = a, b, c; is

interpreted as three strings 'a', 'b', 'c', whereas the list #m = (a, b, c); is

different, containing three series variables (objects): a, b, c. The list #m = 1, 2, 3;

becomes the three values 1, 2, and 3.

The same goes for FOR, so the two following are equivalent.

for string %i = ('a', 'b', 'c'); prt {%i}; end; //strict

166 Gekko 3.1.x help system

T-T Analyse

for string %i = a, b, c; prt {%i}; end; //naked

A one-element list (singleton) is special:

#m = a,; //or: ('a',) or list('a')

The empty list is special too:

#m = list(); //note: using () may become legal later on

For a one-element list with string element 'a', you cannot use #m = a; or #m =

('a');. In the first case, the right-hand side is interpreted as a series (a), and

assigning a series directly to a list will fail. In the second case the expression

evaluates to #m = 'a';, assigning a string directly to a list (which will fail, too).

Using a trailing comma like #m = a,; makes it a list.

You can read more on lists, in particular naked lists, here.

Indexes [...]

Regarding indexes of array-series or other variables, single quotes on a string can in

general be omitted (both the following are valid):

prt x['a', 'b']; //strict
prt x[a, b]; //short

Indexes are often used on lists to pick out items (so-called slicing), like #m[3] to pick

out the third element of the list #m. For maps, you can also omit the single quotes

like the following (all three are equivalent):

prt #m['a']; //strict
prt #m[a]; //short
prt #m.a; //dot syntax

167Gekko User Manual

T-T Analyse

Maps can be thought of as a kind of mini-databank. Note the similarity between for

instance b1:%x1 picking out the scalar %x1 from the databank b1, and #m1.%x1,

picking out the scalar %x1 from the map #m1.

Name-substitution {...}

The {}-curlies are used for name-composition, and in general you may think of

{...} as representing simply a sequence of (unquoted) characters, like x22 or

y_15_sum. When used, the inside of {...} must evaluate to a string or list of strings,

for instance {%s} or {#m}, for instance:

%s = 'x';
#m = ('y', 'z'); //or: #m = y, x;
prt a{%s}, a{#m};

This is equivalent to prt ax, ay, az;. In a sense, {...} curlies eat/remove single

quotes, so that {'x'} = x, transforming the string 'x' into the variable/series x.

As seen, the {}-curlies can also be used together with other characters (or other

curly braces), for instance x{%i}a. If %i = 'e', this amounts to xea.

Often, instead of using array-series, normal series may be used to the same effect,

using name-composition. So instead of the array-series x[i1, j1], the user may use

simply a series called xi1j1. If the list #i contains the string 'i1' and the list #j

contains the string 'j1', you may print the array-series x[i1, i2] like this: prt

x[#i, #j];. Or with normal series and name-composition you can print the series

xi1j1 like this: prt x{#i}{#j}. There is a similarity between x[#i, #j] and x{#i}

{#j}, and most of the time you can use both variants. Array-series, however, have

more capabilities than name-composition.

Gekko 3.0 no longer allows omitting the %-symbols inside {}-curlies, so you cannot

use for instance x{i}a instead of x{%i}a. Using x%i|a as synonym for x{%i}a is no

longer endorsed in Gekko 3.0, but it still works.

See also the syntax diagrams.

More on indexes

Indexes can be used for:

168 Gekko 3.1.x help system

T-T Analyse

· Array-series (mentioned above), for instance x[a, b] or x['a', 'b']. Integers

may be used, if the dimension is compatible with an integer, for instance age

dimension. When using integers, trailing zeroes are allowed, so for an array-series,

x[007] is understood as x['007'], not x['7'].

· Lags/leads, for instance x[-1] or x[+1]. Note that a lag or lead must contain a + or

- as the first character after the bracket. So if you define %i = 2, you may use x[-

%i] or x[+%i], but x[%i] will not work as a lag or lead (even if %i is negative).

Instead, if x is a normal series, x[%i] will be understood as x[2], which again is

understood as the year 2 (two years after the birth of Christ). If x is instead an

array-series, x[%i] will be understood as x['2'] which could, for instance,

represent 2-year olds (if x contains population data).

· Period reference: x[2020q1], first quarter of 2020.

· Positions in lists: #m[2] picks out the second element of the list #m.

· Names in maps: #m[a] or #m['a'] picks out the variable named a in the map #m.

For simple names, #m.a can also be used (the variable a is a series).

· Matrix references (row/column), for instance #m[2, 1] picks out the numeric value

in row 2, column 1.

· Searching: #m['a*'] finds all elements matching the pattern 'a*'.

· Note that in Gekko 3.0, you cannot use #m[0] to get the number of elements of the

list #m. Use length(#m) or #m.length() instead.

· Ranges can be used for picking out elements, for instance #m[2..4] picks out

elements 2 to 4 (inclusive), or %s[2..4] takes characters 2 to 4 from the string %s.

Syntax details

Some syntax from the 2.x Gekko versions has been deprecated, in order to clean up

the syntax.

· Using {i} as short-hand for {%i} is no longer possible, for instance in a name like

x{i} instead of x{%i}. First and foremost, using i instead of %i would go against

the Gekko 3.0 principle that the type symbol is an integrated part of the name and

hence cannot just be omitted. Next, a further problem with {i} is that any

expression is allowed inside {}-braces, and this fact makes the treatment of {i} as

{%i} somewhat confusing. For instance, consider this expression: x{i[2020]}. If,

for instance, i is a series with value 100 in the period 2020, the name x{i[2020]}

169Gekko User Manual

T-T Analyse

will be y100. Now, in contrast, the name x{i} will not try to use the series i, but

will instead look for the scalar %i. So just removing the []-index from i means that

i is suddenly understood as %i. Additionally, since using x[a] instead of x['a'] is

possible for array-series and in other indexes, the user may think that x{a} is short

for x{'a'}, not x{%a}.

· Using x%i as short-hand for x{%i}, or x%i|y as short-hand for x{%i}y is no longer

endorsed (but still works). There are several reasons for this non-endoresement.

First, strings do not support this notation, so 'x%i' will not have %i in-substituted,

whereas 'x{%i}' will (hence, for instance, prt {'x%i'}; will not work, whereas

prt {'x{%i}'}; will. Because strings support x{%i} notation inside, it is easy to

transform a name like x{%i} into the corresponding string; just add quotes: 'x{%

i}' (and vice versa). Second, the notation is illogical (or at least complicated). For

instance, if %i = 'a', we have in the strict {}-notation that x{%i} = xa. Here, we

can easily prepend a prefix symbol %, for instance %x{%i} = %xa, and it is similarly

easy to append a character, for instance x{%i}b = xab. And if we wish to omit the

x and b we just toss them: {%i} = a. Now, with the short-hand notation it gets

complicated. We have that x%i = xa which is fine. But if we prepend a type

symbol, we have to use %(x%i), otherwise Gekko will issue an error (%x%i is

illegal). If we append a character, we have to use the concatenator: x%i|a, since x%

ia will look for the scalar %ia. And if we want to loose the x, we have to use {%i},

since a naked %i returns a scalar string, not the series corresponding to this name.

So to sum up, using the short notation entails cases where the user has to using

adding parentheses, concatenator, or curly braces, which is error-prone, especially

for less experienced users. Finally, there is readability. Whereas x%i is simple

enough to read, how about x%i|a%i%k|b compared to x{%i}a{%i}{%k}b? Or %(x%

i|a) compared to %x{%i}a? For these reasons, the x%i|y notation is no longer

recommended in Gekko 3.0.

· Using #m[%s] as a logical condition is no longer possible. The idea is that #m could

be a list of strings, and #m['a'] could return 1 if 'a' is a member of #m, and 0

otherwise. This syntax is used by GAMS, but the problem is that in Gekko 3.0, lists

may contain values, so should #m[3] also mean a membership check (if the number

3 is one of the list elements)? But this syntax collides with #m[3] being used to

fetch the element in position 3 in the list. Instead, in Gekko 3.0, the user can use %

s in #m, or #m.contains(%s). The ... in ... syntax is used in quite a lot of

programming languages, by the way.

· Omitting scalar or collection symbols on the left-hand side is no longer possible, for

instance using val v = 100; or list m = ('a', 'b', 'c'); is no longer legal. In

Gekko 3.0, the % or # symbol is considered an integrated part of the variable name,

as if these symbols were just special characters alongside a, b, c, etc. In order to

comply with this logic, the symbols can never be omitted. Instead, the correct

assignments are val %v = 100; or list #m = ('a', 'b', 'c');, but in Gekko

170 Gekko 3.1.x help system

T-T Analyse

3.0 the types may be omitted, so %v = 100; or #m = ('a', 'b', 'c'); is legal,

too.

· List definitions are generally stated with parentheses, for instance ('a', 'b',

'c'). But for convenience reasons, you may use a 'naked' list definition, for

instance #m = a, b, c; to put the three strings 'a', 'b', 'c' into the list #m or y

= 1, 2, 3; to put the three values 1, 2, 3 into the series y. This also works in FOR

loops and is convenient in many cases (remember that a naked list with only one

element must have a trailing comma). For such naked lists, Gekko accepts

elements composed of letters and digits (and some symbols like _, -, :, !, [,]), so

for string %i = 38, 007, 1e10, 2001q1; is equivalent to for string %i =

('38', '007', '1e10', '2001q1');. See more about naked lists.

· Beware that the list definition #m = (a, b, c); is very different from the list

definition #m = a, b, c;. The former finds the three timeseries a, b, and c, and

puts them into the list as individual objects (of series type). The latter is a naked

list (because it has no parentheses), and just inserts three simple strings into the

list. In the former case, you may use prt #m; to print the series objects, whereas

you must use prt {#m}; in the latter case, if you want to refer to the variables

corresponding to the string names. Using lists of strings to refer to variables is

often more practical than using lists of series objects. As an example, you can use

the syntax prt bank1:{#m}; to print bank1:a, bank1:b, and bank1:c (that is, from

the databank bank1), or the syntax prt {#m}!q; to print out the quarterly series

a!q, b!q, and c!q. Gekko contains many inbuilt functions to handle such lists of

variable names represented as strings.

· Concatenating and inserting strings. When combining (contatenating) variables into

a string, there are generally two ways to do it. The first one is using the '+'

operator, for instance %s1 = 'blue'; %s2 = 'The ' + %s1 + ' car';. The other

way is to use {}-braces: %s1 = 'blue'; %s2 = 'The {%s1} car';. This is easier

to read, and has another advantage. If %s2 was for instance a value, the first

variant would demand an explicit string conversion, for instance %s2 = 'Number '

 + string(%s1) + ' car';, whereas this is not necessary regarding the last

variant: %s2 = 'Number {%s1} car';. The reason for this is that the {}-braces

already try to convert the inside into a string.

· Operators now include = symbol. In the Gekko 2.x versions, you could use for

instance series y % 3;, to set the growth rate of y to 3% per period. In Gekko

3.0, you must use y %= 3;. Among other things, this has to do with the omission of

the SERIES keyword in Gekko 3.0. It may seem that y % x; is reasonably clear,

augmenting the series y with the percentages from the series x. But remove the

blanks, and we have y%x;, amounting to the same, but this looks like a composed

name y%x, floating in free air. To make sure that all assignments are recognizable,

in Gekko 3.0 all assignments must include the = symbol, separating the left-hand

and right-hand sides. Besides this, something like x + 1; just does not look like an

171Gekko User Manual

T-T Analyse

assignment, adding 1 to x, whereas x += 1; feels much more understandable (and

is, incidentally, prevalent in most modern computer languages).

172 Gekko 3.1.x help system

T-T Analyse

4.2.3 Indexing: list, matrix, map

Gekko lists, matrices and maps are all containers of data, where the data is organized
in some structure.

· A Gekko list is one-dimensional, but can be nested (lists inside lists), and may
contain any Gekko variable type.

· A Gekko matrix is two-dimensional and can only contain values.
· A Gekko map is like a list where the elements are not ordered and hence not

accessed by number index (for instance #m[1], #m[2], etc.), but instead by name

(#m['gdp'], #m['vat'], etc.). In a map, the elements are not ordered sequentially,

but instead strings are used to look up the elements. A Gekko map can be thought
of as a mini-databank.

The strict syntax for defining a list uses soft parentheses (), for instance (1, 2) to

define a two-element list. Note that a singleton list (with only one element) must use
a trailing comma, for instance (1,). The matrix equivalent would be [1, 2], which is

a 1 x 2 matrix (row vector), or alternatively [1; 2], which would be a 2 x 1 matrix

(column vector). A nested list could be stated like ((1, 2), (3, 4)), which for a

matrix would be [1, 2; 3, 4], because ; is used for matrices to separate rows. A

list like (1, 2) has no awareness of being a row or a column or anything else; it is

just a sequence of numbers that can be indexed by position.

#m1 = ((1, 2), (3, 4));
#m2 = [1, 2; 3, 4];
prt #m1, #m2;

//Result: -------------------------------------

#m1
(1, 2), (3, 4)

 #m2
 1 2
 1 1.0000 2.0000
 2 3.0000 4.0000

Regarding the list #m1, it contains two sub-lists. Each of these sub-lists contains two

values. So the list is nested, whereas the matrix #m2 is organized in a two-

dimensional structure of rows and columns.

In general, a nested list is indexed like for instance #m1[2][1], picking out the value

3, and a matrix is indexed like #m2[2, 1], also picking out the value 3. However, for

nested lists of lists like #m1, Gekko allows the alternatively syntax #m1[2, 1], too. So

when selecting an individual element %i, %j in a nested list, there is no difference

between #m1[%i][%j] and #m1[%i, %j].

Things get more complicated when ranges are used:

173Gekko User Manual

T-T Analyse

// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
#m = ((1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12));
%v1 = #m[2, 3]; //6
%v2 = #m[2][3]; //6
#m1 = #m[2, 2..3]; //(5, 6)
#m2 = #m[2][2..3]; //(5, 6)
#m3 = #m[2..4, 2]; //(5, 8, 11)
#m4 = #m[2..4][2]; //(7, 8, 9)
#m5 = #m[2..4, 2..3]; //((5, 6), (8, 9), (11, 12))
#m6 = #m[2..4][2..3]; //((7, 8, 9), (10, 11, 12))

Here, #m is a four-element list, where each element is itself a three-element list. It

can be represented visually as the 2d matrix shown in the comments, but beware
that the nested list has no inherent notion of rows or columns. Both #m1 and #m2

amount to (5, 6). In both cases, the second row is singled out, and elements 2-3

(inclusive) are selected from this. But #m3 and #m4 are different: the former selects

rows 2-4 in column 2, which is (5, 8, 11), whereas #m4 evaluates to (7, 8, 9). To

understand #m4, we will split it up into #x = #m[2..4]; #m4 = #x[2];. Here, #x

evaluates to ((4, 5, 6), (7, 8, 9), (10, 11, 12)) since it picks out elements 2-

4 (inclusive) of the #m list. Next, from #x, the second element of this is selected,

which is (7, 8, 9). Perhaps not surprising, #m5 and #m6 are different, too. The

former selects rows 2-4 and columns 2-3, resulting in the nested list ((5, 6), (8,

9), (11, 12)), cutting out a part of the 2d matrix shown in the comments. In

contrast, #m6 evaluates to ((7, 8, 9), (10, 11, 12)) . We can reuse the #x

temporary list again: #x = #m[2..4]; #m6 = #x[2..3];. So this time, #x[2..3]

picks out elements 2-3 from #x, that is, ((7, 8, 9), (10, 11, 12)).

To sum up, for nested lists of lists, Gekko allows the indexing syntax [... , ...] in

addition to the standard [...][...] indexing. When the first part of the former kind

of indexing is a single value, there is no confusion. However, when the first part of
such indexing is a range, the [... , ...] syntax selects elements in the same

manner as matrix selection, whereas the [...][...] variant selects something

altogether different.

The reason why nested lists allow [... , ...] indexing syntax in Gekko is to make

it possible to select elements in a similar manner to matrices, making it easier to use
nested lists to represent for instance spreadsheet cells, tables or other 2d structures
with mixed contents (for instance text, dates, and values). Another reason is to
comply tightly with Python arrays (NumPy library), where such indexing is possible.
Python also has a matrix library, but this is being deprecated in favor of using NumPy
arrays instead (also for linear algebra calculations), among other things because
arrays generalize naturally to n dimensions ("tensors"), in contrast to 2-dimensional
matrices.

Arrays in Python

https://en.wikipedia.org/wiki/NumPy

174 Gekko 3.1.x help system

T-T Analyse

Since lists in Gekko follow most of the conventions of Python, the Python NumPy
library also inspires some of the intricacies of multidimensional objects. First, we will
have a look at the ndarray (n-dimensional array) variable type in Python.

import numpy as np
m = [[1, 2, 3],[4, 5, 6], [7, 8, 9], [10, 11, 12]]
a = np.array(m)

In the following Python code, m is a standard nested list, whereas a is an array. Here,

m[0] will pick out the list [1, 2, 3], and a[0] will pick out the array [1, 2, 3],

note that indexes are 0-based in Python. Both m[0][0], a[0][0] and a[0, 0] will

pick out 1, but m[0, 0] will fail with an error Selecting one of the row elements and

a range of column elements (Python uses : instead of .. for ranges) produces this:

m1 = m[1, 1:3] #type error
m2 = m[1][1:3] #[5, 6]
a1 = a[1, 1:3] #[5, 6]
a2 = a[1][1:3] #[5, 6]

Again, the list does not allow [... , ...] notation, but apart from this, everything

is as expected (the Python range 1:3 means elements 2 and 3) . Now we try to select

a range of rows and a fixed column:

m3 = m[1:4, 1] #type error
m4 = m[1:4][1] #[7, 8, 9]
a3 = a[1:4, 1] #[5, 8, 11] <-- note!
a4 = a[1:4][1] #[7, 8, 9]

In this case, m4 and a4 still only obtain the second row, whereas a3 obtains the

second column (and m3 fails with an error). Selecting several rows and columns at the

same time:

m5 = m[1:4, 1:3] #type error
m6 = m[1:4][1:3] #[[7, 8, 9],[10, 11, 12]]
a5 = a[1:4, 1:3] #[[5,6],[8, 9],[11, 12]] <-- note!
a6 = a[1:4][1:3] #[[7, 8, 9],[10, 11, 12]]

In this case, there is no difference, apart from the expected type error regarding m5.

As it is seen above, the logic of ranges and nested lists in Gekko resembles the
Python/NumPy/ndarray logic.

https://www.python.org/
https://numpy.org/

175Gekko User Manual

T-T Analyse

4.2.4 Syntax diagrams

Gekko 3.0 has a more strict syntax than Gekko 2.x and earlier. The following
diagrams illustrate some of the fundamental building blocks of the syntax of 3.0. So
whenever Gekko refuses one of your expressions, and the syntax error does not
make sense, you may consult the following diagrams and perhaps understand the
issue by means of these. The blue boxes below provide examples.

One of the most fundamental building blocks of Gekko is the name.

Here, alphanum means alphanumerical characters: letters, digits, and underscore,

whereas expr is any legal Gekko expression (for instance a mathematical

expression). Gekko will evaluate whatever is inside the {}-curlies, and will expect
the inside to be a string or a list of strings. Note that alphanum excludes %, #, !, :

and other symbols.

To make it possible to write for instance x{%i} shorter as x%i, a "complicated

name" (cname) is introduced:

In many cases, such a cname can be used instead of a normal name. Note that the

name part of the cname may contain {}-curlies, not just alphanumeric characters. The

cname is mostly used to avoid typing too many {}-curlies, cf. the examples in the

blue box. In Gekko program files, procedures and functions, it is recommended to use
name instead of cname, for readability and maintainability. That is, it is recommended

to use x{%s}y rather than x%s|y.

A variable name is a precise reference to an object residing in a particular Gekko
databank. It may include prefix symbols % or # (for scalars or collections), or

frequency ! (for timeseries). The upper part of the diagram illustrates timeseries,

which have no prefix symbols and may include frequency. The lower part of the
diagram illustrates scalars and collections, starting with a type symbol.

176 Gekko 3.1.x help system

T-T Analyse

Note that if you want to compose a scalar or collection name using a cname, you must

use parentheses. For instance, %(a%b) designates a scalar name, where the name

itself (excluding the %) is a%b. But in general it is much clearer to use the equivalent

name version %a{%b} instead of the cname version %(a%b). Note that %a%b is not legal

syntax, since it would be too confusing.

A varname can reside in any databank (or MAP), and a bankvarname is hence

designated as follows:

So either there is no bankname, else a colon (:) is used, or @ can be used to imply

the reference databank (@x should be read as short-hand for ref:x).

Indexing can be done with either []-brackets, or with a dot (.). You can use .. to

designate a sequence inside the []-brackets.

177Gekko User Manual

T-T Analyse

The dot (.) is used in three ways. The expression #m.x picks out the series x from the

map #m (alternatively, #m[x] or #m['x'] does the same thing). The expression

x.f(a) is equivalent to f(x, a), because Gekko implements UFCS. Finally, an

expression like x.1 is equivalent to x[-1], that is, a one period lag.

The function syntax is completely standard:

Lists are defined in the following way (this is a strict list definintion using soft
parentheses; note that a naked list definition without parentheses is possible, too):

Maps are defined in the following way:

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

178 Gekko 3.1.x help system

T-T Analyse

Matrices are defined in the following way:

A logical statement:

The keyword in checks if the first expr is a member of the second expr.

Dollar-conditionals:

179Gekko User Manual

T-T Analyse

Note that parentheses are always used, and membership uses the in keyword. A

GAMS expression like x(i) $ i0(i) is thus translated into x[#i] $ (#i in #i0).

Using x[#i] $ #i0[#i] or x[#i] $ (#i0[#i]) will not work. See the "Details"

section of this page for an explanation.

4.3 Gekko statements

This section describes in detail the purpose of the different Gekko statements
including syntax, together with examples etc. Please select a statement on the menu
at the left (you may need to fold out the menu tree first).

Regarding general syntax, the reader may consult the short section on this here, or
the syntax diagrams here.

Apart from the statement sections, the section contains an overview:

· Statement overview. The statements are listed by category, and you may choose to
see MODE-specific versions of the this list: sim-mode or data-mode. See the section
'Gekko commands' for an alphabetical list of statements, and the functions section
to see functions.

180 Gekko 3.1.x help system

T-T Analyse

4.3.1 Statements overview

Note: You may consult the specialized overviews regarding sim- and data-modes
here:
· Sim-mode statements overview
· Data-mode statements overview.

Introduction

Below, all Gekko statements are listed, grouped together by functionality (regarding
functions, see the section on these: 'Gekko functions').

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference, baseline bank). There are the following statements related to
databanks:

READ Reads a databank file (typically gbk) into the first-position and
reference databanks.

WRITE Writes the first-position databank to a gbk file
IMPORT Merges a databank file (typically non-gbk) into the first-position

databank
EXPORT Writes the first-position databank to a non-gbk file
OPEN Opens a databank file (typically gbk). May use OPEN<edit> or

OPEN<ref>.
CLOSE Closes 'named' databanks (cf. OPEN)
CLONE Makes the reference databank an exact copy of the first-position

databank.
DOWNLOAD Retrieves timeseries from a web-based database
COPY Copies timeseries between banks (or inside the first-position

databank)
RENAME Renames timeseries.
INDEX Uses wildcards to search for timeseries in databanks.
COUNT Uses wildcards to count timeseries in databanks.
COMPARE Finds differences between the first-position and reference

databanks.
FINDMISSINGDA
TA

This statement finds timeseries with missing values.

HDG Inserts a heading (description) into a gbk databank
UNLOCK Sets a databank editable
LOCK Sets a databank non-editable

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly, weekly, daily or undated.

TIME Sets global time for timeseries operations.

181Gekko User Manual

T-T Analyse

TIMEFILTER Omits or averages certain periods in output
CREATE Create a new timeseries
DELETE Delete an existing timeseries
SERIES Transform a timeseries using mathematical expressions or data

values
COLLAPSE Convert e.g. quarterly timeseries into annual timeseries etc.
INTERPOLATE Convert e.g. annual timeseries into quarterly timeseries etc.
SMOOTH Fills in missing values in a timeseries
SPLICE Splices two timeseries into one.
REBASE Calculates an index series
TRUNCATE Removes observations in a timeseries outside the stated sample.
ANALYZE Computes cross-correlations etc.
DOC Change meta information (label, source and date stamp)

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the program file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists
DATE Scalar variable of date type
STRING Scalar variable of string type
VAL Scalar variable of value type
MATRIX Define a matrix
MEM Shows a list of scalar variables and their values

Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP statement also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference ('Ref')
databank, for instance @gdp. Or else use colon to indicate a databank, for instance
mybank:gdp.

PRT Prints timeseries or expressions in different ways
MULPRT Prints multipliers: differences between the first-position and

reference databanks.
DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)
SHEET Like PRT, but shows timeseries data in Excel
CLIP Like PRT, but puts timeseries data on the Windows clipboard
DECOMP Decompose an equation
FIND Find a variable in equations
TELL Prints text strings on the screen

Model

182 Gekko 3.1.x help system

T-T Analyse

A model can be loaded directly from a .frm file. After the model is loaded, a number
of statements can be used:

MODEL Load, parse and compile a model from file.
SIM Simulates the model (also if there are goals/means)
ENDO Endogenize variables (means)
EXO Exogenize variables (goals)
UNFIX Removes ENDO/EXO goals/means.
CHECKOFF Skip convergence check for chosen variables (Gauss)
ITERSHOW Show iterations in detail for chosen variable (Gauss)
SIGN For signing models with signatures.

Gekko program files

Larger tasks can be run by means of program files (.gcm). There are the following
statements related to such files:

RUN Runs a .gcm program file. Use the EDIT statement to edit these
files.

PIPE Direct output to an external file instead of screen
INI Runs gekko.ini if located in the program and/or working folder

Functions/procedures

You may use user-defined functions or procedures to avoid repetitive tasks and
encapsulate functionality.

FUNCTION Defines a user-defined function.
PROCEDURE Defines a user-defined procedure.

Cleanup

The principal cleanup-statement is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.
CLEAR Clearing databanks
CLS Clears main window (short for 'clear screen')
CUT Closes all PLOT and DECOMP windows

Control flow

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software
matures.

183Gekko User Manual

T-T Analyse

FOR For-loop over lists/strings, values or dates, parallel loops are
possible.

IF Conditional statement (IF-ELSE-END).
END Ends loop (FOR), conditional statement (IF) or

FUNCTION/PROCEDURE.
RETURN Returns from the program file or function defintion.
STOP Stops execution completely.
EXIT Stops execution completely, and terminates Gekko.
ACCEPT Input data interactively
PAUSE Waiting for the user to click [Enter]
GOTO Transfers execution to the corresponding TARGET
TARGET Receives execution from the corresponding GOTO

Tables/menus

TABLE Prints out a predefined table (xml)
MENU Opens up a menu (html)

Econometrics

OLS Single-equation linear regression

Python and R interfaces

PYTHON_RUN Runs the decorated Python file, and returns matrices back to
Gekko

R_RUN Runs the decorated R file, and returns matrices back to Gekko

Miscellaneous

The following statements did not fall into the above categories, and so are gathered
here:

MODE Set Gekko mode to sim/data/mixed
HELP Access the help system
OPTION Sets different options
EDIT Edit a file via Notepad
XEDIT Edit a xml file via XML Notepad.
SYS Access the system shell if needed
TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

184 Gekko 3.1.x help system

T-T Analyse

4.3.1.1 Sim-mode statements overview

Note: You may consult the general overview regarding all statements here:
· General statement overview

Introduction

Sim-mode (cf. MODE) is focused on solving models, comparing scenarios etc. Below,
the different Gekko simulation related statements are listed, grouped together by
functionality (regarding functions, see the section on these: 'Gekko functions'). The
statements listed below are the core statements regarding model simulation.

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference bank). There are the following statements related to databanks:

READ Reads a databank file (typically gbk) into the first-position and
reference databanks.

WRITE Writes the first-position databank to a gbk file
IMPORT Merges a databank file (typically non-gbk) into the first-position

databank
EXPORT Writes the first-position databank to a non-gbk file
CLONE Makes the reference databank an exact copy of the first-position

databank.
COMPARE Finds differences between the first-position and reference

databanks.
FINDMISSINGDA
TA

This statement finds timeseries with missing values.

HDG Inserts a heading (description) into a gbk databank

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly, weekly, daily or undated.

TIME Sets global time for timeseries operations.
TIMEFILTER Omits or averages certain periods in output
CREATE Create a new timeseries
DELETE Delete an existing timeseries
SERIES Transform a timeseries using mathematical expressions or data

values

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the program file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists

185Gekko User Manual

T-T Analyse

DATE Scalar variable of date type
STRING Scalar variable of string type
VAL Scalar variable of value type
MEM Shows a list of scalar variables and their values

Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP statement also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference
(baseline) databank, for instance @gdp. Or else use colon to indicate a databank, for
instance mybank:gdp.

PRT Prints timeseries or expressions in different ways
MULPRT Prints multipliers: differences between the first-position and

reference databanks.
DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)
SHEET Like PRT, but shows timeseries data in Excel
CLIP Like PRT, but puts timeseries data on the Windows clipboard
DECOMP Decompose an equation
FIND Find a variable in equations
TELL Prints text strings on the screen

Model

A model can be loaded directly from a .frm file. After the model is loaded, a number
of statements can be used:

MODEL Load, parse and compile a model from file.
SIM Simulates the model (also if there are goals/means)
ENDO Endogenize variables (means)
EXO Exogenize variables (goals)
UNFIX Removes ENDO/EXO goals/means.
CHECKOFF Skip convergence check for chosen variables (Gauss)
ITERSHOW Show iterations in detail for chosen variable (Gauss)
SIGN For signing models with signatures.

Gekko program files

Larger tasks can be run by means of program files (.gcm). There are the following
statements related to such files:

RUN Runs a .gcm program file. Use the EDIT statement to edit these
files.

PIPE Direct output to an external file instead of screen
INI Runs gekko.ini if located in the program and/or working folder

186 Gekko 3.1.x help system

T-T Analyse

Cleanup

The principal cleanup-statement is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.
CLEAR Clearing databanks
CLS Clears main window (short for 'clear screen')
CUT Closes all PLOT or DECOMP windows

Control flow

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software
matures.

RETURN Returns from the program file.
STOP Stops execution completely.
EXIT Stops execution completely, and terminates Gekko.
ACCEPT Input data interactively
PAUSE Waiting for the user to click [Enter]

Tables/menus

TABLE Prints out a predefined table (xml)
MENU Opens up a menu (html)

Miscellaneous

The following statements did not fall into the above categories, and so are gathered
here:

MODE Set Gekko mode to sim/data/mixed
HELP Access the help system
OPTION Sets different options
EDIT Edit a file via Notepad
XEDIT Edit a xml file via XML Notepad.
SYS Access the system shell if needed
TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

187Gekko User Manual

T-T Analyse

4.3.1.2 Data-mode statements overview

Note: You may consult the general overview regarding all statements here:
· General statement overview

Introduction

Data-mode (cf. MODE) is focused on databanks, handling of timeseries, data revision
and similar purposes. Below, the different Gekko data related statements are listed,
grouped together by functionality (regarding functions, see the section on these:
'Gekko functions'). The statements listed below are the core statements regarding
data handling.

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference bank). There are the following statements related to databanks:

IMPORT Merges a databank file (typically non-gbk) into the first-position
databank

EXPORT Writes the first-position databank to a non-gbk file
OPEN Opens a databank file (typically gbk). May use OPEN<edit> or

OPEN<ref>.
CLOSE Closes 'named' databanks (cf. OPEN)
DOWNLOAD Retrieves timeseries from a web-based database
COPY Copies timeseries between banks (or inside the first-position

databank)
RENAME Renames timeseries.
INDEX Uses wildcards to search for timeseries in databanks.
COUNT Uses wildcards to count timeseries in databanks.
UNLOCK Sets a databank editable
LOCK Sets a databank non-editable

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly, weekly, daily or undated.

TIME Sets global time for timeseries operations.
DELETE Delete an existing timeseries
SERIES Transform a timeseries using mathematical expressions or data

values
COLLAPSE Convert e.g. quarterly timeseries into annual timeseries etc.
INTERPOLATE Convert e.g. annual timeseries into quarterly timeseries etc.

SMOOTH Fills in missing values in a timeseries
SPLICE Splices two timeseries into one.
REBASE Calculates an index series
TRUNCATE Removes observations in a timeseries outside the stated sample.
ANALYZE Computes cross-correlations etc.
DOC Change meta information (label, source and date stamp)

188 Gekko 3.1.x help system

T-T Analyse

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the program file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists
DATE Scalar variable of date type
STRING Scalar variable of string type
VAL Scalar variable of value type
MATRIX Define a matrix
MEM Shows a list of scalar variables and their values

Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP statement also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference
databank, for instance @gdp. Or else use colon to indicate a databank, for instance
mybank:gdp.

PRT Prints timeseries or expressions in different ways
DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)
SHEET Like PRT, but shows timeseries data in Excel
CLIP Like PRT, but puts timeseries data on the Windows clipboard
TELL Prints text strings on the screen

Gekko program files

Larger tasks can be run by means of program files (.gcm). There are the following
statements related to such files:

RUN Runs a .gcm program file. Use the EDIT statement to edit these
files.

PIPE Direct output to an external file instead of screen
INI Runs gekko.ini if located in the program and/or working folder

Functions/procedures

You may use user-defined functions or procedures to avoid repetitive tasks and
encapsulate functionality.

FUNCTION Defines a user-defined function.
PROCEDURE Defines a user-defined procedure.
LIBRARY Store functions/procedures inside a library .zip file for general use.

189Gekko User Manual

T-T Analyse

Cleanup

The principal cleanup-statement is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.
CLEAR Clearing databanks
CLOSEALL Closes all 'named' databanks, and clears Work and Ref.
CLS Clears main window (short for 'clear screen')
CUT Closes all PLOT or DECOMP windows

Control flow

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software
matures.

FOR For-loop over lists/strings, values or dates, parallel loops are
possible.

IF Conditional statement (IF-ELSEIF-ELSE-END).
END Ends loop (FOR), conditional statement (IF) or

FUNCTION/PROCEDURE.
RETURN Returns from the program file or function defintion.
STOP Stops execution completely.
EXIT Stops execution completely, and terminates Gekko.
ACCEPT Input data interactively
PAUSE Waiting for the user to click [Enter]
GOTO Transfers execution to the corresponding TARGET
TARGET Receives execution from the corresponding GOTO

Tables/menus

TABLE Prints out a predefined table (xml)
MENU Opens up a menu (html)

Econometrics

OLS Single-equation linear regression

Python and R interfaces

PYTHON_RUN Runs the decorated Python file, and returns matrices back to
Gekko

R_RUN Runs the decorated R file, and returns matrices back to Gekko

190 Gekko 3.1.x help system

T-T Analyse

Miscellaneous

The following statements did not fall into the above categories, and so are gathered
here:

MODE Set Gekko mode to sim/data/mixed
HELP Access the help system
OPTION Sets different options
EDIT Edit a file via Notepad
XEDIT Edit a xml file via XML Notepad.
SYS Access the system shell if needed
TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

191Gekko User Manual

T-T Analyse

4.3.2 ACCEPT

ACCEPT is used to show a dialog box in Gekko, where a scalar value can be input.
See also PAUSE.

Syntax

ACCEPT type variable message;

type Choose between val, date or string. For string type, you do not
need to enclose the input in quotes.

variable The name of the variable

message Text string to be displayed (please remember single quotes).
You can use '\n' to insert a new line.

Examples

The statement may contain text inside single quotes:

accept string %n 'Variable name';
accept string %s 'Label';
accept date %d 'Date';
accept val %v 'Value';
create {%n}; //if it does not exist
doc {%n} label = %s;
{%n}[%d] = %v;
disp <%d-1 %d+1> {%n};

The four ACCEPT-input might be the following:

'Input variable name' --> vat
'Input label --> Value added tax
'Input date' --> 2016
'Input value' --> 0.25

This will create the series vat, with the label 'Value added tax', and the value 0.25 in

2016.

If you need to accept list items, you may accept them as a comma-separated string,
and afterwards use the split() function to split the string into a list of strings.

192 Gekko 3.1.x help system

T-T Analyse

To control program flow dynamically depending upon user input, you may use code
like the following:

accept string %yesno 'Do you want to proceed? (y/n, default: n)';
if(%yesno == 'y');
 tell 'proceeding...';
 //program continues
else;
 tell 'aborting...';
end;

A dialog box is shown, and if the user just presses [Enter], %yesno will be an empty

string, and the program does not proceed. The program only proceeds when the user
inputs y or Y (Gekko string comparisons are case-insensitive).

Related statements

RETURN, STOP, EXIT, PAUSE

193Gekko User Manual

T-T Analyse

4.3.3 ANALYZE

ANALYZE calculates statistics on timeseries (mean, standard deviation, etc), including
correlation coefficients between the variables.

For each variable (expression), Gekko prints out mean, standard deviation, and min
and max values. In addition, cross-correlations are computed, and put into the matrix
#corr.

Syntax

analyze <period> variables;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

variables A list of variables (timeseries expressions)

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable without databank indication is not found in the first-position databank,
Gekko will look for it in other open databanks if databank search is active (cf.
MODE).

Examples

Analyze the growth rate of the three variables x, y, z:

analyze <1980 2015> pch(x), pch(y), pch(z);

Note

The cross-correlations are computed as Pearson product-moment correlation
coefficients.

If you square the cross-correlation matrix (multiply(#corr, #corr)), these squared

values correspond to the R2 value you obtain by pairwise linear regression between
the variables, for instance ols x2 = x1;.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

194 Gekko 3.1.x help system

T-T Analyse

Related statements

OLS

195Gekko User Manual

T-T Analyse

4.3.4 BLOCK

Three types of options
Gekko operates with three types of options: global options, block-options and local
options. Global options are stated with the OPTION command and apply until
changed. Block options are stated with the BLOCK command and apply for a block
of Gekko statements. Local options are stated inside the <> local option field and

apply to that single statement only. See more here.

A BLOCK structure is used to set the time period and/or other options temporarily
(block options). A block can for instance be used inside a function or procedure
definition, where the time period, frequency or other options may be changed, but
where these changes should be undone after leaving the function/procedure. A block
could be used together with LOCAL variables to avoid changing the state of the
program when calling a function/procedure.

Using a block series dyn = yes; ... ; end; is the only way to set the <dyn>

option on several expressions at the same time. This is because option series dyn

should only be used when really needed, that is, for expressions like x = x[-1] + 1;

and similar. So using the option together with a BLOCK makes sure the option is
turned off again.

Syntax

block option1, option2, ...;
 ...statements...
 ...statements...
 ...statements...
end;

option Can be one of two kinds:

· A time period, using the TIME keyword, for instance block time

2020 2030; ... ; end; This corresponds to time 2020 2030;.

· An option setting (OPTION statement without the 'OPTION'
keyword), for instance block freq q; ... ; end; to change

the frequency, corresponding to option freq q;.

The options (including time period) can be stated as a comma-
separated list, for instance block freq q, time 2020q1 2025q4,

print width = 200;. The BLOCK keyword must always be ended

with an END.

196 Gekko 3.1.x help system

T-T Analyse

Examples

The following is an example of nested blocks that set the time period

time 2001 2003;
block time 2011 2013;
 y1 = 100; //y1: 2011-13
 block time 2021 2023;
 y2 = 100; //y2: 2021-23
 end;
 y3 = 100; //y3: 2011-13
 end;
y4 = 100; //y4: 2001-2003

This is an example of setting two options for printing (corresponding to option print

fields ndec = 1; option print fields pdec = 1;).

time 2001 2003;
y1 = 1.17; y1 <2002 2003> %= 1.27, 1.37;
block print fields ndec = 1, print fields pdec = 1;
 prt y1; //printed with 1 decimal
end;
prt y1; //printed with default decimals

// Result:
// y1 %
// 2001 1.2 M
// 2002 1.2 1.3
// 2003 1.2 1.4
//
// y1 %
// 2001 1.1700 M
// 2002 1.1849 1.27
// 2003 1.2011 1.37

BLOCK can also be used to change frequency temporarily. The following example will
create the quarterly series y1!q defined over 2001q3-2023q2. After the BLOCK, the

time period will be back to annual 2021-23, therefore y2!a is defined over these

three years.

reset;
time 2021 2023;
block freq = q, time 2021q3 2023q2;
 y1 = 100;
end;
y2 = 100;
prt <n> y1!q, y2; //y2 same as y2!a, since we are back at annual
frequency;

197Gekko User Manual

T-T Analyse

Note

A designated time period no longer has to be the first item on a list of block options.
[New in 3.1.4].

Related statements

LOCAL, OPTION, TIME

198 Gekko 3.1.x help system

T-T Analyse

4.3.5 CHECKOFF

The statement puts variables on an ignore-list, so that they do not influence
convergence using Gauss-Seidel iterations.

Syntax

checkoff ;
checkoff variables ;
checkoff ? ;

[empty] If no variables are stated, i.e. a CHECKOFF without arguments,
the list of non-checked variables is cleared.

variables Variable names or list

? Prints the list of currently ignored variables concerning
convergence in Gauss-Seidel method.

Example

CHECKOFF accepts variable names or lists (including wildcards), for instance:

checkoff x;
checkoff {#m}; //where #m is a list of names (strings)

Currrently ignored variables can be seen with

checkoff ?;

There is no CHECKON statement. The CHECKOFF statement is non-additive (like the
ENDO and EXO statements). To eliminate a CHECKOFF-variable, just remove it from
the list given to the CHECKOFF statement. To clear the CHECKOFF-list, issue a
CHECKOFF statement with no arguments. An alternative to this is setting "OPTION
solve gauss conv ignorevars = no". In that case the list will be ignored.

Note

In order for this statement to work, "OPTION solve gauss conv ignorevars" must be
set to 'yes' (which is its default value).

199Gekko User Manual

T-T Analyse

CHECKOFF is also the related to the ITERSHOW statement. Sometimes a particular
variable, or a type of variables, may postpone the convergence of the Gauss-Seidel
algorithm. To avoid that, such variables may be put on the CHECKOFF list, and they
will be ignored regarding convergence check.

Related statements

SIM, OPTION, ITERSHOW

200 Gekko 3.1.x help system

T-T Analyse

4.3.6 CLEAR

The CLEAR statement is used to clear databanks in memory (that is, delete all
variables inside the databanks). If CLEAR is used without argument, the first-position
and Reference databanks are cleared (but not, among other things, the Global or
Local databanks). Se also CLOSEALL.

Syntax

clear ;
clear databank ;
clear <FIRST REF> ;

databank The name of the databank (click F2 to see the list of databanks
-- note that the Ref databanks does not show up in the F2
window if it is empty).

FIRST Clears the first-position databank

REF Clears the reference databank

Examples (clearing databanks)

To clear a particular databank, use:

clear mybank;

In particular, you may clear the Work and/or Ref databanks like this:

clear work;
clear ref;

To clear both the first-position and reference databanks, use CLEAR without
arguments:

clear;

Alternatively, there are these local options:

clear<first>;

201Gekko User Manual

T-T Analyse

Clears the first-position databank (which is often 'Work'), whereas

clear<ref>;

Clears the reference databank (which is always Ref).

Note

To delete individual variables, see the DELETE statement. To clear the entire
workspace, see the RESET and RESTART statements.

Since user functions, procedures or models do not live in databanks, CLEAR does not
clear these. Use RESET/RESTART to that end. Also, CLEAR without arguments does
not clear the local or global databanks.

Related statements

RESET, RESTART, DELETE, CLOSE, CLOSEALL, CLS, CUT

202 Gekko 3.1.x help system

T-T Analyse

4.3.7 CLIP

CLIP has the same syntax and functionality as SHEET, so please see this statement.

Instead of sending the result to Excel as SHEET does, CLIP sends the result to the
clipboard. Thus, the cells can be pasted into any spreadsheet (or other applications)
accepting tab-delimited cells from the clipboard. Formatting of the cells is lost in
comparison with SHEET, but otherwise the cells are the same. The loss of formatting
may even be considered a benefit in some cases, for instance when pasting cells into
different locations in the same spreadsheet.

The functionality is very similar to the 'Copy' button in the Gekko user interface. This
button copies the last PRT/MULPRT or table to the clipboard (as tab-delimited cells).

CLIP uses the same internal component as PRT, so regarding operators and other
details, also see the PRT help page.

Syntax

Please see the SHEET statement regarding syntax.

Note

The decimal separator used when copying to the clipboard can be changed by means
of the option shown below. (This option will also apply to the 'Copy' button).

Related options

OPTION interface clipboard decimalseparator = [comma|period].

Related statements

SHEET, PRT, PLOT

203Gekko User Manual

T-T Analyse

4.3.8 CLONE

The CLONE statement copies the first-position databank into the (cleared) reference
databank. After this, all variables in the two banks are identical, and all MULPRT,
PLOT<m>, COMPARE, etc. will show no differences.

Syntax

clone;

Example

You may use the CLONE statement in the following way:

model m;
read data;
time 2015 2050;
sim;
clone;
vat += 0.01;
sim;
mulprt gdp;

The CLONE statement makes sure that the first-position and reference databanks are
identical after the model is simulated for the first time. Hence, the differences (the
'multiplier') regarding the two scenarios can be printed with MULPRT statement.

Note

The READ statement always creates the reference databank as an exact copy of the
first-position databank after reading. You may use READ<first> or READ<ref> to
read data into the first-position or reference databank exclusively. The READ
statement is equivalent to READ<first> followed by CLONE.

Related statements

READ, OPEN, MODEL, MULPRT, SIM, DECOMP

204 Gekko 3.1.x help system

T-T Analyse

4.3.9 CLOSE

The CLOSE statement is used to close databanks in memory.

If the contents of the databank have been altered, these changes are written back til
the databank file. This is often used in combination with open <edit> databank;,

where the changes are later on saved to disk after a CLOSE databank;.

Syntax

close <SAVE=...> databanks;

SAVE= With close <save=no>, Gekko will not write the databank to

file, even if the databank contents has changed. See also open

<save=no>.

databanks The databank(s) to be closed. A star (*) indicates all open

databanks opened by means of the OPEN statement (cf. also
CLOSEALL). You may provide a list of banks like close db1,
db2;

Example

Use this syntax to close a databank:

close mybank;

Closes databank 'mybank' (that has been opened by means of open mybank; and

writes any changes to the databank back to the databank file).

close *;

Closes all databanks opened by means of the OPEN statement (and writes any
changes to the databanks back to their databank files). After this, the Work databank
will be in first position (Work cannot be closed).

To clear up the workspace, you may use:

close *; clear;
closeall; //equivalent

205Gekko User Manual

T-T Analyse

If you issue close *; clear;, all opened databanks will be closed, Work will be in

first position, and both Work and Ref are cleared (there is a shorter alias for these
two statements, namely CLOSEALL). To reset the workspace entirely, see
RESET/RESTART.

Close of a list of particular databanks (separate with commas):

close db1, db2;

Note

CLOSE cannot close Work or Ref databanks, and neither the Local or Global
databanks. See the closely related OPEN statement.

Related statements

OPEN, CLEAR, CLOSEALL, DELETE

206 Gekko 3.1.x help system

T-T Analyse

4.3.10 CLOSEALL

The CLOSEALL statement closes all open databanks, and clears the Work and Ref
databanks. The statement is exactly the same as issuing close *; clear;.

Contrary to RESET/RESTART, a CLOSEALL does not clear the Global or Local
databanks, and options, models, libraries, global time period, etc. are not touched. So
among other things, global settings stored in the Global databank will still be
available after af CLOSEALL.

Syntax

closeall;

Example

The statement is simply:

closeall;

Note

In a sense, CLOSEALL is a less destructive version of RESET.

Related statements

CLEAR, CLOSE, DELETE, OPEN, RESET, RESTART

207Gekko User Manual

T-T Analyse

4.3.11 CLS

CLS clears the output window.

Syntax

cls;

Example

The RESTART (or RESET) statement will not clear the output window (but clears
everything else in the workspace), so you may use CLS before (or after) your
RESTART statement:

cls; cut; restart;

This clears the output window, closes any plot or decomp windows, and restarts
Gekko.

Related statements

RESET, RESTART, DELETE, CLOSE, CLEAR, CUT

208 Gekko 3.1.x help system

T-T Analyse

4.3.12 COLLAPSE

COLLAPSE transform (aggregates) higher-frequency timeseries to lower-frequency
timeseries, for instance from quarterly to annual data. You may use INTERPOLATE to
do the inverse transformation.

There are two things to note about the COLLAPSE statement. Firstly, the statement
ignores the global time period, and a local time period cannot be set. Therefore, the
left-hand side becomes a full collapsed mirror image of the data in the right-hand
side timeseries. Secondly, if there are missing values in the high-frequency series,
this will be reflected as missing values in the lower-frequency series. So if you need
COLLAPSE to create for instance an average of the first three quarters of a year, you
must first fill in the fourth quarter with some guessed data (for daily frequency, there
are options to ignore/skip missing days when collapsing).

Instead of the COLLAPSE statement, you may alternatively use the similar
collapse() function, for instance x!q.collapse(); (see under functions). If you

need to collapse a collection of Excel data "points" (any pairs of Excel dates +
values), you may use IMPORT<collapse>.

Syntax

collapse < MISSING = ... > lowfreq = highfreq method;

lowfreq Lower frequency timeseries. Frequency can be indicated with
suffix !a, !q, !m or !w. Banknames may be used. Lists of names

may be used, like for instance {#m}.

highfreq Higher-frequencey timeseries. Frequency can be indicated with
suffix !q, !m, !w or !d. Banknames may be used. Lists of names

may be used, like for instance {#m}.

method (Optional). Choose between:

· total: The higher-freq observations are summed (default).

· avg: The higher-freq observations are averaged.

· first: The first higher-freq observation is used.

· last: The last higher-freq observation is used.

Note: default is total. You can alter the default with option

collapse method = ... ; (cf. OPTION).

MISSING= (Optional). Only relevant when collapsing from daily (d) data. You

can set collapse <missing=flex> to avoid too many frustrations

with single missing days.

209Gekko User Manual

T-T Analyse

· strict: missing days will entail missing data in the collapsed

series (default).
· flex: missing days are ignored when collapsing.

Note: default is strict. You can alter the default with option

collapse missing d = ... ; (cf. OPTION).

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).
· Looping: with a list like for instance #m = x1, x2;, you may use collapse {#m}!a

= {#m}!q; to collapse x1!q into x1!a, and x2!q into x2!a.

Example

Use this to convert frequency:

reset; time 2020 2021;
x!q = 1, 2, 3, 4, 5, 6, 7, 8;
collapse x!a = x!q; //10 and 26
prt x!a;

Since the method is total as default, this will create the annual timeseries x!a

where each annual observation is the sum of the corresponding quarters in x!q.

Instead, you may use avg like this:

collapse x!a = x!q avg; //will be 2.5 and 6.5 instead

With option avg, the quarters are averaged. If you have existing data in the x!a

timeseries and only want to collapse a part of the x!q series into x!a (for instance

from 2018-20), you may use a temporary variable like this:

reset; time 2017 2020;
x!a = 11, m(), m(), m(); //only data for 2017
x!q = 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7;
collapse temp!a = x!q;
x!a <2018 2020> = temp!a;
prt x!a; //the 2017 value of 11 is preserved

In this case, it is easier to use the collapse() function, which is also convenient in

general for printing/plotting etc. The collapse() and interpolate() functions (cf.

INTERPOLATE) can be combined like the following example (calculating each quarter's
share of all quarters):

210 Gekko 3.1.x help system

T-T Analyse

reset; option freq q; time 2001 2002;
x1 = 1, 2, 3, 4, 5, 6, 7, 8;
x2 = x1/x1.collapse().interpolate();
prt x1, x2; //x2 = 0.1, 0.2, 0.3, 0.4 and 0.19, 0.23, 0.27, 0.31

When collapsing daily timeseries, you may use <missing=flex> in order to

ignore/skip missing days, cf. the following example.

reset; option freq d; time 2021m1d1 2021m1d10;
x!d = 1;
collapse x1!w = x!d; //default is <missing=strict>
collapse <missing=flex> x2!w = x!d;
prt <2020w53 2021w1 n> x1!w, x2!w, x!d;

// x1!w x2!w x!d
// 2020w53 M 3.0000
// m12d28 M
// m12d29 M
// m12d30 M
// m12d31 M
// m1d1 1.0000
// m1d2 1.0000
// m1d3 1.0000
//
// 2021w1 7.0000 7.0000
// m1d4 1.0000
// m1d5 1.0000
// m1d6 1.0000
// m1d7 1.0000
// m1d8 1.0000
// m1d9 1.0000
// m1d10 1.0000

This produces data for x1!w and x2!w for the two weeks 2020w53 and 2021w1, where

only the latter week is collapsed from a full 7-day week of data (note that 2020w53

has four days in 2020 and three days in 2021). Therefore, in 2002w53, x1!w has a

missing value (because collapse is strict per default), whereas x2!w ignores the

missing values and attains the value 3. (Weeks are defined and numbered following
the ISO 8601 standard, where days around New Year may belong to week 52, week
53 or week 1. Active 'workdays' will be implemented, omitting for instance weekends
and holidays. For now, see the getSpecialDay() function).

Note

If a frequency indicator is omitted, Gekko will use the current frequency.

You can also use PRT<collapse> to get similar transformations in prints (freqs q and m

only), and for printing/plotting etc., the collapse() function is convenient.

https://en.wikipedia.org/wiki/ISO_8601

211Gekko User Manual

T-T Analyse

See also IMPORT<collapse> regarding Excel spreadsheets with higher frequencies
than daily, or data with irregular frequencies.

Related options

OPTION collapse method = total; [total|avg|first|last]
OPTION collapse missing d = strict; [strict|flex]

Related statements

INTERPOLATE, IMPORT, PRT, SMOOTH

212 Gekko 3.1.x help system

T-T Analyse

4.3.13 COMPARE

COMPARE compares variables in the first-position and reference databanks. The
comparison is only done for timeseries of the same frequency as the global frequency
setting. The comparison is done over the given period (or the global period if a period
is not provided), and the user may provide a list of variables that are checked (if no
list is given, all variables are checked).

COMPARE will per default put the output in the file compare_databanks.txt (this
filename can be changed). You may set thresholds regarding absolute or relative
differences (options ABS, REL and PCH), and you may dump a list #dif with the

different series names (cf. DUMP).

The COMPARE statement is similar to the menu item 'Utilities' --> 'Compare two
databanks...' in the Gekko user interface.

Syntax

compare < period ABS=... DUMP REL=... SORT=... PCH=... TYPE=...
 DUMP> variables FILE=... ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

ABS= (Optional). Absolute differences smaller than the value are not shown,
for instance <abs = 150>.

MISSIN
G=

(Optional). Choose m (default) or zero. If zero, any missing values

(NaN) will be treated as if they were = 0. [New in 3.1.15].

REL= (Optional). Relative differences smaller than the value are not shown,
for instance <rel = 0.01> equivalent to 1%. You may alternatively

use PCH for the same purpose.

SORT= (Optional). Choose between alpha (default), abs or rel. The first sorts
alphabetically (which is default), the next sorts after absolute
differences, and the last sorts after relative differences. The sorting
and the use of ABS=, REL=, and PCH= are independent of each other.

PCH= (Optional). Percentage differences smaller than the value are not
shown, for instance <pch = 1.0> corresponding to 1%. You may

alternatively use REL for the same purpose.

TYPE= (Optional). Choose between type=normal (default) or type=hist

(history). The latter computes relative changes differently. If x is a

213Gekko User Manual

T-T Analyse

timeseries from the first-position databank and @x is a timeseries from

the reference databank, type = normal computes the relative

difference as rel = abs(x - @x) / @x. In contrast, with type=hist

the relative difference is computed as rel = abs(x - @x) / ((abs(@x

- @x[-1]) + abs(@x[-1] - @x[-2])) / 2), where the numerator is

the same, but where the denominator is the average of absolute time-
changes in the current period (abs(@x - @x[-1])) and the previous

period (abs(@x[-1] - @x[-2])). So with type=hist, the variability of

@x is used to indicate what a "large" difference is supposed to mean,

and the denominator has some similarities with a standard deviation
measure. The two methods will normally return different results for
some variables. (For SIM Gauss-Seidel convergence check, a procedure
almost exactly similar to type=hist is used for relative convergence

checks).

DUMP (Optional). If this option is set, a list #dif will be constructed,

containing the list of different timeseries.

variabl
es

A list of variable names. If no variables are given, the full databanks
are compared. The names are separated by comma (like x, y, z), and

a list #x of names should be used with {}-braces: {#x}. Regarding

array-series, you may either indicate the name of the array-series
itself (x), in which case all sub-series are checked, or you may state

individual elements (like x[a, k]).

FILE= Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip paths"

are allowed too (for instance c:\projects\data.zip\bank.gbk). See

more on filenames here.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Example

Compare all variables for the global period, or a given period:

compare; //global period
compare <2010 2020>; //for this given period

Do the same, with a user-chosen filename:

214 Gekko 3.1.x help system

T-T Analyse

compare <2010 2020> file=dif.txt;

Sort the result by relative differences:

compare <sort=rel>;

Only compare series names from the list #x:

#x = x1, x2, x3;
compare <2010 2020> {#x};
compare <2010 2020> x1, x2, x3; //same as above

Do not show relative differences smaller than 0.02 (that is, 2%):

compare <2010 2020 rel=0.02>;

You may 'dump' a list #dif containing the names of the timeseries that are different:

compare <dump>;
plot <q> {#dif}; //plots the percentage differences

Array-series are supported, consider this example:

reset;
time 2001 2002;
xx = series(2);
xx[a, x] = 100, 100;
xx[b, x] = 200, 200;
xx[a, y] = 300, 300;
xx[b, y] = 400, 400;
yy = series(1);
yy[i] = 1000, 1000;
#m1 = a, b;
#m2 = list('a'); //the easiest way to state a 1-element list
clone;
xx[b, y] = 400.4, 402;
yy[i] = 1000.2, 1004;
yy[j] = 2000;
compare <dump sort = rel>;
plot <q> {#dif};
prt #dif; //print out the names of the different timeseries as a
flat list.
compare xx[b, y]; //comparing only this particular element.

The file compare_databanks.txt will contain the following output:

215Gekko User Manual

T-T Analyse

Comparing first-position and reference databanks

There are the following 5 series in both banks:
xx[a, x], xx[a, y], xx[b, x], xx[b, y], yy[i]

There are the following 1 series in the first-position databank, but not
in Ref databank:
yy[j]

There are the following 0 series in the Ref databank, but not in the
first-position databank:
[none]

Out of the 5 common series, there are differences regarding 2 of them:

xx[b, y] WORK REFERENCE ABS DIFF % DIFF
 max = 0.50

2001 400.4000 400.0000 0.4000 0.10
2002 402.0000 400.0000 2.0000 0.50

yy[i] WORK REFERENCE ABS DIFF % DIFF
 max = 0.40

2001 1000.2000 1000.0000 0.2000 0.02
2002 1004.0000 1000.0000 4.0000 0.40

At the right of each comparison, the value that is sorted after is shown ('max') --
largest differences are shown first. In this case, max = 0.50 means that the maximal
percentage difference is 0.50% (in 2002) for the array-series xx[b, y].

Note

Note: local option <rel> and <pch> cannot be used at the same time. If <abs> and
<rel>/<pch> are used at the same time, series with differences less than the abs or
rel/pch criterion are not shown.

This functionality was previously only accessible from the Gekko menu, but is now
statement-driven.

Related statements

MULPRT, PRT

216 Gekko 3.1.x help system

T-T Analyse

4.3.14 COPY

The statement is used to copy variables, either inside a databank, or between
databanks.

Note that 'naked' wildcards are allowed in this statement, so you may for instance
use a*b?c as wildcard instead of the more cumbersome {'a*b?c'}.

Syntax

copy < period RESPECT FROMBANK=... TOBANK=... ERROR=... PRINT >
 names1 TO names2;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

RESPECT (Optional). With this option, if no period is given, the global period
is used. (This option can also be set as a global option with option

copy respect = yes;).

FROMBAN
K=

(Optional). A databank name from where the list of timeseries are
copied from.

TOBANK= (Optional). A databank name to where the list of timeseries are
copied to.

ERROR= (Optional). With COPY<error=no>, Gekko will try to copy the items,
but will not fail with an error if some of the items cannot be found.

PRINT (Optional). With this option set, Gekko will print a list of which
variables are copied to where, but without actually copying
anything. The option can be practical for debugging.

names1 Variablename(s) or list(s) (wild-cards are allowed). You may
prepend a databank name as bank:variable.

TO (Optional). The TO part of the COPY statement is optional. If
omitted, the variables will be copied to the first-position databank
(with the same names).

names2 (Optional). A corresponding list with the new names. You may
prepend a databank name as bank:variable (or use bank:* to keep
the same names).

· If no period is given inside the <...> angle brackets, no time period is used.

217Gekko User Manual

T-T Analyse

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

· Looping: with a list like for instance #m = a, b;, you may use copy x{#m} to

y{#m}; to copy xa to ya, and xb to yb.

If the RESPECT option is active, and the new name exists as a timeseries beforehand,
it is only the observations inside the local time period that are copied into the
existing timeseries (and not any meta-information like labels, etc.).

Examples

Inside the first-position databank

To copy items inside the first-position databank, consider the following examples:

reset;
a1 = 1; b1 = 2; c1 = 3;
copy a1 TO a2;
copy a1, b1, c1 TO a2, b2, c2;
#list1 = a1, b1, c1;
#list2 = a2, b2, c2;
copy {#list1} TO {#list2}; //note that "copy #list1 TO
#list2;" would copy the list itself

If you use the RESPECT option, only the observations inside the global time period
are used. For instance:

copy <respect> a1 TO a2;

Else

copy <2010 2020> a1 TO a2;

will copy observations belonging to that particular period.

Note that a list inside {}-curlies auto-expands if there is a name part before of after
the {}, so that the example could have been done like this instead:

reset;
#m = a, b, c; //or: #m = ('a', 'b', 'c');
a1 = 1; b1 = 2; c1 = 3;
copy {#m}1 TO {#m}2; //a1, b1, c1 to a2, b2, c2

218 Gekko 3.1.x help system

T-T Analyse

From other databanks to the first-position databank

In these cases, you typically omit the TO keyword, if you are preserving the same
names.

You may copy timeseries from other databanks (either the reference databank, or
databanks opened with the OPEN statement), by using a colon:

copy mybank:a1, mybank:a2;

This will copy the two variables a1 and a2 from the databank mybank to the first-

position databank (with the same names). For several items, using a list may be
easier:

#m = a1, a2;
copy mybank:{#m}; //note that "copy mybank:#m;" will try to
find a list #m in mybank

where #m is a list with the timeseries names. Or alternatively, you may use the

<from=...> option:

copy <frombank=mybank> a1, a2; //this works too: copy
<frombank=mybank> {#m};

If you are copying from the reference databank into the first-position databank, you
may use this:

copy @{#m};

Between arbitrary databanks

In this case, the frombank= and tobank= options can be practical, for instance:

copy <frombank=bank1 tobank=bank2> a1 TO a2;

This copies bank1:a1 to bank2:a2. You may use lists instead of these names. This will

do the same thing:

copy bank1:a1 TO bank2:a2;

Or with lists:

219Gekko User Manual

T-T Analyse

copy bank1:{#m1} TO bank2:{#m2};

where #m1 is the list of names to be copied, and #m2 is a list of the resulting names

(that is, a renaming list). If the names are the same, you can just use TO bank2:*.

Wildcards and ranges can be used, for instance:

copy bank2:a* TO bank1:*;
copy bank2:a1..bank2:a5 TO bank1:*;

The first statement will copy all timeseries starting with a from bank2 to bank1 (you

could have used <frombank=... tobank=...> as well to denote the databanks. The

second line does the same thing, but only regarding the name range 'a1' to 'a5'.

Copying timeseries a1 from databank bank2 to the reference databank can be done

with:

copy bank2:a1 TO @*; //or copy bank2:a1 TO ref:*

Wildcards and ranges

It is often practical to use wildcards to copy items. You may for instance copy all the
items starting with 'fx' from the open bank mybank to the first-position databank with

this statement:

copy mybank1:fx*;
copy mybank1:f?a; //single character wildcard
copy mybank1:pxa..mybank1:pxqz; //a range of names

You may copy an entire databank into the first-position databank like this:

copy mybank1:**; //double star matches all variable types and all
frequencies

If you for instance need to replace all the variables in the first-position databank with
the variables in the reference databank, you may use this:

clear<first>;
copy @**; //or "copy ref:**"

Regarding syntax rules of wildcards, see more in the INDEX section. See also the
wildcards page.

220 Gekko 3.1.x help system

T-T Analyse

Note

If you use the from= or to= options together with explicit databank indicators (colon),

the explicit databank indicators will override the from= or to= options.

If preferred, you may use copy ... AS ... instead of copy ... TO

Related options

OPTION copy respect = no; [yes|no]

Related statements

CLONE, RENAME, INDEX, DELETE

221Gekko User Manual

T-T Analyse

4.3.15 COUNT

The statement is used to search for variables in databanks, using wildcards.

The COUNT statement is essentially a compact INDEX statement without the output.

When counting timeseries, remember that default COUNT only counts series of the
currently active frequency from the first-position databank. You may use : and ! to

augment, for instance count *:*!*; to count all timeseries of all frequencies from all

databanks.

Note that 'naked' wildcards are allowed in this statement, so you may for instance
use a*b?c as wildcard instead of the more cumbersome {'a*b?c'}.

Wildcard logic, including double and triple stars etc., is explained more generally on
the wildcards page.

Syntax

count <BANK=... > type wildcards ;

BANK= (Optional). A databank name indicating where the variables are to
be located.

type (Optional). Restrict the type of variables.

wildcard The variables to be searched for. You may use banknames to indicate
a particular bank, and you may separate the wildcards with commas.
In general, wildcards are of the form a*x to find all variables starting
with 'a' and ending with 'x', or a?x to match only one character.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The following provides a list of all variables in all databanks:

count ***; //all variables in all banks
count *:**; //same as above
count *:%*, *:#*, *:*!*; //same as above

Example

222 Gekko 3.1.x help system

T-T Analyse

The following COUNT statement will look for timeseries beginning with 'f' in the first-
position databank (and with the current frequency):

reset;
fa = 1; fb = 2; fc = 3;
count f*; //result: 3

Note

See the INDEX statement for more examples.

If you use variable names without wildcards or ranges, an existence check is
performed (count = 1 if it exists, 0 otherwise).

See also the second half of this page regarding wildcards, syntax, etc.

Related statements

LIST, INDEX

223Gekko User Manual

T-T Analyse

4.3.16 CUT

Closes any open PLOT or DECOMP windows.

This can also be done via the "Close all PLOT and DECOMP windows" button in the
Gekko main window, which does the exact same thing.

When using this button, and if the Gekko main window is out of focus, you may have
to click the button two times (the first time brings the Gekko main window back in
focus).

Closing PLOT or DECOMP windows can also be done with the interactive menu
Window --> Close -->

Syntax

cut;

Related statements

RESET, RESTART, DELETE, CLOSE, CLEAR, CLS

224 Gekko 3.1.x help system

T-T Analyse

4.3.17 CREATE

This statement creates a new series in the first-position databank. The series contains
no data, but can be used afterwards.

If you use Gekko in a data revision setting, consider using mode data;, where

options are set so that you avoid a lot of CREATE statements ("MODE data" will set
"OPTION databank create auto = yes;", "OPTION databank search = yes;", and
others).

Syntax

create variables ;
create ? ;

variables Variablename(s) or list(s) (wild-cards is allowed)

? Prints a list of all created variables

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The reason for CREATE in sim-mode is to avoid accidentally creating a new variable
because of misspelling etc. Imagine a model with exogenous variable b_vat = 0.25.
The user thinks that the variable name is just vat (which might be what the VAT was
called in an older version of the model). Without mandatory CREATE, setting vat =
0.26 will just create a new series that has no relation to the model, and hence does
not affect any endogenous variables. With mandatory CREATE, setting vat = 0.26 will
result in an error, and the user will hopefully discover that the proper name is b_vat.

There is an exception to the create rule: names beginning with 'xx' can always be
auto-created (useful for temporary series variables).

Examples

In sim-mode, variables cannot be created on the fly, for instance:

reset;
mode sim;
x = 100; //fails

Here, x cannot be auto-created. The following will work:

225Gekko User Manual

T-T Analyse

reset;
mode sim;
create x;
x = 100; //ok

Series beginning with 'xx' are always auto-created.

Related options

OPTION databank create auto = no; [yes|no]
OPTION databank create message = yes; [yes|no]

Related statements

SERIES, DELETE

226 Gekko 3.1.x help system

T-T Analyse

4.3.18 DATE

The DATE statement is used to assign a date to a scalar variable of date type. Date
names always start with the symbol %, like the other scalar types val and string.

Using the DATE keyword is no longer mandatory in Gekko 3.0.

Dates are used in combination with series variables, setting the periods over which
these are calculated, printed, etc. See also the TIME statement. Date values are
written like 2020, 2020q3, 2020m3 or 2020m3d25.

Syntax

%d = expression;
date %d = expression;
date ?; //print string scalars

It is no longer legal to use for instance date d = 2020;, omitting the '%'. As the

right-hand side, quarterly, monthly and undated dates are supported with 'q', 'm', and
'u' indicators, for instance 2020q4 or 2020m12.

Normally, the DATE keyword can be omitted, if the right-hand side is a date like for
instance 2020q4. But in the case %d = 2020;, %d will actually become a value. To

avoid that, you can use date %d = 2020;, %d = date(2020);, or %d = 2020a;

(2020a1 will work, too). In most cases, %d = 2020; should work fine though, since

Gekko can auto-convert integers into annual dates.

There are a number of in-built date functions to compose and extract dates.

Date combining functions

Function
name

Description Examples

date(d, f,
opt)
date(d, f)

Converts the date d into a
new date with frequency f
(string). The optional option
can be omitted, or be
'start' or 'end'. Using

'start' or 'end' is only

relevant when converting
from a lower to a higher
frequency.

Beware that week numbers
are special around New
Year.

%d = 2021q1;
prt %d.date('a'); //2021
prt %d.date('m'); //error!
prt %d.date('m',
'start'); //2021m1
prt %d.date('m',
'end'); //2021m3
prt %d.date('w',
'start'); //2020w53 !!
prt %d.date('w',
'end'); //2021w13
//Note that the first week
that fully
//contains the first quarter
of 2021 starts
//in 2020!

227Gekko User Manual

T-T Analyse

Returns: date

date(y, f,
sub)
date(y, 'm',
m, 'd', d)

Constructs a new
quarterly/monthly/weekly
date from y (integer),
frequency (string), and
subperiod (integer). You
may also construct a daily
date with a similar syntax.

Note: you may also use
date(x), where x can be a
value or a string, and
Gekko will try to convert
the argument into a date.

Returns: date

%d = date(2020, 'q',
2); //2020q2
%d = date(2020, 'w',
42); //2020w42
%d = date(2020, 'm', 12, 'd',
24); //2020m12d24

fromExcelDa
te(v)

Converts an Excel date (the
val v, counting the number

of days since January 1,
1900) to a date with daily
frequency.

Returns: date (daily)

See examples regarding the
toExcelDate() function.

getFreq(d) Extracts the frequency of a
date
Returns: string

%d = 2020q2;
prt %d.getfreq(); //'q'

getDay(d) Extracts the day number
from a date. Will fail if the
date is not daily.
Returns: value (integer)

%d = 2020m3d25;
prt %d.getday(); //25

getSpecialDa
y(year,
name)

Finds a special day by year
and name, and returns its
daily date. Mostly used for
holidays. If you input a
wrong name, Gekko will
provide a link showing all
possible special days.
Current possible holiday
names (English, and
equivalent Danish names):

New_Years_D
ay

Nytaarsdag

prt
2021
.getSpecialDay
('Easter_Sunday'); //2021m4d4
prt
2021
.getSpecialDay
('Paaskedag'); //same day

for(val %year = 2021 to
2025);
 %day = %
year
.getSpecialDay
('Christmas_Eve');

228 Gekko 3.1.x help system

T-T Analyse

Leap_Day Skuddag
Maundy_Thur
sday

Skaertorsdag

Good_Friday

Langfredag

Easter_Sunda
y

Paaskedag

Easter_Monda
y

Anden_paask
edag

Labour_Day

Foerste_maj

General_Pray
er_Day

Store_bededa
g

Ascension_Da
y

Kristi_himmel
fartsdag

Whit_Sunday

Pinsedag

Whit_Monday

Anden_pinsed
ag

Constitution_
Day

Grundlovsdag

Christmas_Ev
e

Juleaften

Christmas_Da
y

Foerste_juled
ag

Boxing_Day

Anden_juleda
g

New_Years_E
ve

Nytaarsaften

Note that getSpecialDay(%

year, 'Leap_Day') may

return a null value, else it
returns February 29 in leap
years). The leap day is not
a holiday, but is
nevertheless kept in this list
of special days. See
example.

 %s = %day.getWeekday('en');
 tell 'In {%year}, Christmas
Eve is on a {%s}';
end;
//Result:
//In 2021, Christmas Eve is
on a Friday
//In 2022, Christmas Eve is
on a Saturday
//In 2023, Christmas Eve is
on a Sunday
//In 2024, Christmas Eve is
on a Tuesday
//In 2025, Christmas Eve is
on a Wednesday

prt
2020
.getSpecialDay('Leap_Day');
prt
2021
.getSpecialDay('Leap_Day');

%y = 2020;
if(not %
y
.getSpecialDay
('Leap_Day').isNull());
 //code to handle if %y is a
leap year
end;

getMonth(d)
getMonth(d,
lang)

Extracts the month number
from a date. More specific
than getSubPer(), and will
fail if the date is not
monthly or daily.

You may input a language
('en' = English, 'da' =

Danish), in which case a

%d = 2020m2;
prt %d.getmonth(); //2
prt %
d
.getmonth
('en'); //'February'
prt %d.getmonth('en').lower()
[1..3]; //'feb'

229Gekko User Manual

T-T Analyse

string is returned.

Returns: value (integer) or
string

getQuarter(d
)

Extracts the quarter
number from a date. More
specific than getSubPer(),
and will fail if the date is
not quarterly.
Returns: value (integer)

%d = 2020q2;
prt %d.getquarter(); //2

getSubPer(d
)

Extracts the sub-period
from a date (1 if annual or
undated, the quarter if
quarterly, the month if
monthly or daily, and the
week if weekly).
Returns: value (integer)

%d = 2020q2;
prt %d.getsubper(); //2

getWeek(d) Get the week number from
a date of weekly frequency.
Does not accept daily
frequency as argument, but
the conversion date('w')

can be used as intermediary
for this (see examples).
Beware that the year may
change when converting
from daily to weekly
frequency.
Returns: value (integer)
[New in 3.1.13]

%d = 2020w20;
p %d.getWeek(); //20
p %d.getYear(); //2020

%d = 2019m12d31;
p %d.getWeek(); //error!
p %d.date('w').getWeek(); //1
p %
d
.date('w').getYear(); //2020!

%d = 2021m1d1;
p %
d.date('w').getWeek(); //53
p %
d
.date('w').getYear(); //2020!

getWeekday
(d)
getWeekday
(d, lang)

Extracts the weekday
number from a date. Will
fail if the date is not daily.
The numbers are as follows:
Monday = 1, Tuesday = 2,
Wednesday = 3, Thursday
= 4, Friday = 5, Saturday =
6, Sunday = 7.

You may input a language
('en' = English, 'da' =

Danish), in which case a
string is returned.

%d = 2020m3d25;
prt %d.getweekday(); //3
prt %
d
.getweekday
('en'); //Wednesday
prt %
d.getweekday('en').lower()
[1..3]; //wed
prt %
d.getweekday('da'); //Onsdag

230 Gekko 3.1.x help system

T-T Analyse

Returns: value (integer) or
string.
[New in 3.1.12]

getYear(d) Extracts the year from a
date.
Returns: value (integer)

%d = 2020q2;
prt %d.getyear(); //2020

max(d1,
d2, ...)

Finds the largest of any
number of dates. (max()

can also be used with value
arguments).
Returns: date
[New in 3.1.6]

prt max(2002q1, 2001q4);

min(d1,
d2, ...)

Finds the smallest of any
number of dates. (min()

can also be used with value
arguments).
Returns: date
[New in 3.1.6]

prt min(2002q1, 2001q4);

observations
(d1, d2)

Counts the number of
observations (periods), with
both start and end date
included. The date
difference using - is always

the same as the number of
observations minus 1.

prt observations(2020q2,
2023q3); //14
prt 2023q3 -
2020q2; //13

toExcelDate(
d)

Converts a daily date into
an Excel date (counting the
number of days since
January 1, 1900). See also
fromExcelDate(). Excel
dates can be subtracted to
obtain day spans. [New in
3.0.7]

Returns: value.

%v1 =
toExcelDate(2019m11d12);
%v2 = toExcelDate(2019m12d3);
prt %v1, %v2; //43781 and
43802
prt %v2 - %v1; //21 days
(span)
%d = fromExcelDate(%v1 +
100);
prt %d; //100 days from
2019m11d12

truncate(d1,
d2)

Finds overlap between two
different time periods. The
period d1 to d2 is compared
with the global time period
(if no local period is
indicated), or with the local

time 2010 2020;
#m = truncate(2000,
2030); //(2010, 2020)
#m = truncate(2000,
2015); //(2010, 2015)
#m = truncate(2000,
2005); //(null, null)

231Gekko User Manual

T-T Analyse

time period (if such a period
is indicated in the <...>

fields). Use a local time
period if you need to find
the overlap between two
arbitrary time windows.

Returns: a list of two
elements, start and end
date of the resulting period.
If the two elements are
both null, there is no
overlap.

[New in 3.1.6]

time 1980 1990;
#m = truncate(<2010 2020>,
2000, 2030); //(2010, 2020)
#m = truncate(<2010 2020>,
2000, 2015); //(2010, 2015)
#m = truncate(<2010 2020>,
2000, 2005); //(null, null)
//
// The overlapping period (z)
can be visualized as
// the overlap of these time
windows/periods:
//

// period1 . x x x x x . .
.
// period2 . . . y y y y y
.
// truncate() . . . z z z . .
.

Examples

Note that you may use expressions in the option field, when referring to dates. For
instance (where %per1 and %per2 are two dates):

prt <%per1-2 %per1+1> fY;

You may wish to use dates to control the flow of your system of program files,
centralizing the assignment of dates in one place.

global:%per1 = 2012; //will actually become a value, not a date
global:%per2 = 2040;
read bank2;
<%per1 %per1> x2 += 1000; //only 1 year
sim <%per1 %per2>;
mulprt <%per1-1 %per2> y2;

Note here the use of the Global databank for storing the two dates. The Global
databank is unaffected by READ statements, and is practical for storage of general
settings like such dates. Conversions are possible:

%s1 = '2010'; //string
%v1 = 2015; //value
%d1 = date(%s1);

232 Gekko 3.1.x help system

T-T Analyse

%d2 = date(%v1);
time %d1 %d2;

Note that in order to convert the string %s1, you need an explicit conversion with the

date() function (on the contrary, the conversion from the value %v1 is automatic).

The conversion will fail if not possible, for instance the string '201x' or the val
2015.4).

You may convert a date into a val like this:

create data; //only necessary in sim-mode
for date %d = 1990 to 2012;
 data[%d] = val(%d) - 2000;
end;

This will not work without the val() function. The result is this (for the last three
years):

 data
 2010 10.0000
 2011 11.0000
 2012 12.0000

You may subtract two dates or add/subtract an integer to a date (for daily dates,
possible February 29 leap days are included):

prt 2020m2d28 - 1, 2020m2d28 + 1; //2020m2d27, 2020m2d29
prt 2020m3d1 - 2020m2d27; //3
prt observations(2020m2d27, 2020m3d1); //4

The date difference using - is always the same as the number of observations minus

1.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

If you need to convert a VAL or STRING scalar to a DATE type, use the date()
conversion function.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

233Gekko User Manual

T-T Analyse

Related statements

STRING, VAL, FOR, IF, TIME

234 Gekko 3.1.x help system

T-T Analyse

4.3.19 DECOMP

This is the new decomposition module. The new DECOMP is a generalization of the
old module. DECOMP works both with normal Gekko models or GAMS-type models
(cf. descriptions under the MODEL statement).

The current help page is pretty basic right now, just describing the syntax. It is
planned to create a DECOMP guided tour, with an illustrative GAMS-type model (with
dimensions). For now, you may try the very simple GAMS model under the GAMS
section of the MODEL statement.

For Danish language speakers, there are these detailed examples (decomposing the
particular GAMS and Gekko models MAKRO and ADAM). These examples are self-
contained (containing both models and data) and do not presuppose any GAMS
installation.

Mouse use
· You can use mouse-hovering.
· Clicking a variable in a Gekko .frm model opens a new DECOMP window (use

Ctrl-click to open up a FIND window instead).
· Clicking a variable in a GAMS scalar model opens up a FIND window.
· Double-clicking is not used for the DECOMP window in Gekko 3.1.16+.

Syntax

decomp < period operator COUNT DYN ERRORS IGNORE= MISSING= NAMES SHARES
SORT PLOT > variable FROM equations ENDO variables ROWS names COLS
names;

decomp < period operator COUNT DYN ERRORS IGNORE= MISSING= NAMES SHARES
 SORT PLOT > variable;

period (Optional). Local period, for instance 2010 2020, 2010q1

http://www.t-t.dk/gekko/test/Decomp2.pdf

235Gekko User Manual

T-T Analyse

2020q4 or %per1 %per2+1.

operator (Optional). Operator, choose between n, d, p, dp, rn, rd,

rp, rdp, m, q, mp. To show non-decomposed ('Raw') values,

prefix with x, for instance xd or xm.

COUNT (Optional). Show the number of elements "hidden" inside
the particular table cell.

DYN (Optional). Resolve dynamic lagged/leaded variables. For
instance, without DYN an equation like y = 0.5 * y[-1] +

x; will show contributions from y[-1] and x, when y is

decomposed. When using DYN, the equations is resolved
over time, in effect unrolling it into y = x + 0.5 * x[-1]

+ 0.25 * x[-2] + ... ; and hence showing effects from

x, x[-1], x[-2], etc. Note that DYN strongly depends upon

the particular time period, so try using DYN on a sample
containing a few periods first (note: DYN has no effects on
a 1-period sample). Using DYN on a long period may be
very time-consuming, because of matrix inversion.

ERRORS (Optional). Show residuals and non-linear errors. Residuals
are data errors in the equations (differences between left-
and right-hand sides).
· Data residuals should normally be = 0 for simulated

values. Note that when equations are linked, residuals
for each equation show up (Residual1, Residual2,

etc.).
· Errors originate from possible non-linearities in the

equation(s) (for a linear equation, these errors should be
= 0). If the variables are shown on rows, the error value
is computed so that the first row equals the sum of the
rest of the rows.

With this option, the yellow/orange/red circled markers are
generally absent, because the contributions sum up to the
dependent variable per definition (the Error row/column
makes sure of that).

IGNORE= (Optional). Ignores small values. For instance, IGNORE=1
will filter out contributions amounting to less than 1%
contribution to the change in the dependent variable.
When ignoring, yellow/orange/red circled markers may
show up, notifying that the shown contributions do not sum
up to the dependent variable.

MISSING= (Optional). Choose between m or zero. With missing=zero,

missing values are treated as zeroes. TODO: This does not

236 Gekko 3.1.x help system

T-T Analyse

work properly yet.

NAMES (Optional). Show the names of the elements "hidden"
inside the particular table cell.

SHARES (Optional). Show values as shares of the chosen
('dependent') variable. If variables are shown on rows, the
rows are normalized so that the first row equals 100%.

SORT (Optional). Sort the values by numerical size.

PLOT (Optional). Shows a plot instead of a table. You may right-
click on the plot to copy-paste it, save it, etc. (as a .svg
file). Like PLOT, the plot is produced by gnuplot, but .svg
files are used internally instead of .emf files. You may
hover over lines to see variable names.

Such a plot may appear too large or too small on some
screens. This is being investigated, but until then, you can
use option decomp plot zoom = ... ; to change the

plot size (default = 100%).

variable The (dependent) variable that is to be decomposed. This
variable is always shown first in the rows/columns.

FROM Indicate a list of equation names, containing the equations
that are to be used (linked).

ENDO Indicate the endogenous variables. If there is only one
equation, ENDO contains the name of the (dependent)
variable that is being decomposed. If there are more than
one equation, the (dependent) variable will be part of the
list, and ENDO tells Gekko how to link up the equations.
These variables are "substituted out" and do not show up
as contributions (except for the dependent variable).

ROWS Fields to show on rows, for instance: vars, lags.

COLS Fields to show on columns, for instance: time.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Details

237Gekko User Manual

T-T Analyse

If you want to decompose a particular variable but do not know which equation it is
determined in, you can use DECOMP without the FROM and ENDO parts, for instance
decomp x1; to find all equations containing x1.

For 'Raw' operators (left part of operator columns).
· 'Shares' cannot be selected.
· 'Dyn' has no effect.
· 'Errors' will only show residuals (shown last).
· 'Sort' will sort according to levels. Residuals will be sorted, too.
· 'Ignore' will be ignored.

For 'Decomp' operators (right part of operator columns).
· 'Shares' will show relative values (relative to the chosen/dependent variable).
· 'Errors' shows residuals, ignored and errors. Residuals are shown after other

variables, unless 'Sort' is chosen. Ignored are always shown second-last (when
active), and errors are always shown last. When 'Errors' is not selected, a
yellow/orange/red circle shown at the time period label will indicate that 'Errors'
contain significant contributions.

· 'Sort' will sort according to relative values (relative to the chosen/dependent
variable). Residuals will be sorted, too.

· 'Ignore' will gather all contributions with relative values smaller than the chosen
value.

Examples

Decompose the variable y from the equation e1:

decomp <2010 2020 m> y from e1 endo y;

Note that when decomposing 1 equation, the endo variable is always the same as the

selected variable.

decomp y from e1, e2 endo y, c;

Decompose y using the two equations e1 and e2, with the variables y and c set as

endogenous variables.

decomp x[y] from e1, e2 endo x[y], x[c];

Same as before, this time using array-series.

decomp x[y];

238 Gekko 3.1.x help system

T-T Analyse

This shows a list of equations containing x[y].

Note

To quickly close all DECOMP windows, you may use the CUT statement or the "Close
all PLOT and DECOMP windows" button in the Gekko main window. When using this
button, and if the Gekko main window is out of focus, you may have to click the
button two times (the first time brings the Gekko main window back in focus).

When a DECOMP statement is issued, Gekko takes a copy (data snapshot) of the first-
position and reference databanks, for use with subsequent DECOMP windows. If you
issue a new DECOMP statement while there are still old unclosed DECOMP windows
floating around, these windows will also be linked to the new data snapshot.

Missing values are shown as M, and missing variables are shown as N.

You may copy-paste decomp cells to a spreadsheet (mark cell areas or use Ctrl+A,
followed by 'Copy' or Ctrl+C). When pasting into for instance Excel, make sure that
option interface clipboard decimalseparator corresponds to you Excel settings,

and also make sure that your decimal separator is different from your thousands
separator (if these are both . or both , numbers may become garbled). In Excel, see

File --> Options --> Advanced --> Editing options.

In a Gekko model, when clicking on a variable x to find the equations it is part of,

only equations where x appears non-lagged/leaded are listed. This restriction will be

relieved.

When looking for series and array-series, autocomplete ([Tab] or [Ctrl+Space]) can

be practical as a supplement to the INDEX statement.

Related options

option interface clipboard decimalseparator; [period, comma]
option decomp plot zoom = 100;

Related statements

DECOMP2, FIND, READ, CLONE, FIND, MULPRT, DISP, CUT

239Gekko User Manual

T-T Analyse

4.3.20 DECOMP2

This calls the "old" and obsolete decomposition module. For the new module, see
here.

DECOMP2 of variables (equations) only works properly on simulated values, where
the left-hand sides and the right-hand sides are equal. So for simulated values, or for
comparing simulated values, DECOMP2 is ok. This restriction will be fixed in a patch
to Gekko 3.0.

DECOMP2 opens a special window with an Excel-like sheet showing the contributions
etc. The DECOMP2 statement can decompose in two ways:

· Variable: an existing model equation can be decomposed, analyzing how the
changes in the left-hand side of the equation can be decomposed into contributions
from variables on the right-hand side of the equation. The decomposition is carried
out on on the differences between current and lagged values (time decomposition),
or on the differences between the first-position and reference databanks (multiplier
decomposition).

· Expression: DECOMP can decompose a user-provided expression. This can be
thought of as anything legal in a PRT statement (with some limitations).

In the DECOMP window, regarding the list of variables shown in the first column,
endogenous (left-hand side) variables are marked in blue. You may click on these to
track an effect further (in that case, a new DECOMP2 window opens). Cells can be
copy-pasted to Excel or other spreadsheets (use Ctrl-A til select all cells). If variable
labels are present/loaded (cf. MODEL), these will be shown when the mouse hovers
over variables in the first column.

There is an "Update table" button for updating the table if the underlying data
changes. For instance, after a new simulation or after a READ statement.

It should be noted that DECOMP2 only decomposes an expression into contributions
from series or values (VAL). So in a multiplier decomposition, do not expect Gekko to
calculate contributions from matrices or lists of values, if these are different between
the first-position and reference databanks (but contributions from VAL scalars will be
identified).

Syntax

decomp2 < period > variable;
decomp2 < period > expression;

period (Optional). Local period, for instance 2010 2020, 2010q1

2020q4 or %per1 %per2+1.

variable The name of the endogenous variable to be decomposed.

240 Gekko 3.1.x help system

T-T Analyse

expression An expression: anything legal in for instance a PRT
statement.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Details

The DECOMP2 window consists basically of a selector at the top, a table in the middle,
and the equation/expression at the bottom. The selector consists of three parts: time-
change selector, multiplier selector, and some auxiliary options at the right.

In the time-change and multiplier selectors, you may choose to either see 'raw' (non-
decomposed) or 'decomp' (decomposed) values. The raw values are really just
tabelling the relevant variables, optionally transforming them via the operators n, d,
p, dp for time-changes, or n, m, q, mp for multipliers (see the PRT statement for a list
of these so-called 'short' operators). Raw values seldom sum up, so the first row is
not usually equal to the sum of the rest of the rows (this only holds for simple sums
in levels).

In contrast, the decomposed values for time-change or multiplier will sum up, so that
the first row is equal to the sum of the rest of the rows. In that way, you may get an
idea of why the left-hand side (or expression) changes relative to the previous period
or relative to the reference databank.

In the auxiliary options at the upper right of the window, you may indicate that you
want to see values from the reference databank instead of the first-position
databank, or that you prefer the decomposition output scaled so that the first line is
100 (%) and the other lines sum up to 100. The number of decimals shown can be
changed, and the table can be updated by pressing the 'Update table' button (in case
you wish to have changes in the databanks reflected in the table).

The decomposition is done by means of linearizing the equation (for time-changes: in
the previous period, and for multiplier changes: for reference databank values) and
using this linearization to forecast how much the left-hand side is expected to change
due to the changes in the right-hand side (dy = β1 * dx1 + β2 * dx2 + ...). This may
be more or less precise, depending upon how non-linear the equation is. If there is an
error, that is, the contributions do not add up to 100% of the change in the left-hand
side, the contributions are adjusted proportionally so that they sum up anyway.

Regarding decomposition of model equations, there is a further source of potential
imprecision too, namely if the databank values of the first row (the dependent
variable) do not correspond to the equation. If this is so, for instance for historical
data, a further proportional adjustment is applied, so that the contributions sum up.
(This problem does not exist regarding decomposition of an expression).

241Gekko User Manual

T-T Analyse

Clicking 'Show errors' allows you to inspect possible decomposition and data errors.
If, for instance, you have selected 'Abs. time change' (row) and 'Decomp' (column),
you may click both 'Show as shares' and 'Show errors' at the same time. This gives a
good idea of any decomposition or data errors. If the decomposition error shows for
instance 2.50% for a particular period, this means that only 97.50% of the change in
the right hand side (or expression) can be explained by means of the linearization.
The smaller the decomposition error is, the more confidence can be put into the
decomposed contributions (for linear equations, the decomposition error would be 0
in the absence of rounding errors).

Examples

After performing a multiplier analysis, you may want to decompose an usercost
expression like the following:

decomp2 <2010 2020> (1-t)*i + b - (1-b)*rpi + 0.2*t;

If a model has been loaded with MODEL, and the usercost variable is called uc, you

may instead use:

decomp2 <2010 2020> uc;

This will look up the uc equation (the equation with uc on the left-hand side) and

decompose that equation.

Note

To quickly close all DECOMP2 windows, you may use the CUT statement or the "Close
all PLOT and DECOMP windows" button in the Gekko main window:

When using this button, and if the Gekko main window is out of focus, you may have
to click the button two times (the first time brings the Gekko main window back in
focus).

DISP has a similar functionality, allowing to trace variables through model equations.
If you need to decompose a long expression, you can mark the lines and hit [Enter]
to execute the lines as one block of code. (Or use a Gekko program file).

You can only indicate one variable or expression in the DECOMP2 statement. This is
to avoid the statement potentially opening up a lot of DECOMP2 windows at the same
time.

242 Gekko 3.1.x help system

T-T Analyse

The 'decimalseparator' option listed below controls how the cells are copied to the
clipboard (for pasting in a spreadsheet), when the user uses copy-paste of cells in the
DECOMP2 window.

Related options

OPTION interface clipboard decimalseparator = period; [period, comma]

Related statements

DECOMP, READ, CLONE, FIND, MULPRT, DISP, CUT

243Gekko User Manual

T-T Analyse

4.3.21 DELETE

DELETE is used to remove variables from databanks.

When deleting timeseries, remember that default DELETE only deletes series of the
currently active frequency from the first-position databank. You may use : and ! to

augment, for instance delete *:*!*; deletes all timeseries of all frequencies from all

databanks.

Syntax

delete variables;
delete < NONMODEL > ;

NONMODEL Removes superfluous timeseries in the first-position and
reference databanks (provided a model has been defined with
MODEL). The removal is only done for series of the same
frequency as the global frequency setting. For instance, you
might have a databank and model variable y for income. Now,

imagine that the definition and contents of the variable is
changed to y2 in both the databank and model. If the old

variable y still resides in the databank, this may create

confusion, and the NONMODEL option removes such non-model
variables. Cf. also the Gekko menu 'Utilities' --> 'Compare
model/databank/varlist...'.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

· Note that 'naked' wildcards are allowed in this statement, so you may for instance
use a*b?c as wildcard instead of the more cumbersome {'a*b?c'}.

· Looping: with a list like for instance #m = a, b;, you may use delete x{#m}; to

delete xa and xb.

Examples

Delete a series x, a string %x, and a list #x:

x = 100;
%x = 'a';
#x = a, b;
delete x, %x, #x;

If, instead, you want to delete the series corresponding to the contents of %x and #x,

use {}-curlies:

244 Gekko 3.1.x help system

T-T Analyse

a = 100;
b = 200;
c = 300;
%x = 'a';
#x = b, c; //or: #x = ('b', 'c')
delete {%x}, {#x}; //deletes the series a, b, c
delete %x, #x; //deletes the string %x and the list #x

You may use wildcards like in COPY, INDEX, RENAME, etc.:

delete **;

This will delete all variables from the first-position databank. Alternatively (and
better):

clear first; //or clear work, if Work is the first-position
databank

Another example:

delete x*!q;

This will delete all quarterly series starting with x. You may also delete a variable

from a particular databank (provided that bank is opened with OPEN<edit> or
unlocked with UNLOCK), for instance:

delete bank2:x1!q;

Remove non-model variables with this special option:

delete <nonmodel>;

Note

To clear the entire workspace, including databanks, list, scalars, models, etc., see
RESTART or RESET. To delete the contents of databanks, see CLEAR.

Related statements

245Gekko User Manual

T-T Analyse

CLEAR, CLOSEALL, RESTART, RESET

246 Gekko 3.1.x help system

T-T Analyse

4.3.22 DISP

The statement is primarily used to print series or array-series, showing precedents
and dependents if a model is loaded, and showing meta-information (cf. DOC). If a
variable list is contained in the model file (.frm file) or as an external varlist.dat

file (cf. MODEL), this information is shown, too.

When displaying timeseries, remember that default DISP only shows series of the
currently active frequency from the first-position databank. You can use : and ! to

augment, for instance disp *:*!*; displays all timeseries of all frequencies from all

databanks. Wildcard logic, including double and triple stars etc., is explained more
generally on the wildcards page.

If a model is loaded, the DISP statement starts the equation browser. This means that
linked variables can be clicked, and that you may browse forwards and backwards by
means of the arrow buttons in the user interface. The 'home' button will browse back
to the first DISP that started the equation browser.

For GAMS models, there are special options regarding how to identify which variable
a given equation determines.

When displaying an array-series, the dimensions, possible domains, etc. are shown.
DISP of other variable types than series works like PRINT.

Syntax

disp < period INFO > variables ;
disp 'search string' ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

INFO (Optional). Used to print out right-hand side variables for a given
endogenous variable. Mostly used when a SIM breaks down,
together with option solve failsafe = yes.

variables Variables or lists (wildcards and bank indicators may be used), and
items may be separated by commas.

'search
string'

A string in single quotes to search for in all labels. Gekko will
search for the string in both the variable list (if such a list is loaded
with the model), and in the labels of each timeseries (cf. DOC).

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

247Gekko User Manual

T-T Analyse

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

· Note that 'naked' wildcards are allowed in this statement, so you may for instance
use a*b?c as wildcard instead of the more cumbersome {'a*b?c'}.

Example

DISP the volume of GDP and private consumption for the (local) period 2000-2010:

disp <2000 2010> fy, fcp;

If a model is loaded, you will be able to see which variables the given variable affect
(dependents). You will also see the equation (if the variable is endogenous), and
hence the variable’s precedents. These variables are clickable, so the DISP statement
functions as an entrance to the equation browser.

If a variable list is put after a 'VARLIST;' or 'VARLIST$' in the model file (or is located
in an external varlist.dat file), this meta-information is shown. You may search these
labels in the following way:

disp 'import';

This will list all variables with a label containing this search string.

Wildcards can be used:

disp bank2:x*!q;

Displays quarterly series starting with 'x', from bank2.

Per default, only 3 lines of data is written when DISP'ing a variable. However, you
can click the link ('show') to see any hidden periods. This limitation is intended for
easier use of DISP as an equation browser.

Note

Regarding DISP of GAMS equations, see the description of the model <dep = ...>

local option under MODEL.

248 Gekko 3.1.x help system

T-T Analyse

You can use a TIMEFILTER to omit periods for a more readable output. (If a
TIMEFILTER is set, the print disp maxlines = 3 option is overruled, so that all

non-filtered periods are shown even if there are more than 3 of these).

The DISP<info> statement can be used to print out right-hand side variables for a
given endogenous variable. It can only be used for a one-period time period. It is
called automatically if failsafe mode solving is set (option solve failsafe yes) and

the simulation fails.

DISP shows meta-information in the following way:
· First, if there is a variable list contained in the model file (.frm file) or as an

external varlist.dat file, this information is shown first, and the lines are shown

in raw form, line by line exactly as they appear in the variable list.
· Next, if the timeseries itself contains meta-information (cf. DOC), this is shown, too.

A label field is shown as it is, a source field is shown with "Source:" prefix, and a

units field is shown with "Units:" prefix.

Related options

OPTION model type = default; //default | gams
OPTION print disp maxlines = 3;
OPTION model gams dep current = no;
OPTION model gams dep method = lhs; // lhs | eqname

Related statements

PRT, MULPRT, PLOT, DECOMP, TELL, FIND

249Gekko User Manual

T-T Analyse

4.3.23 DOC

The statement is used to manually change meta information fields in a timeseries
object. This information is stored when a databank is written to a .gbk file.

The meta information is shown in the DISP statement (when doing modeling:
together with any information stored inside a model .frm file or in an external
varlist.dat file).

Syntax

doc variables LABEL=... SOURCE=... UNITS=... STAMP=... ;
doc <VARLIST> FILE=... ;
doc <BROWSER>;

variables Variablename(s) or list(s) (wild-cards are allowed). You may
prepend a databank name as bank:variable.

LABEL= (Optional). Changes the label of the timeseries. You may use
LABEL='' to clear.

SOURCE= (Optional). Changes the source of the timeseries. You may use
SOURCE='' to clear.

UNITS= (Optional). Changes the units of the timeseries. You may use
UNITS='' to clear.

STAMP= (Optional). Changes the stamp of the timeseries. You may use
STAMP='' to clear.

VARLIST (Optional). Get/import labels from Gekko model or from file.

FILE= (Optional). Possible file name for <varlist>.

BROWSER (Optional). Generate html browser.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

doc <varlist> imports meta-information from a loaded MODEL (See the section

"Gekko models: variable list"). With doc <varlist> file=... ; you may indicate a

file containing the meta-information (for instance a file named varlist.dat).

250 Gekko 3.1.x help system

T-T Analyse

doc <browser> produces a stand-alone equation browser in html, which can, for

instance, be put on a web server. The produces system is independent of Gekko and
shows variables, formulas, labels, graphs, estimation output, data, etc. This inner
workings of this system will be documented later on, if needed before then, please
contact the Gekko editor. Essentially the system replicates how DISP can show
equations etc. from inside Gekko.

Examples

To change label, source and stamp on the timeseries fY, use:

doc fY label='Gdp' source='Statistics Denmark' stamp='11-01-2024';

To clear the label, use an empty string:

doc fy label='';

You may delete all label/source/units meta information in the first-position databank
like this:

doc * label='' source='' units='' stamp='';

If you would like to store meta information in a spreadsheet varlist.xlsx, you can

get this meta information into databank.gbk with something akin to the following

(depending upon how you design the spreadsheet). Here, the text information in the
spreadsheet is designed with one row per timeserie:, column 1 is the series names,
column 2 is the labels, column 3 is the sources, and column 4 us the units (the first
row of the spreadsheet is skipped). See LIST regarding list indexing like [.., 1] etc.

SHEET <import list> #v file = varlist.xlsx;
#varlist = #v[2..]; //skips first row with column explanation
#variables = #varlist[.., 1];
#label = #varlist[.., 2];
#source = #varlist[.., 3];
#units = #varlist[.., 4];
open <edit> databank;
for val %v = 1 to length(#variables);
 %varname = {#variables[%v]}.getname(); //omits any bank or
frequency indicators
 doc {%varname} label = #label[%v] source = #source[%v] units =
#units[%v];
end;
close databank;

251Gekko User Manual

T-T Analyse

Note

Meta information like this is read from and written to .gbk or .tsd files.

Regarding meta-information on timeseries, you may set these directly when defining
the series, for instance <label = 'Value added tax'> vat = 0.25;.

Related statements

READ, IMPORT, WRITE, EXPORT, DISP

252 Gekko 3.1.x help system

T-T Analyse

4.3.24 DOWNLOAD

At the moment, the statement is used to interface to a particular Danish databank
containing among other things timeseries data. The downloaded file is in 'px' format,
that is, PC-Axis. This is a format widely used by statistical offices.

It is the intention to augment the DOWNLOAD statement regarding other online
databanks (jobindsats.dk for instance). Note that you can import a px file with
IMPORT<px> or IMPORT<px array>.

The data is downloaded into the first-position databank. If you can, it is advised to
put the time element/code last in the .json definition file. If this is not done, Gekko
will proceed anyway, but loading the data will take a bit more time.

Syntax

download < ARRAY > url filename DUMP=...;

ARRAY (Optional). If this is set, and DUMP is not used, Gekko will put the
data into array-timeseries rather than normal timeseries. If DUMP is
used, you may use IMPORT <px array> afterwards.

url Url (web address) to the databank. Note: the web address should be
in quotes.

filename Filename of the .json file defining what data to download. Remember
to put the time dimension as the last dimension in your .json file.

DUMP= (Optional). Name of the file in which to store the contents of the
download (in this case, a px-file). Beware that when importing the
px file afterwards, you should consider using import<px

variablecode> if you want the dimension codes to correspond to

what you get with a normal DOWNLOAD (that is: shorter i length).

Examples

Example:

reset;
option freq m;

https://www.scb.se/en/services/statistical-programs-for-px-files/

253Gekko User Manual

T-T Analyse

time 2000 2016;
download 'https://api.statbank.dk/v1/data' statbank.json;
plot {'*'};

This imports data from api.statbank.dk, with the file statbank.json file describing what
data to download.

----------------------- statbank.json

{
 "table": "pris6",
 "format": "px",
 "valuePresentation": "Value",
 "variables": [
 {
 "code": "VAREGR",
 "values": ["011200", "011100"]
 },
 {
 "code": "enhed",
 "values": ["100"]
 },
 {
 "code": "tid",
 "values": ["*"]
 }
]
}

You may use ["*"] to get all values of the field. The resulting series are called

pris6_VAREGR_011200_enhed_100 and pris6_VAREGR_011100_enhed_100.

After the DOWNLOAD statement, these two timeseries are available in the first-
position (Work) databank. The above provedure can be split into two parts (first
dumping the download as data.px, and then importing that file):

reset;
option freq m;
time 2000 2016;
download 'https://api.statbank.dk/v1/data' statbank.json dump =
data;
import <px variablecode> data; //variablecode option to get the
same dimension names as normal DOWNLOAD
plot {'*'};

If you prefer to use array-series, you may use that <array> option:

254 Gekko 3.1.x help system

T-T Analyse

reset;
option freq m;
time 2000 2016;
download <array> 'https://api.statbank.dk/v1/data' statbank.json;
plot {'*'};

or in two steps:

reset;
option freq m;
time 2000 2016;
download 'https://api.statbank.dk/v1/data' statbank.json dump =
data;
import <px array> data;
plot {'*'};

This produces array-series pris6['011200', '100'] and pris6['011100', '100'].

Because of the leading zero of the first element, you cannot use for instance
pris6[011200, 100] to refer to the first array-series (it will be understood as

pris6[11200, 100]).

Setting up the .json file

For users of statistikbanken.dk, you may construct the .json file interactively as
follows:

Go to https://api.statbank.dk/console

· Under (1) choose "Retreive data".
· Under (2), type the table name under "Tabel id" (for instance pris6 or folk2). You

may find the table name by browsing statistikbanken.dk. Under "Format" choose
"PX". Click "Variable- and value codes" and choose the fields you want to obtain as
dimensions of the array-series (it is preferred to choose time as the last
dimension). You may choose particular values ("Value-ids") for the fields, or simply
* for all values. Click "Download the result as file".

· Under (3), click "Execute".

Now you should download a data.px file that can be read into Gekko with import

<px array> data;. Try disp pris6; if you have been downloading the pris6 table,

in order to see the dimensions. Next, copy-paste the .json code under (3) into a new
file statbank.json, and put the file into the Gekko working folder. After this, you

should be able to use download 'https://api.statbank.dk/v1/data'

statbank.json; to download the data directly into Gekko.

Reading the px format

https://api.statbank.dk/console

255Gekko User Manual

T-T Analyse

The PC-Axis px format is a flexible data format well suited for multidimensional data.
The format is used by many statistical offices in different countries to let their users
retrieve statistics. Gekko does not use all of the contents of a px file. The way Gekko
reads it is the following:

For instance, the timeseries name
PROD01_saesonkorrigering_EJSAESON_brancheDB07_BC may be composed from the

px file (and the timeseries may get the following label (metadata): "Ikke
sæsonkorrigeret, BC Råstofindvinding og industri"). The timeseries names and data
are extracted as follows:

· MATRIX= . Gets the table name from this (used in the timeseries names), for

instance PROD01.

· CODES("tid"). Decodes the time periods used. The alternative CODES("time") is

allowed.
· CODES(...). Gets dimension names and dimension elements from these CODES-

fields, for use in the timeseries names. For instance, the name part
brancheDB07_BC, where the first part (brancheDB07) is the dimension name, and

the last part (BC) is the dimension element. Read more about abbreviated codes in

the following section.
· VALUES(...). Only used for metadata in the timeseries (timeseries labels).

· VARIABLECODE(...). These fields provide shorter names for the variables, for

instance VAREGR instead of varegruppe. This is automatically activated regarding

the DOWNLOAD statement, but for IMPORT<px> you have to activate these shorter

names with IMPORT<px variablecode>.

· DATA= . Read the data from here. If, for instance, there is one dimension with 3

elements, and another with 4 elements, Gekko expects 12 numbers in all. Gekko
will not accept if a number is split between lines, and numbers should preferably
always be followed by a blank also at the end of the line (this is recommended in
the px definition). Gekko will count the numbers, and a warning is issued if there
are too few numbers compared to the span of the dimensions. In that case, the
data may be scrambled/misaligned in Gekko, so take care! If there are too many
numbers, Gekko will fail with an error.

· STUB= . Is not used!

Note that some sources of px files provide very long single lines of data (thousands of
characters). If such a file is opened in a text editor and saved afterwards, the editor
may insert line breaks that may render the file unreadable in Gekko (because
numbers become split between lines).

Abbreviated codes

The codes inside the px file are ofte very verbose, so if possible, the often shorter
dimension names and dimension elements from the .json file are used instead. For
instance, in the .json file in the above example, the dimension VAREGR is queried,

asking for the elements 011200 and 011100 (this is done in .json with "code":

https://www.scb.se/en/services/statistical-programs-for-px-files/

256 Gekko 3.1.x help system

T-T Analyse

"VAREGR", "values": ["011200", "011100"]). But in the returned px file, we get

the following line: CODES("varegruppe")="011200","011100";. Here, the element

names are unchanged, but the dimension name is changed from VAREGR to

varegruppe, the latter being more verbose. The former name is used if you download

normally with the DOWNLOAD statement, whereas the latter name is used if you for
instance first download a px file (with dump=... option) and then read the px file with

import<px>. To get Gekko to use the shorter codes when importing, you may use the

variablecode option: IMPORT<px variablecode>.

For non-array downloading, the dimension elements (CODES elements) may be
adjusted compared to the .px file. Any characters æ, ø, å, Æ, Ø, Å are changed into ae,

oe, aa, AE, OE, AA, and subsequencly any character that is not a...z or 0...9 is

removed (including hyphens - and underscores _). But normally, there are not too

many "illegal" characters in px CODES.

Note

There is currently (March 2024) a limit of 1.000.000 observations when downloading,
cf. changelog. Users often download data over a large period, and the issue is that
data is often changed only in a few periods at the end of the sample (still, the users
often download the whole period to guard against changes in old "historical" data).
DST has said that it would be possible to implement a feature that indicates which
periods of a given sample contain changed data since a given previous download
date. With such a feature, a lot of redundant downloading could be avoided, and the
new downloaded data could simply be merged with the older data from the existing
Gekko databank (Gekko has features to do such merging easily). This principle is
known from incremental backups, and from time to time the full dataset could be
downloaded (for safety).

For more advanced px reading, you may take a look at the pxr package in R.

Related statements

IMPORT, READ, OPEN

https://www.dst.dk/da/Statistik/brug-statistikken/muligheder-i-statistikbanken/api#betalog
https://cran.r-project.org/web/packages/pxR/

257Gekko User Manual

T-T Analyse

4.3.25 EDIT

The EDIT statement uses Notepad to open up the designated file. The statement is
practical for editing Gekko program files (.gcm), file lists, table or menu files, data
files like .csv, .prn, etc. See also XEDIT for xml files.

You may use remote control for Gekko program files, cf. option interface remote

= yes|no;.

Syntax

edit filename ;

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip paths"

are allowed too (for instance c:\projects\data.zip\bank.gbk).

See more on filenames here.
The extension .gcm is automatically added, if it is missing. If the
filename is set to '*', you will be asked to choose the file in Windows
Explorer.

Examples

You may use this to open up the file forecst1.gcm from the working folder:

edit forecst1;

The .gcm extension is automatically inserted. You may select .gcm files like this:

edit *;

This will open up a file dialog with .gcm files to choose from.

Note

258 Gekko 3.1.x help system

T-T Analyse

Most people use a "real" external text editor like for instance Kedit or Sublime Text.
There are kex files available for Kedit, and for Sublime Text, see these open-source
modules for Sublime and Gekko integration (including remote control).

Related options

OPTION interface remote = no; [yes|no]

Related statements

SYS, XEDIT

https://www.kedit.com/
https://www.sublimetext.com/
https://github.com/MartinBonde/gekko_sublime
https://github.com/MartinBonde/gekko_sublime

259Gekko User Manual

T-T Analyse

4.3.26 ELSE

An ELSE statement is used in conjunction with an IF condition and an END statement.

Related statements

IF, ELSEIF, END, FOR

260 Gekko 3.1.x help system

T-T Analyse

4.3.27 ELSEIF

An ELSEIF statement can be used to filter through different conditions and is used in
conjunction with an IF condition and an END statement. The syntax for this is simpler
than using ELSE and IF instead, cf. the examples.

Examples

ELSEIF can be used to sift through possibilities, like this:

%x = 1;
if (%x == 1);
 //do something when 1
elseif (%x == 2);
 //do something when 2
elseif (%x == 3);
 //do something when 3
else;
 //do something when not 1, 2 or 3
end;

The same can be done without using ELSEIF, but in that case a number of END's need
to be added:

%x = 1;
if (%x == 1);
 //do something when 1
else; if (%x == 2);
 //do something when 2
else; if (%x == 3);
 //do something when 3
else;
 //do something when not 1, 2 or 3
end; end; end;

These END's are inconvenient and stems from the fact that the above code can be
reorganized into the following structure:

%x = 1;
if (%x == 1);
 //do something when 1
else;
 if (%x == 2);
 //do something when 2
 else;
 if (%x == 3);
 //do something when 3
 else;

261Gekko User Manual

T-T Analyse

 //do something when not 1, 2 or 3
 end;
 end;
end;

Here it is more clear why there are three ending END's. Using ELSEIF avoids that.

Related statements

IF, ELSE, END, FOR

262 Gekko 3.1.x help system

T-T Analyse

4.3.28 END

An END statement concludes a BLOCK, FOR (loop), IF/ELSEIF/ELSE (condition) or
FUNCTION/PROCEDURE statement. Gekko will fail if the END statement is missing.

To execute for instance a loop in the statement window, it is often convenient to use
[Ctrl+Enter] for newlines, and then execute all the lines as a unified block by

means of marking all the relevant lines and hitting [Enter]. In that case, the lines

are executed in the same way as using a Gekko program file.

Related statements

BLOCK, FOR, IF, FUNCTION, PROCEDURE

263Gekko User Manual

T-T Analyse

4.3.29 ENDO

ENDO and EXO are used for fixing, that is, setting variables to some values (goal),
and asking the system to solve this by means of other variables (means). The ENDO
statement works differently depending upon option model type (if a model is loaded

with the MODEL statement, this option is set automatically).
· With option model type = default, ENDO endogenizes a list of variables

(without date settings). A model must be defined beforehand.
· With option model type = gams, ENDO produces array-series with names starting

with 'endo_'. These array-series can subsequently be used to tell e.g. GAMS which
variables are fixed and non-fixed. ENDO must indicate dates.

Use UNFIX to remove previously set ENDO or EXO variables.

Syntax

default type: endo variable1, variable2, ... ;
gams type: endo <period0> variable1 <period1>, variable2
<period2>, ... ;

variabl
es

Default type: The variables are simple series names, or lists of these,
for instance x2, or {#m}.

Gams type: The variables are series or array-series names, for instance
x2 or x2[a, b]. For array-series, lists may be used, for instance x2[a,

 #i, #j], where #i and #j are lists of strings.

period0 A period is a Gekko time interval like <2020 2030> or <2020q1
2030q4>. The general period can be set in the period0 field, and this
period will be be used for the variables, unless specific periods are
given in the period1, period2, etc.

period1
,
period2
, ...

A period is a Gekko time interval like <2020 2030> or <2020q1
2030q4>. These specific periods will overrule the general period
(period0).

Examples

Gekko type

If you need to exogenize a variable fy, and endogenize a variable tg, use this:

264 Gekko 3.1.x help system

T-T Analyse

model forecst; //Gekko model, will set "option model type =
default"
exo fy; //a list of strings can be used, for instance {#m}
endo tg;
sim <fix>; //option <fix> must be used to enforce the
goals/means.

Gams type

The following example exogenizes variables x1[a, k1] and y1, and endogenizes

x2[a, k1] and y2.

option model type = gams; //may omit if a MODEL<gms> statement is
used first
exo x1[a, k1] <2022 2024>, y1 <2024 2026>; //or: x1['a', 'k1']
endo <2023 2025> x2[a, k1] <2021 2023>, y2; //or: x2['a', 'k1']
prt <2020 2027 width=20 n> exo_x1, exo_y1, endo_x2, endo_y2;

The resulting variables are as follows (note that these variables are overwritten if
they exist beforehand):

 exo_x1[a, k1] exo_y1 endo_x2[a, k1]
 endo_y2
 2020 M M M
 M
 2021 M M 1.0000
 M
 2022 1.0000 M 1.0000
 M
 2023 1.0000 M 1.0000
 1.0000
 2024 1.0000 1.0000 M
 1.0000
 2025 M 1.0000 M
 1.0000
 2026 M 1.0000 M
 M
 2027 M M M
 M

Instead of individual elements, you may use lists:

option model type = gams; //may omit if a MODEL<gms> statement is
used first
#a = a1, a2;
#k = k1, k2;
exo <2022 2024> x1[#a, #k];
endo <2021 2023> x2[#a, #k];
prt <2020 2025 width=20 split n> exo_x1, endo_x2;

265Gekko User Manual

T-T Analyse

The two lists are automatically unfolded into 2 x 2 = 4 elements (sub-series)
regarding exo_x1 and endo_x2:

 exo_x1[a1, k1] exo_x1[a1, k2] exo_x1[a2, k1]
 exo_x1[a2, k2]
 2020 M M M
 M
 2021 M M M
 M
 2022 1.0000 1.0000 1.0000
 1.0000
 2023 1.0000 1.0000 1.0000
 1.0000
 2024 1.0000 1.0000 1.0000
 1.0000
 2025 M M M
 M

 endo_x2[a1, k1] endo_x2[a1, k2] endo_x2[a2, k1]
 endo_x2[a2, k2]
 2020 M M M
 M
 2021 1.0000 1.0000 1.0000
 1.0000
 2022 1.0000 1.0000 1.0000
 1.0000
 2023 1.0000 1.0000 1.0000
 1.0000
 2024 M M M
 M
 2025 M M M
 M

Note

With a Gekko model, the ENDO and EXO statements are non-cumulative, so all
endogenized/exogenized variables should be present in the same ENDO/EXO
statement.

With a GAMS model, the ENDO and EXO statements are cumulative in the sense that
ENDO or EXO do not delete existing endo_... and exo_... array-series.

Related options

OPTION model type = default; //default | gams

266 Gekko 3.1.x help system

T-T Analyse

Related statements

EXO, SIM, UNFIX

267Gekko User Manual

T-T Analyse

4.3.30 EXIT

The statement EXIT terminates the application (without any warning, so use it
carefully). It is often used in order to run Gekko sessions from batch (.bat) files.

From the user interface, you may exit by means of 'File' --> 'Exit', or Alt+F4. To
stop/abort a program while it is running, you can use the red stop button in the user
interface.

Syntax

exit ;

Related statements

STOP, RETURN

268 Gekko 3.1.x help system

T-T Analyse

4.3.31 EXO

ENDO and EXO are used for fixing, that is, setting variables to some values (goal),
and asking the system to solve this by means of other variables (means). The EXO
statement works differently depending upon option model type (if a model is loaded

with the MODEL statement, this option is set automatically).

· With option model type = default, EXO exogenizes a list of variables (without

date settings). A model must be defined beforehand.
· With option model type = gams, EXO produces array-series with names starting

with 'exo_'. These array-series can subsequently be used to tell e.g. GAMS which
variables are fixed and non-fixed. EXO must indicate dates.

Use UNFIX to remove previously set ENDO or EXO variables.

Regarding syntax, examples, etc., see the ENDO statement.

Related options

OPTION model type = default; //default | gams

Related statements

ENDO, SIM, UNFIX

269Gekko User Manual

T-T Analyse

4.3.32 EXPORT

The statement writes the first-position databank or specific variables to a non-gbk file
in a particular format. Use WRITE to write to a .gbk file. Please note that the EXPORT
formats currently only supports series (or a matrix), not other variable types (you
may use WRITE to store these in .gbk files).

Compatibility note: If a time period is not indicated in the <>-option field, Gekko
3.0 will only export data inside the global time period. Before Gekko 3.0, all data
would have been exported. To emulate previous behavior, you can use
EXPORT<all>. Alternatively, you may set "OPTION bugfix import export = yes;". If
the option is set, IMPORT and EXPORT will work as in pre-3.0 versions. The option
will be removed at some point, so it is better to change occurrences of date-less
EXPORT to EXPORT<all> in old Gekko program files.

Excel note: When exporting xlsx files, if you encounter "dates" with integer
numbers larger than 20000, this may be because Excel shows the dates as numbers
rather than dates. You may try to change the format of the date cells: right-click,
"Format cells", "Date".

There is the following equivalence between EXPORT and WRITE: EXPORT =
WRITE<respect>, and the inverse: WRITE = EXPORT<all>. If a local period is used,
like export <1980 2020>, EXPORT and WRITE behave in the same way.

Syntax

export < period format ALL CAPS=... COLS DATEFORMAT=... DATETYPE=...
OP=... > filename ;
export < period format ALL CAPS=... COLS DATEFORMAT=... DATETYPE=...
OP=... > variables TO variables FILE=filename ;

period (Optional). Without a time period indicated, Gekko will write all the
data for all observations. When a period is indicated, the written
data(bank) is truncated.

format File format. Choose between ARROW, CSV, FLAT, GCM, GDX,
GNUPLOT, PRN, PYTHON, R, TSD, TSP, XLS/XLSX (regarding gbk,
see the WRITE statement).
· ARROW: The Apache Arrow format, see the examples under

R_RUN or PYTHON_RUN. IMPORT<arrow> does not work yet, but
will soon.

· CSV: Only frequencies matching the current frequency setting will
be written.

· FLAT: This is a special Gekko text-based format with lines that
resemble series statements. See more details in the IMPORT
section.

270 Gekko 3.1.x help system

T-T Analyse

· GCM: This will export series as Gekko SERIES statements. You can
use operators n, d, p, m or q, for instance export<gcm op=p>

{#vars} file=data; to put the percentage change in the #vars

timeseries into the file data.gcm. Alternatively, you may use ^=, %

=, += or *= operators, for instance export<gcm op='%='>

{#vars} file=data;. With the latter operators, you must enclose

them in single quotes ('). You may use export<gcm> to export in

levels (corresponding to operator n). A .gcm file is imported simply

with RUN. See the FLAT format for a faster version of this format.
· GDX: A binary GAMS-database. Note "OPTION gams exe folder =

..." where it is possible to point to the exact GAMS folder
(otherwise the system will try to auto-locate GAMS). It seems
necessary to use a 32-bit version of GAMS, since the current
version of Gekko is 32-bit. Please note that only array-timeseries
(see SERIES) are written to the .gdx file, and that Gekko does not
(at the moment) export timeless timeseries. GAMS can be freely
downloaded as a demo, and the demo will work fine regarding
Gekko EXPORT.

· GNUPLOT: Gekko writes a prn-like format suitable for gnuplot. If
no period is set, Gekko will write all years occurring in the first-
position databank. (Note: PLOT also implicitly produces such a
data file, see the temporary files folder, under \gnuplot. Location
is given with Help --> About... in the main Gekko window).

· PRN: Same behaviour as for the CSV type. Note that a similar
looking style of output can be accomplished with PRT (for instance
prt <n> x1, x2 file=output.txt;, and PRT has many

formatting options regarding decimals, etc.).
· PYTHON: Exports matrices as a Python script file. For instance like

this: #m1 = [1, 2; 3, 4]; #m2 = [11, 12; 13, 14]; export

<python> #m1, #m2 file=matrix.py; Only matrices can be

exported. For running Python more interactively, see
PYTHON_RUN.

· R: Exports matrices as a R script file. For instance like this: #m1 =
 [1, 2; 3, 4]; #m2 = [11, 12; 13, 14]; export<r> #m1,

#m2 file=matrix.r; Only matrices can be exported. For running

R more interactively, see R_RUN.
· TSD: For interchange with AREMOS and others. With option

'CAPS=no', all .tsd variable names are written as they are
(otherwise they will be written as all caps). When exporting daily
frequency data, all days of the week (Monday-Sunday) are
designated "active".

· TSP: Gekko will write TSP records (load statements). Works for
annual frequencies only.

· XLS or XLSX: Gekko will try to write the data to an Excel
workbook. Only frequencies matching the current frequency
setting will be written. If no period is set, global time will be used.
Cf. also the SHEET statement. The engine used for Excel writing
can be changed with "OPTION sheet engine = ...;". You can also
export a matrix to xlsx format.

https://www.gams.com/download/
https://en.wikipedia.org/wiki/AREMOS
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

271Gekko User Manual

T-T Analyse

ALL (Optional). With this option, all observations are exported,
regardless of the global time period. This corresponds to pre-3.0
Gekko behavior.

CAPS= When exporting a tsd file, the default is now to write the variable
names with all caps. This is because AREMOS fails if this is not done.
To avoid the caps, you may use option <tsd caps=no>.

COLS (Optional). For .csv, .prn or Excel files, this indicates whether the
timeseries are running downwards in columns.

OP= (Optional). For .gcm files, this value indicates the operator used for
the SERIES statements.

DATEFOR
MAT=
DATETYPE
=

(Optional). These options control the date format for .xlsx and .csv
files, and for the use of SHEET in Gekcel. DATEFORMAT can be either

'gekko' (default, for instance 2020q3 or 2020m11) or a format string

like 'yyyy-mm-dd', and the latter may contain a first or last

indicator, for instance 'yyyy-mm-dd last', which indicates for

quarterly, monthly or weekly data that the last day of the
quarter/month/week is used. DATETYPE can be either 'text' or

'excel'. In the former case, the dates are understood as text

strings (for instance '2020q3' or '2020-09-30' for a quarterly

date), and in the latter case (not relevant for .csv files), the date is
understood as an Excel date, which basically counts the days since
January 1, 1900. This number would correspond to 44104 for the
date 2020-09-31, and can be shown in Excel in different ways
depending upon date format settings, language settings, etc., but
the internal number itself is unambiguous. When using SHEET in
Gekcel, using DATETYPE='excel' is advised for consistency. [New in

3.0.5].

variables Variables or lists (wildcards and bank indicators may be used), and
items may be separated by commas. If no variables are given, the
full first-position databank is written.

TO You may use TO to rename variables before they are written, for
instance export <csv> x* to *_old file = test;, where Gekko

will look for variables starting with x, and the found variables will

acquire a _old suffix. This logic is similar to the COPY and RENAME

statements.

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be

272 Gekko 3.1.x help system

T-T Analyse

referred to with colon (for instance lib1:bank.gbk), and "zip paths"

are allowed too (for instance c:\projects\data.zip\bank.gbk).

See more on filenames here.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

Examples

You may export the contents of the first-position databank into a spreadsheet like
this:

export <xlsx all> data;

This produces the file data.xlsx. The <all> option makes sure that all observations
are exported: if omitted, only observations inside the global time period are exported.
If you only want subset of the variables or a subset of the time period, you may write
for instance:

export <2040 2050 xlsx> fy, fe, fm FILE=sim4050;

This produces the file sim4050.xlsx, containing the three variables over the period
2040-50. You may also use lists or wild-card lists regarding the variables:

export <xlsx> fX* file=fxfile;

This writes all variables in the first-position databank starting with 'fX' to the file
fxfile.xlsx.

export <2015 2020 gcm op=p> px* file=px;

This writes all variables in the first-position databank starting with 'pX' to the Gekko
program file px.gcm. The variables are written as percentage growth SERIES
statements (the data can be imported afterwards with RUN).

export <gdx> ats file=gamsdata;

This will export the array-timeseries ats to gamsdata.gdx.

273Gekko User Manual

T-T Analyse

Export of a matrix #m to Excel (matrix.xlsx):

export <xlsx> #m file = matrix.xlsx;

Note

You may use SHEET if you need to put expressions into an Excel sheet, or into
particular cells.

If option folder = yes, and option folder bank is set, the EXPORT statement

tries to write to that particular folder instead of the working folder.

See the Gekko menu 'Options' --> 'Program dependency tracking' or use option

global dependency tracking = ...; to activate dependency tracking, so that the

use of external files (for instance program files, read/written databanks etc.) are
shown as a list at the end of a Gekko session.

Related options

OPTION folder bank = [empty];
OPTION interface csv decimalseparator = period; [period|comma]
OPTION interface csv delimiter = 'semicolon'; [semicolon|comma|tab]
OPTION interface csv ignoremissing = no; [yes|no]
OPTION interface csv ndec = 100;
OPTION interface excel ignoremissing = no; [yes|no]
OPTION interface excel language = danish; [danish|english]
OPTION interface prn decimalseparator = period; [period|comma]
OPTION interface prn ndec = 100;
OPTION interface prn delimiter = blank; [blank|semicolon|comma|tab]

Related statements

IMPORT, READ, WRITE, SHEET

274 Gekko 3.1.x help system

T-T Analyse

4.3.33 FINDMISSINGDATA

This statement finds timeseries with missing values (only the timeseries with
frequency matching the global frequency setting).

Please note that the statement is not intended to be put inside a large loop. In such
cases, using the iif() function is better, see the end of the examples section.

Syntax

findmissingdata < period REPLACE=... > variables ;

period (Optional). Local period, for instance 2010 2020,

2010q1 2020q4 or %per1 %per2+1.

REPLACE= You may use for instance <REPLACE = 0> to
replace any missing values with 0 (or any other
value). When using the REPLACE options, lists are
not generated.

variables List of variable(s) to check, array-series can be
stated. If omitted, all series from the first-position
databank are investigated.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If no variables are given, all variables in the first-position databank will be
investigated

Examples

For instance, the statement

findmissingdata <2008 2010>;

looks for all series (including array-subseries) with any missing values in the period
2008-2010. You may restrict it like this:

findmissingdata <2008 2010> {#vars};

275Gekko User Manual

T-T Analyse

where the list #vars contains the names of the relevant variables you want to check.

Gekko outputs a number of lists from the investigation: for instance the list
#missingdata contains all variables with missing data in the first-position databank,

whereas the lists #missingdata_all, #missingdata_endo etc. are subsets of that list,

and correspond to the Gekko-defined lists #all, #endo etc. (i.e., all model variables,

all endogenous model variables, etc.).

findmissingdata <2008 2010 replace = 0> {#vars};

This does not produce any lists, but replaces any missing values with 0.

You may use wild-card lists if preferable:

findmissingdata <2008 2010> fX*, fYf*;

This will check all variables starting with 'fX' or 'fYf'. If a period is not given, the
global time setting is used.

If you need to change missing values to something else, using the iif() function is
often much more speedy. For instance:

reset; mode data; option freq m;
time 2017m7 2017m10;
x = 100, 200, m(), 400;
y = 110, 210, 310, 410;
z = iif(x, '==', m(), y, x);
prt <n> x, y, z;

The result is:

 x y z
 2017
 m7 100.0000 110.0000 100.0000
 m8 200.0000 210.0000 200.0000
 m9 M 310.0000 310.0000
 m10 400.0000 410.0000 400.0000

The x series has a hole in it (2017m9), and the iif() function checks (for each of the

four periods) if x has a missing value, and if so it uses the y value, else the x value.

So the resulting z series has the hole filled with the 2017m9 observation from y. The

m() function inside the iif() function just returns a missing value. A dollar conditional
($) works similar to iif(), and the replace() function can also be used.

Note

276 Gekko 3.1.x help system

T-T Analyse

The statement is convenient when developing new models or changing existing
models.

Related statements

COMPARE, DELETE, see also 'Utilities' --> 'Compare two databanks' (same as
COMPARE)

277Gekko User Manual

T-T Analyse

4.3.34 FIND

The FIND statement is typically used together with DECOMP. For a given variable x,

the FIND statement finds the equations that contain x. In addition, FIND can find the

shortest path between two variables (traversing through model equations).

Mouse use
· You can use mouse-hovering on equations and on the variables at the bottom

(click to select/retain a variable).
· Clicking an equation opens a DECOMP window.
· Ctrl-click selects/retains an equation, to look at it further in the lower part of

the FIND window.
· Double-clicking is not used for the FIND window in Gekko 3.1.16+.

Syntax

find variable ;
find variable TO variable ;

TO When using ... TO ... , Gekko will find the

shortest path between to variables in a model.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Examples

The following statement finds those equations that contain the variable x.

find x;

278 Gekko 3.1.x help system

T-T Analyse

The statement

find x[a] to y;

finds the shortest path between x[a] and y, traversing through model equations.

Related statements

DECOMP, DECOMP2, DISP

279Gekko User Manual

T-T Analyse

4.3.35 FOR

The FOR statement initiates a loop over strings, dates or values. Parallel loops
(tandem) over lists are also possible. Like the procedure and function definitions,
Gekko demands that the variable type is stated explicitly.

Guide: loops
For an easier introductory guide on Gekko loops, see this page.

Loop over elements

This elements loop loops through the list of elements on the right-hand side of '='.
Indicating the type here is mandatory in Gekko 3.0.

for [type] %x = items ;
 statements... ;
end ;

[type] The type must be indicated

%x The loop variable %x

items Any list of items. For a simple list of strings, you may use the
naked list a, b, c instead of ('a', 'b', 'c'), similar to how a

list may be defined using short form. You may also use for
instance lists (#mylist) or wildcards (e.g. fx*). You may also use

a list of values, for instance (1, 2, 3), or a list of dates, for

instance (2001q1, 2001q2, 2001q3).

Note that you may use parentheses, for instance for([type] %x = items), like

the IF statement.

Parallel loop over elements

This parallel string loop loops through the items in parallel/tandem. So in the i'th
iteration, %s1 is equal to the i'th item in items1, %s2 is equal to the i'th item in

items2, etc. The number of items must be the same in all the lists on the right-hand
sides of the '='. And the names on the left-hand sides of the '=' must be different.
The type must be stated.

280 Gekko 3.1.x help system

T-T Analyse

for type1 %s1=items1 type2 %s2=items2 type3 %s3=items3 ... ;
 statements... ;
end ;

%s1, %s2, ... The loop variables (for instance: strings).

items1,
items2, ...

Any list of items.

Note that you may use parentheses for(%s1=items1 %s2=items2 ...), like

the IF statement.

Date loop, FOR ... TO

A date loop loops through dates from a start date to an end date, with an optional
stepsize. (To use logical conditions on individual observations inside timeseries, see
the iif() function)

for date %d = date1 TO date2 BY step ;
 statements... ;
end ;

%d The loop variable d (of date type).

date1 Start date (inclusive), can be expression (including integer value).

date2 End date (inclusive), can be expression (including integer value).

step (Optional). An optional stepsize (default step: 1). Must be integer,
and may be negative. You may omit BY step if not needed. You may

use STEP instead of BY if preferred.

TO You may use '..' (range) instead: for instance for date %d =
2015q1 .. 2020q4;

Note that you may use parentheses for(date %d = date1 TO date2 BY

step), like the IF statement. If one or both of date1 and date2 are positive

integers, they will be interpreted as annual dates. You cannot combine parallel
looping with FOR ... TO syntax, but in that case consider using the seq() function

 (cf. "Examples (parallel loops)").

281Gekko User Manual

T-T Analyse

Value loop, FOR ... TO

A value loop loops through values from a start value to an end value, with an
optional stepsize. If the stepsize is negative, the values will decrement.

for val %v = val1 TO val2 BY step ;
 statements... ;
end ;

v The loop variable %v.

val1 Start value. Can be any number or expression.

val2 End value. Can be any number or expression.

step An optional stepsize (default step: 1). Can be any number or
expression, and may be negative. Omit BY step if not needed. You

may use STEP instead of BY if preferred.

TO You may use '..' (range) instead: for instance for val %v = 1 ..
100;

Note that you may use parentheses for(val %v = val1 TO val2 BY step),

like the IF statement. You cannot combine parallel looping with FOR ... TO syntax,
but in that case consider using the seq() function (cf. "Examples (parallel

loops)").

Examples (list)

You may wish to use some sector codes to print out production values easily:

for string %i = nf, nz, qz, o; //or: ('nf', 'nz', 'qz', 'o')
 prt fX{%i};
end;

This will print out the variables fXnf, fXnz, fXqz, fXo (one by one). You may use

a pre-defined list after the '=' in the for statement for string %i = #mylist;, or a

wild-card list (for string %i = ['fx*'];), or combinations of these.

Nested loop:

for string %i = a, b, c; //or: ('a', 'b', 'c')
 for string %j = x, y, z;
 prt var{%i}o{%j};

282 Gekko 3.1.x help system

T-T Analyse

 end;
end;

The loop prints 9 variables beginning with varaox, varaoy, varaoz, varbox,

varboy, ... etc. Note that you can easily pre- and suffix list items, cf. the LIST

statement.

Gekko can also loop over a list of values or dates, for instance:

option freq q;
for date %d = (2020q1, 2020q3); //omitting the parenthesis will
not work for dates
 time %d %d+1;
end;

This will set the period 2020q1-2020q2, and afterwards 2020q3-2020q4. Note the
parenthesis in the first line. Without it, the list will be understood as ('2020q1',
'2020q3'), that is, two strings and not two dates.

You may loop two or more lists in parallel, cf. the examples in the section "Examples
(parallel loops)".

Examples (dates range)

To compute the largest number of the variable fX{%i}, for the sectors a, b, nf, qf,

over the period %d1 to %d2:

%d1 = 1990;
%d2 = 2015;
#vars = a, b, nf, qf;
%max = 0; //initialize
for string %i = #vars;
 for date %d = %d1 to %d2;
 if (fx{%i}[%d] > %max);
 %max = fX{%i}[%d];
 %dmax = %d;
 %imax = %i;
 end;
 end;
end;
tell 'Largest value in sector {%imax}, period {%dmax}, value = {%
max}.';

After this loop, the string %imax will contain the sector name with the highest

number, the date %dmax will contain the period containing that number, and the

value %max will contain the max number. It is assumed that the values are all

positive, so that %max can safely start out with value 0.

283Gekko User Manual

T-T Analyse

This example sets the timeseries y, depending upon two timeseries x1 and x2, over

the period 2001-2003. For the observations where x1 > x2, y is set to x0, else to %v

(a scalar).

for (date %d = 2001 to 2003);
 if (x1[%d] > x2[%d]);
 y[%d] = x0[%d];
 else;
 y[%d] = %v;
 end;
end;

Note that such conditional setting of values via time-looping can be done much easier
with the iif() function:

<2001 2003> y = iif(x1, '>', x2, x0, %v);

You may loop over frequencies like this:

for string %i = a, q, m;
 option freq = {%i};
 xx = 100;
end;

After this, there will be series xx!a, xx!q and xx!m, corresponding to each of the

frequencies a, q and m. Looping over days includes possible leap days (February 29):

for date %d = 2020m2d27 to 2020m3d2;
 tell %d.string();
end;
//prints out 2020m2d27, 2020m2d28, 2020m2d29, 2020m3d1, 2020m3d2

Examples (values range)

A value loop is similar to date loops

for val %v = 10 to 0 by -2.5;
 tell 'Value: {%v}';
end;

This will print out the numbers 10, 7.5, 5, 2.5 and 0.

284 Gekko 3.1.x help system

T-T Analyse

for (val %v = 10 to 0 by -2.5)
 tell 'Value: {%v}';
end;

Equivalently, using parentheses (the semicolon in the first line may be omitted in this
case). This is just to avoid an error if the user assumes the same syntax as the IF
statement (which has mandatory parentheses).

Examples (parallel loops)

You may use parallel lists like this:

#m1 = a, b, c; //or: ('a', 'b', 'c')
#m2 = x, y, z;
for string %i = #m1 string %j = #m2; //or: for string %i = a,
b, c string %j = x, y, z;
 tell '{%i}, {%j}';
end;
//Result:
//a, x
//b, y
//c, z

In contrast to the nested loop above (that ran the PRT statement 3*3 = 9 times), this
loop only runs the TELL statement 3 times in all. The parallel loops is an easy way to
loop two (or more) lists in tandem. It is easier to use than doing the same loop
'manually', like the code below (produces the same output):

#m1 = a, b, c;
#m2 = x, y, z;
for val %v = 1 to #m1.length();
 %i = #m1[%v];
 %j = #m2[%v];
 tell '{%i}, {%j}';
end;

Parallel looping only works over two or more lists of same length, and parallel loops
do not allow the FOR ... TO syntax. However, for sequences, you may consider using
the seq() function to easily create the lists:

for val %i = seq(0, 2) date %j = seq(2020q3, 2021q1);
 tell '{%i}, {%j}';
end;
//result:
//0, 2020q3
//1, 2020q4
//2, 2021q1

285Gekko User Manual

T-T Analyse

If you need to use fractions or other values than integers, you could just define for
instance %i2 = %i/100 inside the loop to get 0.00, 0.01, 0.02.

Note

You may sometimes need to use an explicit type conversion from one scalar variable
type to another. In that case, use the conversion functions val(), date() or string().

Related statements

END, STRING, DATE, VAL, IF

286 Gekko 3.1.x help system

T-T Analyse

4.3.36 FUNCTION

FUNCTION is used to define user-defined functions. Such user functions may return a
variable (if you need to return multiple variables, consider returning a map). For a
function that does not return anything (a stand-alone function), you may consider
using a procedure instead. A procedure is essentially the same as a user function with
no return value.

Note that all Gekko functions (both in-built and user-defined) implement so-called
UFCS so that a function like for instance f(x, y) can be written as x.f(y), and f(x,

y, z) can be written as x.f(y, z).

You may decorate a user function with a <>-option field containing an optional time
period. User-defined functions allow optional parameters with default values, and the
function may prompt (ask) the user about these parameters, if f?(...) is used

instead of f(...), where f is the name of the function. See the LOCAL keyword if

you need variables defined inside the function to be inaccessible/nonexisting outside
the function.

Libraries
Beginning with Gekko 3.1.12, it is possible to organize user-defined functions and
procedures in libraries. These are basically just .zip-files that are loaded with the
LIBRARY statement.

Syntax

function type funcname(<date t1, date t2>, type1 var1 label1 = default1,
type2 var2 label2 = default2, ...);
 expressions... ;
end;

Unless the return type is void, the function body must contain at least one RETURN

statement, returning a variable.

t1, t2 (Optional). You may state optional time period parameters inside
<>-brackets, for instance function series f(<date %t1, date %

t2>, series x); after which %t1 and %t2 are assigned to for

instance 2020 and 2030 in the call f(<2020 2030>, z). If the

function is called without <>-brackets, for instance f(z) , the

parameters %t1 and %t2 are assigned to the local/global time period

instead. Using a <>-brackets in a function call does not in itself
change the local time period inside the function: use for instance the
BLOCK structure to do that. See examples.

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

287Gekko User Manual

T-T Analyse

type1, ... Types of incoming and outgoing variables: series, val, date,

string, list, map, matrix. You may also use the special name type

for parameters, which behaves 100% as a string inside the

function, but where the single quotes are omitted when calling the
function from outside (the shorter call f(y) is used instead of

f('y')).

If the function does not return anything, void can be used as type.

var1, ... The parameters/variables/expressions

label1, ... (Optional). A label for the parameter, used if the function is
promting (called with f?(...)). See more about prompting below.

default1, .
..

(Optional). A default value for the parameter. If the parameter is
omitted, the default value is used. If the function is asked to prompt
(called with f?(...)) and the parameter is omitted, the default

value is shown in the dialog box. In the dialog box, Enter or Escape

will return the default value, and fire up the next dialog box (for the
next optional parameter). If a ; is entered in the dialog box, all the

remaining parameters attain their default values, and no more
dialog boxes are shown. For string input, the use of quotes (') in the

input box is optional. At the moment, only val, date and string

types can be used for prompting input boxes.

funcname The function name

body The function body, that is, the statements to be performed. Use
RETURN to return a variable. If several variables need to be
returned, use a map or list to bundle them.

Tip: if you need to stop execution at a specific point/line to inspect variables etc., try
inserting a STOP statement. This will abort from all called program
files/procedures/functions, without executing anything more after the STOP (this is
not the case regarding RETURN). Therefore, STOP can be practical for debugging, etc.

Example

Value examples, including multiple return values

The function square() below returns the input VAL squared.

function val sq(val %x);
 return %x*%x;
end;

288 Gekko 3.1.x help system

T-T Analyse

//--------------
%y = sq(4);
%z = sq(sq(4));

So the VAL statement will produce a scalar value %y = 16, whereas %z = 256 (the

function calls may be nested).

Multiple variables may be returned, using a collection like for instance a map:

function map f(val %x, val %y);
 return (%sum = %x + %y, %product = %x * %y); //see definition of
a map
end;
//----------------------------
#m = f(3, 7);
prt #m.%sum, #m.%product; //10, 21

Date example

function date add3(date %d);
 return %d + 3;
end;
//------------------------------
%d3 = add3(2000q3);
prt %d3; //2001q2

String example

function string f(string %x);
 return %x + 'shine';
end;
//----------------------
%y = f('sun');
prt %y; //'sunshine'

If you prefer to omit the quotes when calling the function (that is, f(sun) instead of

f('sun'), you may use the name type:

function string f(name %x);
 return %x + 'shine'; //%x behaves completely like a string
end;
//----------------------
%y = f(sun);
prt %y; //'sunshine'

289Gekko User Manual

T-T Analyse

List example

function val ncommon(list #x, list #y);
 #temp = intersect(#x, #y);
 return #temp.len();
end;
//----------------------
#m1 = x1, x2, x3, x4;
#m2 = x2, x4, x5, x6;
%v = ncommon(#m1, #m2);
prt %v; //2 common elements

Series example

function series idx(series x, date %d);
 return x/x[%d];
end;
//--------------------------------------
time 2000 2010;
create x1; x1 = 10, 11, 12, 13, 11, 14, 16, 17, 15, 19, 20;
prt x1, idx(x1, 2002), idx(x1, 2008); //index 2002=1 and 2008=1

The function idx() provides indexed values.

Stand-alone function call example (void type)

function void f(val %x1, val %x2, val %x3);
 tell 'Sum is: ' + (%x1 + %x2 + %x3);
end;
//-----------------------------------
f(1, -2, 3); //result: 'Sum is: 2'. This is similar to a procedure
call
 // like "f 1 -2 3;" but without
the
 // problem of this being
interpreted as
 // "f (1-2) 3;", or "f -1 3;".

Combined example

function void load(string %n, string %label, date %d1, date %d2,
val %v);
 create {%n}; //must use {...}-braces to use as name.
 doc {%n} label = %label;
 {%n} <%d1 %d2> = %v;
 return;
end;

290 Gekko 3.1.x help system

T-T Analyse

//-----------------------------------
load('extra1', 'Helper variable', 1980, 2020, 100);
load('vat', 'VAT rate', 1980, 2020, 0.25);
disp extra1, vat;

The load() function will create the two timeseries extra1 and vat, both with labels,

and values 100 and 120, respectively. Since the function does not return any
variable, you may use a procedure instead.

Local period example

function series f(<date %t1, date %t2>);
 block time %t1 %t2;
 y = 100;
 end;
 return y; //return statement after the block ends
end;

time 2001 2001;
z1 <2002 2002> = f(); //z1 will be 100 in 2002
z2 <2002 2002> = f(<2003 2003>); //z2 will be 100 in 2003
p <2001 2003 n> z1, z2;

// Result:
// z1 z2
// 2001 M M
// 2002 100.0000 M
// 2003 M 100.0000

In the z1 statement, it is seen how the local period <2002 2002> is used inside the

f() function, by means of a BLOCK using the arguments %t1 and %t2. The f() function

itself is not called with time period, and since the time period is absent in the function
call, %t1 and %t2 are assigned to the local period set outside of the f() function.

The z2 statement illustrates a call of f() where a time period is present inside the f()

function. This overrules the local time period 2002-2002.

Promt and default values example

Gekko user-defined functions allow default values, and prompting regarding these.

function val f(val %x1, val %x2 'parameter 2' = 1, val %x3
'parameter 3' = 2);
 return 10000 * %x1 + 100 * %x2 + %x3;
end;
%y1 = f(9, 3, 4); //--> 90304
%y2 = f(9, 3); //--> 90302
%y3 = f(9); //--> 90102
%y4 = f?(9, 3); //enter 5 into the dialog box --> 90305

291Gekko User Manual

T-T Analyse

%y5 = f?(9); //enter 6 and 7 into the dialog boxes --> 90607
%y6 = f?(9); //enter 6 and ';' into the dialog box --> 90602
mem;

Beware that f() or f?() will fail with an error, since the first parameter is required.

As shown regarding the last function call, you may terminate a sequence of input
boxes with ;, which means the default values are used for the current and following

parameters. Pressing Enter or Escape returns the default value, and opens up the

next input box. For prompt input, only the variable types val, date, string and name
are supported at the moment (for name type, use for instance ... , name %x2
'parameter 2' = 'x', ...).

Note

See also PROCEDURE. A procedure can be thought of as a function without return
values. Procedures and user functions do not live in databanks, and are hence not
affected by CLEAR, CLOSE, READ, etc., but are removed with RESTART or RESET.

If a function is defined without <>-brackets to indicate time, it may still be called
with <>-brackets. In that case, the time period inside the brackets is just ignored.

Note that in Gekko 3.0, multiple return values are handled with maps. In Gekko's
before 3.0, so-called tuples were used to the same effect (such tuples do not work
anymore).

You can at most use 14 arguments, else use maps to bundle incoming arguments. Per
default, all arguments are passed by value, not by reference (cf. option system

clone). This means that functions cannot have so-called side-effects on the incoming

arguments. Maps can be practical for bundling output variables.

It is planned to introduce the type namelist in addition to the name type, so that an

argument like (a, b, c) can mean ('a', 'b', 'c') internally.

Related statements

LIBRARY, LOCAL, PROCEDURE, RUN

292 Gekko 3.1.x help system

T-T Analyse

4.3.37 GLOBAL

The GLOBAL statement is used to designate variable names that are to be located in
the Global databank. Following a global x; statement, any subsequent use of x

(without databank designation) will be understood as global:x.

After Gekko leaves the program file, function or procedure, these global variables live
on in the Global databank. Therefore, using GLOBAL or global:x = ... can be

practical regarding permanent storage of variables, for instance settings, without
polluting the 'normal' databanks.

Use global<all>; to render all variables global. After a global<all>, you can still

search for a bankless variable x outside of the Global databank by means of the

special all: designation (for instance y = all:x;).

See the description of the OPEN statement regarding different types of databanks in
Gekko.

See also the similar LOCAL statement, for local variables.

Syntax

global varnames;
global <all>;

varname
s

Comma-separated list of variables

ALL (Optional). With this option, all following (in the rest of the
program/function/procedure) left-hand side variables without explicit
databank designation are located in the Global databank. For a
variable x that you would like to keep in another databank despite

using a global<all>, you may use first:x or another bank

designation to circumvent global<all>.

Examples

global x, %y, #z;

After this, any use of x, %y, or #z (in the present program file, function or procedure)

will be interpreted as global:x, global:%y, and global:#z.

293Gekko User Manual

T-T Analyse

The Global databank is searched last, if databank searching is active (that is, data- or
mixed mode), cf. databank search.

Variables in the Global databank survive for instance READ and CLEAR statements,
and the Global databank is practical for storing long-term variables like setting etc.
For instance:

global:%per1 = 2010;
global:%per2 = 2050;
global:%path = 'm:\data\scenario2';
global:%unit = 1000;

As long as Global is not cleared explicitly (or a RESET or RESTART is issued), %per1,

%per2, %path, and %unit would be available. In data- or mixed mode, you can just

refer to for instance %per1, provided that there is no %per1 located in other open

databanks. If you want to be absolutely sure that the variable is taken from Global,
you can use global:%per1 to refer to the variable.

To avoid all the global: indicators, you may consider this alternative, using a

procedure for the global settings:

reset;
procedure globals;
 global<all>;
 %per1 = 2010;
 %per2 = 2050;
 %path = 'm:\data\scenario2';
 %unit = 1000;
end;
globals; //call the procedure
//
// the rest of the program here
//

Note

You are not forced to use the GLOBAL keyword, when operating with global variables.
Defining global:%per1 = 2010; first, and referring to global:%per1 later on is

possible, too. In that sense, the GLOBAL keyword is just for convenience, especially if
%per1 is used several times.

Variables in the Global databank are practical for settings, etc. These variables
survive READ, CLEAR, etc., and do not 'pollute' the first-position databank if this is
later on written to file.

294 Gekko 3.1.x help system

T-T Analyse

Note that the Local or Global databanks are always searchable, independent on MODE
etc.

Related statements

LOCAL

295Gekko User Manual

T-T Analyse

4.3.38 GOTO

GOTO can be used to transfer execution to some other point (TARGET) in the
program.

You should mostly use this statement to jump out of loops (cf. the example below). It
is not intended for jumping around in plain non-looping code, where the presence of
GOTO/TARGET may render the programs slow-running and hard to read.

Syntax

goto name;

The label must be name-like, that is, alphanumeric characters including underscore
(and not starting with a digit). You can not use scalars or expressions etc. as labels.

Examples

%sum = 0;
for val %i = 1 to 5;
 if(%i == 4);
 goto lbl1;
 end;
 %sum += %i;
end;
target lbl1;

This example skips the iterations before the fourth iteration is about to be executed.
The value of %sum will be 6 (= 1+2+3, not 1+2+3+4+5).

The example below is NOT what the statement is intended for:

tell 'a'; goto x1;
target x2; tell 'c'; goto x3;
target x1; tell 'b'; goto x2;
target x3; tell 'd';

This prints 'a', 'b', 'c', 'd', but please use other means to organize the flow of your
gcm-file!

Note

296 Gekko 3.1.x help system

T-T Analyse

Target names cannot be duplicated. An error will be issued.

The program will also fail with an error, if the label does not exist. But 'orphaned'
labels are accepted (a TARGET without a corresponding GOTO).

You cannot call a target inside a loop, from outside the same loop. For instance, the
following will fail, and an error will be issued:

%sum = 0;
goto lbl1;
for val %i = 1 to 5;
 target lbl1;
 %sum += %i;
end;

Eternal loops may be accidently created, for instance the line target lbl1; goto

lbl1; will run forever. This example is easy to spot, but such problems may arise if

the GOTO structure is misused. It has been proven that the GOTO statement is
technically superflous, and it can lead to so-called spaghetti code (cf. Dijkstra: "Go To
Statement Considered Harmful").

At a later point, BREAK and CONTINUE might be added to Gekko loops, too.

Related statements

TARGET

297Gekko User Manual

T-T Analyse

4.3.39 HDG

HDG (heading) will put the heading into a databank file. This only works for .gbk
files.

Syntax

hdg heading ;

heading A string

Examples

Putting a heading on a databank can be useful:

hdg 'Bank for multiplier analysis, simulated 2010-2050';
write mulbank ;
read mulbank ;

When reading the .gbk databank, info like this is printed on the screen:

 Info : Bank for multiplier analysis, simulated 2010-2050
 Date : 26-10-2011 11:13:31

The heading will also be shown in the databank list (F2 button).

Databank files in .gbk format can contain meta-information like headings and date
and time when written.

Related statements

WRITE, READ

298 Gekko 3.1.x help system

T-T Analyse

4.3.40 HELP

The HELP statement (or F1) provides access to Gekko help system. Through the HELP
statement it is possible to get quick help on a statement and its syntax, examples,
etc.

The help system opens up in a separate window and is of the type "Compiled HTML
Help" (stored in a .chm file). The help system is browsable/searchable. It is typically
not possible to open the .chm from a network drive. Per default Gekko copies the
.chm file to a temporary folder on the user's hard disk, in order to avoid this problem.

The help files are also available online here. The online version is not updated as
often as the inbuilt version (.chm).

Syntax

help statement;

statement (Optional). The statement on which help is needed. If the
statement does not exist, the help system will indicate that the
file is missing. Opening up with just help; is possible, but in

that case pressing F1 is easier. Using the menu: 'Help' -->
'Gekko help file' is also possible.

Examples

If, for instance, you are in doubt about the syntax regarding the SERIES statement,
you may look directly for this topic in the help file:

help series;

If you cannot remember that the name of the relevant statement is SERIES (for
instance), you may write

help;

In the section "Gekko statements", there is a page called "Statement overview"
where the statements are grouped by categories. Else, the .chm help system is also
searchable, cf. the "Search" tab.

https://t-t.dk/gekko/user-manual/

299Gekko User Manual

T-T Analyse

Related options

OPTION folder help = [empty];
OPTION interface help copylocal = [yes|no];

Related statements

OPTION

300 Gekko 3.1.x help system

T-T Analyse

4.3.41 IF

The IF statement is used for conditional execution of different blocks of statements.
The IF statement works with strings, dates, values (or for instance single timeseries
observations like x[2010]). In addition, the IF statement also supports comparing two

timeseries.

Guide: conditional statements
For an easier introductory guide on conditional statements in Gekko, see this
page.

You may sometimes need to explicitly convert the variables in order to compare them
(by means of the functions val(), date() or string()).

The IF-statements work with operators like for instance if (%x == 100); ...;

end;, testing if %x has the value 100. But IF-statements also works with single

values, like if (%x); ...; end;. In that case, the statements are not executed if %x

has the value 0, and are executed otherwise.

Two series may be compared using IF, for instance if (x > y); ...; end;. This IF

will be true if -- for all observations in the global time period -- all of the observations
of x are larger than y. Statements involving values are also allowed, for instance IF

(x > 0); ...; end; which is true if all observations of x (inside the global time

period) are positive. If you are comparing two values or series that contain missing
values, special rules apply: see this section.

If you need to perform IF-like operations inside a SERIES, you may use $-conditionals
on expressions, or the iif() function. See examples in the SERIES section.

Syntax

if (expression1);
 statements1... ;
elseif (expression2);
 statements2... ;
else;
 statements3... ;
end ;

expression A logical expression involving strings, dates or values (or single
timeseries observations like x[2010]), in addition to the logical

operators AND, OR, NOT, <, <=, ==, >=, >, <>. Please note that logical

equivalence uses == (and not = which is assignment) , and that

you must use <> for logical difference, not for instance !=.

301Gekko User Manual

T-T Analyse

If the expression is a scalar value, the statements are not
executed if the scalar value is 0, and are executed otherwise.

statements1 Gekko statements to be executed if expression1 is true.

statements2 Gekko statements to be executed if expression1 is false and
expression2 is true. (You may use as many ELSEIF's as you
please).

statements2 (Optional). Gekko statements to be executed if expression1 and
expression2 are both false.

Example

See more examples involving IF in loops in the FOR help file. A very simple example
using the string scalar variable.

%write = 'yes';
if (%write == 'yes'); //note the use of '==', using '=' here
will fail
 tell 'Yes chosen';
else;
 tell 'No chosen';
end;

To sift through more choices, you may use IF, ELSEIF, ELSE and END like this:

%windows = '<type something...>';
if (%windows == 'xp');
 tell'Windows XP was released in 2001';
elseif (%windows == 'vista');
 tell'Windows Vista was released in 2007';
elseif (%windows == '7');
 tell'Windows 7 was released in 2009';
elseif (%windows == '8');
 tell'Windows 8 was released in 2012';
elseif (%windows == '10');
 tell'Windows 10 was released in 2015';
elseif (%windows == '11');
 tell'Windows 11 was released in 2021';
else;
 tell 'Could not recognize the Windows version "{%windows}"';
end;

Inside the IF or ELSEIF parentheses you may use logical conditions like AND or OR:

302 Gekko 3.1.x help system

T-T Analyse

%v = 2000;
%s = '2000';
date %d = 2000; //without 'date' it becomes a value
if (%v == val(%s) AND %v == val(%d) AND date(%s) == %d)
 tell 'Ok';
else;
 tell 'Not ok';
end;

This will print 'Ok'. Note that you have to explicitly convert the variables to be able to
compare them, otherwise you will get an error. In this case, the conversion functions
val() and date() are used. The conversions may seem obvious and superfluous here,
but consider this example:

%s = '100';
%s1 = '33';
%v = 133;
if (%v == %s + %s1) //Will give type mismatch error
 tell 'Ok';
end;

This gives an error, because Gekko does not know how to compare the value 133
with the string '10033' (the sum of the two strings taken literally). So

if (%v == val(%s + %s1)) //will be false, comparing 133 and
10033

or this:

if (%v == val(%s) + val(%s1)) //will be true, comparing 133 and
133

To avoid ambiguities, the type system in Gekko is quite strict. To access individual
observations from a series in the first-position databank, use the variable[period]

syntax:

time 2010 2012;
//create data; //use this in sim-mode
data = 1, 2, 3;
date %d = 2011; %v = 2;
if(data[%d] == %v) tell 'Ok'; end;

This will print 'Ok'. To compare and transform timeseries depending upon individual
observations, see the iif() function.

The $-conditional can often be used instead of IF, for instance:

303Gekko User Manual

T-T Analyse

if(x[2015] == 100);
 y = 2;
else;
 y = 0;
end;

This can be stated in the following simpler way, using the $-conditional. You may also
use the similar iif() function.

y = 2 $ (x[2015] == 100);

To compare two series, or a series and a value, use the following:

time 2001 2003;
x1 = 2, 3, 4;
x2 = 1, 2, 3;
//the condition must be true for *all* observations in the global
time period
//for the IF statement as such to be true
if (x1 > x2); tell 'larger'; else; tell 'not larger'; end;
if (x1 > 1); tell 'larger than 1'; else; tell 'not larger than 1';
end;
//try changing x1 to x1 = 1, 3, 4 and run the two IF statements
again

Note

· Note the use of two equal signs (==) in IF-statements, and <> for logical difference.

· There is also an exist(x) function that returns 0 or 1 depending upon whether the

series x exists or not.

· See the GAMS-inspired $-condition or the iif() function for logical conditions inside
timeseries observations.

· You may ask a list if it has a particular member (will return 1 for true, and 0 for
false). For instance 'a' in #m is true if #m contains 'a'. Therefore, you may for

instance use if('a' in #m) without logical operator. The alternative syntax

#m.contains('a') is equivalent.

Related statements

ELSEIF, ELSE, END, FOR

304 Gekko 3.1.x help system

T-T Analyse

4.3.42 IMPORT

The IMPORT statement merges data (typically series) from an external file into the
first-position databank. The IMPORT statement is primarily for non-.gbk files, and it
should be noted that IMPORT without options restricts data to the global time period,
it only puts data into the first-position databank, and it merges data with any pre-
existing data in the first-position databank.

Import supports collapsing (aggregating) data points of high frequency into annual,
quartery, monthly, weekly or daily series, cf. the <collapse> option.

Compatibility note: If a time period is not indicated in the <>-option field, Gekko
3.0 will only import data inside the global time period. Before Gekko 3.0, all data
would have been imported. To emulate previous behavior, you can use
IMPORT<all>. Alternatively, you may set "OPTION bugfix import export = yes;". If
the option is set, IMPORT and EXPORT will work as in pre-3.0 versions. The option
will be removed at some point, so it is better to change occurrences of date-less
IMPORT to IMPORT<all> in old Gekko program files.

Tabular formats note: When using IMPORT with xlsx, csv or prn files, it is advised
to first set the global frequency (option freq = ...) to the frequency of the data

file (temporary frequency change can be done with block freq ...; import ... ;

end;). With DATEFORMAT and DATETYPE at their default values, dates like 1990a1,

1990y or 90 are treated as annual 1990. A date like 199003 is treated as 1990q3 or

1990m3, if global frequency is set to q or m. A date like 19900325 is always

understood as daily 1990m3d25. To import data with undated (u) frequency, the

global frequency should be set to u first.

IMPORT is intended for non-.gbk files, and can be thought of as a soft version of
READ. In contrast to READ, IMPORT does not clear the first-position databank
(instead it merges data), it only imports data corresponding to the global time period
(unless a time period or <all> is used), and it does not alter the Ref databank. There
are the following equivalences: IMPORT = READ<first merge respect>, and the
inverse: READ = CLEAR<first> + IMPORT<all> + CLONE.

Syntax

import < period format ALL COLS REF SHEET=... CELL=...
 NAMECELL=... DATECELL=... COLLAPSE=... METHOD=... DATEFORMAT=...
DATETYPE=... ARRAY VARIABLECODE > filename TO bankname;

period (Optional). Without a time period indicated, Gekko will import all
the data for all observations. When a period is indicated, the
databank is time-truncated.

305Gekko User Manual

T-T Analyse

format (Optional). Choose between AREMOS, CSV, FLAT, GDX, PCIM, PRN,
PX, TSD, TSP, XLS, XLSX.

· AREMOS: If you need more precision (significant digits) from
AREMOS than the TSD format can provide, you may use
AREMOS dump files. See example.

· CSV: Comma-separated file. Tabular format with rows/cols
consisting of names and dates. The global frequency (OPTION
freq) must correspond to the frequency in the file.

· FLAT: A Gekko-specific text-based format with lines that
resemble Gekko series statements. The format is: variable name
+ start date + end date + numbers. These items are separated
by blanks, for instance "x 2020 2022 1.5 -2.5 3.5". This
corresponds to x <2020 2022> = 1.5, -2.5, 3.5;. If only one

number is given, it will be used for the full time period. You can
use 'm' or 'm()' to indicate a missing value. Blank lines and lines
beginning with '//' are ignored. This format reads much faster
than 'real' series statements (which have to be parsed and
compiled before the values are extracted).

· GCM: Gekko can export timeseries as a .gcm file, using
export<gcm>. To "import" such a .gcm file, just RUN it (or copy-

paste the contents into your preferred .gcm file). Note that .flat
files are similar, but load much faster.

· GDX: A binary GAMS-database. Note option gams exe folder

= ... where it is possible to point to the exact GAMS folder

(otherwise the system will try to auto-locate GAMS). Even
without the option set, the auto-locator seems pretty good at
locating a 32-bit GAMS for a 32-bit Gekko, and a 64-bit GAMS
for a 64-bit Gekko version. Please note that the data is read as
array-timeseries (see SERIES), and that Gekko only reads
variables, parameters, sets (as Gekko lists) and domains. GAMS
can be freely downloaded as a demo, and the demo will work fine
regarding Gekko IMPORT. Default options are option gams time
set = 't'; option gams time prefix = ''; option gams

time offset = 0; option gams time detect auto = no;.

This corresponds to time having the set name 't', with natural
values, for instance 2020, 2021, etc. Default GAMS read is using
a fast reader (low-level API). If this poses problems, try the more
robust normal API by setting option gams fast = no;. See

more under OPTION.
· PCIM: A binary PCIM databank.
· PRN: The first item in the prn format must be either 'date' or

'name' to indicate the orientation. The global frequency (option

freq = ...) must correspond to the frequency in the file.

· PX: Imports a PC-Axis file. See also the <array> option. See
more info regarding the px format and how Gekko reads it under
the DOWNLOAD statement. Note that the time element of the
.px file (CODES("tid") or CODES("time")) should preferably be
stated last (this is to keep the .px data file organised in the time

https://en.wikipedia.org/wiki/AREMOS
https://www.gams.com/download/
https://www.scb.se/en/services/statistical-programs-for-px-files/

306 Gekko 3.1.x help system

T-T Analyse

dimension, which makes it load faster in Gekko). See also the
array and variablecode options: specifically it is advised to use

the variablecode option in order to get shorter timeseries

names in the non-array case (these will correspond to what you
get with direct DOWNLOAD).

· SDF: Imports 'sdf' format. The format is a tab-separated 'table'
without header row, with period in the second-last column, and
value (with decimal comma) in the last column.

· TSD: For interchange with AREMOS and others.
· TSP: Imports TSP records.
· XLS and XLSX: Tabular format with rows/cols consisting of

names and dates. See SHEET<import> to see how to load a
spreadsheet as a nested list of "cells" and scrape data from
these. The global frequency (option freq = ...) must

correspond to the frequency in the file. The engine used for
Excel reading can be changed with option sheet engine =

...;.

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip

paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

If the filename is set to '*', you will be asked to choose the file in
Windows Explorer.
The extension .gbk is automatically added, if it is missing.

ALL (Optional). With this option, all observations are imported,
regardless of the global time period. This corresponds to pre-3.0
Gekko behavior.

REF (Optional). Reads the file into the reference databank (shown as
REF on the F2 window list). Note that the Ref/reference databanks
does not show up in the F2 window if it is empty.

COLS (Optional). For .csv or Excel files, this indicates whether the
timeseries are running downwards in columns. Note that for .prn
files, you indicate this in the first 'cell' (date/name).

TO (Optional). If "TO bankname" is indicated, Gekko will put the data
into a seperate 'named' databank alongside the Work and Ref
databanks. For instance, after import <xlsx> adambk TO a;, you

may refer to the variables by means of colon, for instance prt

a:var1;. If you use import <xlsx> adambk TO *;, the bankname

will be the same as the file name. It should be noted that the

https://en.wikipedia.org/wiki/AREMOS
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

307Gekko User Manual

T-T Analyse

databank will be read-only (non-editable) when opened like this
(this functionality is a subset of the OPEN statement)

ARRAY (Optional). Regarding the PX format, if this option is set, Gekko
will put the data into array-timeseries rather than normal
timeseries (for the GDX format, Gekko always puts into array-
timeseries per default). The variablecode option will not matter if

array option is used.

VARIABLEC
ODE

(Optional). Regarding the PX format, if this option is set, Gekko
will use shorter variable names codes, for instance VAREGR instead

of varegruppe. Using this option is recommended, and the

DOWNLOAD statement uses it implicitly. The variablecode option

will not matter if array option is used.

SHEET= (Optional). The name of the sheet for your data, for instance
'Data1'

CELL= (Optional). For Excel files: the first cell of the data section.
Defaults to 'B2'. This allows for rows/columns between the dates,
names and data cells (cf. DATECELL and NAMECELL).

DATECELL= (Optional). For Excel files: the first cell of the dates labels.
Calculated from CELL location if not provided. This allows for

rows/columns between the dates, names and data cells (cf. CELL

and NAMECELL).

NAMECELL
=

(Optional). For Excel files: the first cell of the names labels.
Calculated from CELL location if not provided. This allows for

rows/columns between the dates, names and data cells (cf. CELL

and DATECELL).

COLLAPSE= (Optional). For Excel files with Excel-dates that are going to be
collapsed, this option can be set to either a, q, m, w or d, and

indicates the frequency that the data points are being collapsed
into. A data point is an Excel date and a corresponding value, for
instance 24-Dec-2010 with the value 123.45. In your Excel
version, this date might be shown as 24/12/2010 (British English)
or 12/24/2010 (US English) or in other formats, but internally
there is no confusion, since the Excel dates are stored as values
(technically the number of days since January 1, 1900). See the
collapse example below.

METHOD= (Optional: default = total). For Excel files using COLLAPSE, the
METHOD option sets how the collapse (aggregation) is performed.
Choose between total, avg, first, last, count, cf. also the COLLAPSE
statement. Use "method=count" to check that data is being

308 Gekko 3.1.x help system

T-T Analyse

collapsed as desired, and note that "method=avg" amounts to
"method=total" divided by "method=count". After collapsing into
monthly or quarterly timeseries, X12A may be used for seasonal
adjustment.

DATEFORM
AT=
DATETYPE=

(Optional). These options control the date format for .xlsx and .csv
files, and for the use of SHEET in Gekcel. DATEFORMAT can be

either 'gekko' (default, for instance 2020q3 or 2020m11) or a

format string like 'yyyy-mm-dd', and the latter may contain a

first or last indicator, for instance 'yyyy-mm-dd last', which

indicates for quarterly, monthly or weekly data that the last day of
the quarter/month/week is used. DATETYPE can be either 'text'

or 'excel'. In the former case, the dates are understood as text

strings (for instance '2020q3' or '2020-09-30' for a quarterly

date), and in the latter case (not relevant for .csv files), the date is
understood as an Excel date, which basically counts the days since
January 1, 1900. This number would correspond to 44104 for the
date 2020-09-31, and can be shown in Excel in different ways
depending upon date format settings, language settings, etc., but
the internal number itself is unambiguous. When using SHEET in
Gekcel, using DATETYPE='excel' is advised for consistency. [New

in 3.0.5].

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Examples

Reading data from the file data.xlsx (spreadsheet) can be done with:

import <xlsx> data;

or by the following:

import <xlsx> *;

and then selecting the file. You can use paths etc.:

import <tsd> otherbanks\adam3;

This will look for adam3.tsd in the subfolder 'otherbanks', relative the the Gekko
working folder.

309Gekko User Manual

T-T Analyse

Use the TO keyword like this:

import <xlsx> forecst2 TO f2;

This reads forecst2.xlsx into the named databank f2. After this, you may use for

instance prt f2:gdp; to print out the timeseries gdp from this databank. You may

use import <xlsx> forecst2 TO *; if you wish to use the filename as databank

name. It is possible to use for instance import <xlsx> * TO *;.

Using IMPORT for csv or Excel files is only implemented for 'well-formed'
spreadsheets. That is, with data starting in the first column and first row, and with
either timeseries running left-to-right (normal for .csv files) or downwards (less
normal). You may use import<csv cols> or import<xlsx cols>, if the timeseries

are running downwards. If you need to pick out data from Excel cells more arbitrarily,
see the SHEET<import> statement.

Example, collapse

Excel data may be collapsed from higher frequencies than daily (for instance hourly
observations), if the dates are represented as 'Date' types in Excel. Example:

import <xlsx sheet='oil' collapse=m> highfreq.xlsx;

The Excel sheet might look like this:

19-1-2011 20-1-2011 21-1-2011 24-01-2011 25-01-2011

oil_crude 1 2 3 4 5

oil_refin
ed

2 4 6 8 10

Using this, it is expected that the timeseries run row-wise, with data starting at cell
B2. Hence, the first date should be found at B1, and the dates should continue at
cells B2, B3, etc. The first name should be at cell A2, and the names should continue
at cells A3, A4, etc. In the example, the timeseries will be collapsed into monthly
frequency, in the following way. For each date in the dates row, the month of this
particular date is found, and the data is put into that particular month for each
timeseries. Since the default method is 'total', the data is being summed for each
month. You may use "collapse = q" or "collapse = a" to collapse directly into quarterly
or annual data (this is better and simpler than using the COLLAPSE statement on the
resulting monthly timeseries). For daily data, you may alternatively read these
directly with normal IMPORT, and later use COLLAPSE to collapse them into monthly
timeseries.

310 Gekko 3.1.x help system

T-T Analyse

If needed, the X12A statement can then be used for seasonal adjustments. If you
only want to obtain parts of the timeseries, you may restrict with a time period, for
instance:

import <2000m1 2018m5 xlsx sheet='oil' collapse = m> highfreq.xlsx;

If you prefer averages, use "method=avg":

import <xlsx sheet='oil' collapse=m method=avg> highfreq.xlsx;

To check that there is a similar number of data points for each month, you may use
"method=count" and print/plot the resulting series to check this (particularly relevant
regarding the start and end of the range of Excel dates). As noted above,
"method=avg" amounts to "method=total" divided by "method=count".

The data does not need to start at cell B2. If, for instance, the first data cell is at
G10, you may use:

import <xlsx sheet='oil' cell='g10' collapse=m> highfreq.xlsx;

Here, Gekko will expect the first date cell to be at G9, and the first name cell to be at
F10. If there are rows/cols between the dates/names and the data cells, you may
indicate the precise location of the dates/names:

import <xlsx sheet='oil' cell='g10' datecell='g1' namecell='a10'
 collapse=m> highfreq.xlsx;

In this particular case, the dates/names are located in the first row and column of the
spreadsheet. If the timeseries run downwards in columns, you may use <cols> for
transposed importing:

import <xlsx cols sheet='oil' collapse=m> highfreq.xlsx;

Note: when using this functionality, you may 'collapse' for instance monthly data into
its own frequency. In that case, using <method=count> should produce timeseries
with value 1, indicating that there is only 1 observation for each month (otherwise
something is wrong regarding the Excel sheet). Note also that dates in Excel are
represented as the number of days since January 1, 1900. These dates may contain
fractions, so 1 hour is represented by 1/24, etc. Keep this in mind if you are using
<datecell=...>. If this points to a sequence of numbers that are not dates, these
numbers may be erroneously interpreted as dates!

Example, AREMOS dump files

311Gekko User Manual

T-T Analyse

You may use a setup like the following to transfer timeseries with high precision from
AREMOS (the tsd format has rather limited precision).

!In AREMOS

procedure dump1 list m; !names without .bnk
extension
 set report columns 35 decimals 20;
 set databank limit 25000; !make sure there are no
'Search truncated by limit' warnings
 for i = #m;
 close *; clear;
 open #i;
 dump * #i|.dmp;
 close *; clear;
 end;
end;

list banker = bank1, bank2, bank3;
dump1 #banker;

This will produce the three files bank1.dmp, bank2.dmp, and bank3.dmp.

//In Gekko

reset;
global:#i = bank1, bank2, bank3;
time 1900 2500;
for string %i = #i;
 clear work;
 import<aremos>{%i}.dmp;
 write {%i};
end;

This will produce the three files bank1.gbk, bank2.gbk, and bank3.gbk. Only
timeseries can be transferred like this.

Note

To convert a .tsd file or other formats into a .gbk file, just import it with
IMPORT<tsd>, and WRITE it. Please note that a .tsd file operates with 8 significant
digits (or less), so there will typically be a loss of precision compared to a .gbk file
(which is in double-precision).

The option copylocal below copies the targeted file to a temporary file on the user's

local hard disk before reading. This copying is typically very fast, and afterwards
reading the temporary file is faster and more reliable, if the targeted file is located on

312 Gekko 3.1.x help system

T-T Analyse

a network drive. In general, this is a recommended option that alleviates some
potential network problems.

The cache = nongbk option is recommended, too. It does the following: (a) it finds

the data file, (b) it optionally copies it to the user's local hard disk, and (c) it
calculates a MD5 hash code from the file. If this hash code is already known, Gekko
uses a cache file representing the databank data, which in most cases is much faster
to read (it is in protobuf format: the same format that is used for .gbk files). So there
is a small speed penalty for calculating the hash, and a large speed gain for using the
protobuf/cache file.

See the Gekko menu 'Options' --> 'Program dependency tracking' or use option

global dependency tracking = ...; to activate dependency tracking, so that the

use of external files (for instance program files, read/written databanks etc.) are
shown as a list at the end of a Gekko session.

Related options

OPTION databank file cache = nongbk; [all|nongbk|none]
OPTION databank file copylocal = yes;
OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];
OPTION gams exe folder = [empty];
OPTION gams fast = yes;
OPTION gams time set = 't';
OPTION gams time prefix = '';
OPTION gams time offset = 0;
OPTION gams time detect auto = no;
OPTION gams trim = 0; //can ignore variables/parameters with few elements.
OPTION sheet engine = internal; //use 'excel' for the older .xls format

Related statements

READ, WRITE, EXPORT, OPEN, CLONE, DOWNLOAD, COLLAPSE

313Gekko User Manual

T-T Analyse

4.3.43 INDEX

The statement is used to search for variables in databanks, using wildcards or ranges.
The result of the search may be put into a list. When indexing timeseries, remember
that default INDEX only finds series of the currently active frequency from the first-
position databank. You may use : and ! to augment, for instance index *:*!*; to

find all timeseries of all frequencies from all databanks.

Note that 'naked' wildcards are allowed in this statement, so you may for instance
use a*b?c as wildcard instead of the more cumbersome {'a*b?c'}.

If one or more of the databanks contains many variables, this output may become
voluminous. Use INDEX<mute> or COUNT if you prefer to avoid the output. Wildcard
logic, including double and triple stars etc. (index **; or index ***;), is explained

more generally on the wildcards page.

The INDEX statement works for array-subseries too, for instance index x[a*b?c]; to

get the matching subseries of the 1-dimensional array-series x. Multidimensional

indexing follows the same logic, for instance index y[b*, *z];. To match all

subseries regardless of the number of dimensions, you may use double stars: index

y[**];.

For convenient searching of variable names you may use the keyboard keys [Tab] or

[Ctrl+Space] to get autocompletion on timeseries names (cf. here). For instance you

may type prt a*b?c and hit [Tab] or [Ctrl+Space] to select from a list of matching

series names.

Syntax

index <MUTE BANK=... SHOWBANK=... SHOWFREQ=... > type wildcards TO
 listname ;

MUTE (Optional). If set, Gekko will not print the list of found items on
the screen. The COUNT statement is essentially an
INDEX<mute>.

BANK= (Optional). A databank name indicating where the variables are
to be located.

SHOWBANK
=

(yes|no|all), default = 'yes'. If this option is 'no', banknames are
not included in the items. If the option is 'all', banknames are
always included in the items. If the option is 'yes' (default),
banknames are included in the items, except if the bankname is
the same as the first-position databank.

314 Gekko 3.1.x help system

T-T Analyse

SHOWFREQ
=

(yes|no|all), default = 'yes'. If this option is 'no', frequencies are
not included in the items. If the option is 'all', frequencies are
always included in the items. If the option is 'yes' (default),
frequencies are included in the items, except if the frequency is
the same as the current frequency.

type (Optional). Restrict the type of variables.

wildcard The variables to be searched for. You may use banknames to
indicate a particular bank, and you may separate the wildcards
with commas. In general, wildcards are of the form a*x to find all

variables starting with a and ending with x, or a?x to match only

one character. You may use syntax like x[a*, *b] for array-

series.

listname (Optional). The list name where the result is stored. The listname
may be for instance #m, or #(listfile m). The list is always a list

of strings (names of variables), not the objects themselves.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The following provides a list of all variables in all databanks, including banknames
and frequencies (beware, this output may be voluminous if the databanks are large):

index <showbank=all showfreq=all> ***; //all
variables in all banks
index <showbank=all showfreq=all> *:**; //the same
index <showbank=all showfreq=all> *:%*, *:#*, *:*!*; //the same

A string (or list of strings) representing variable names may be manipulated by
means of Gekko's inbuilt functions to handle these. Variable names here include
bank, frequency, indexes, etc., and examples of such functions could be setBank(),
removeBank(), replaceBank(), setFreq(), removeFreq(), setNamePrefix(), etc. There
are many more of such functions, see the functions section, under
‘Bank/name/frequency/index manipulations’.

For instance, if you have a list #m = ('x', 'y');, you may use prt {#m}; to print

out x and y, prt {#m.setBank('b')}; to print out b:x and b:y, or prt

{#m.setFreq('q')}; to print out x!q and y!q (here, prt b:{#m}; and prt {#m}!q;

will work, too).

Examples

315Gekko User Manual

T-T Analyse

The following INDEX statement will look for timeseries beginning with 'f' in the first-
position databank (and with the current frequency), and put the result into #m.

reset;
fa = 1; fb = 2; fc = 3;
index f* TO #m; //result: 'fa', 'fb', 'fc'
prt #m; //prints the three strings
prt {#m}; //prints the three series

INDEX will print the list of found variables, unless the <mute> option is used. To look
for the same pattern/wildcard in the Ref databank:

reset;
ref:fa = 1; ref:fb = 2; ref:fc = 3;
index ref:f* TO #m; //result: 'ref:fa', 'ref:fb', 'ref:fc'
prt #m; //prints the three strings
prt {#m}; //prints the three series

Here, the bankname is included, since Ref is not the first-position databank. You may
search in all banks like this:

reset;
fa = 1; fb = 2; fc = 3;
clone;
index *:f* TO #m; //result: 'fa', 'fb', 'fc', 'ref:fa',
'ref:fb', 'ref:fc'
prt #m; //prints the six strings
prt {#m}; //prints the six series

Instead of the above, you could alternatively use this:

reset;
fa = 1; fb = 2; fc = 3;
clone;
#m = ['*:f*']; //result: 'fa', 'fb', 'fc', 'ref:fa',
'ref:fb', 'ref:fc'
prt ['*:f*']; //prints the six strings
prt {'*:f*'}; //prints the six series themselves
disp *:f*; //also prints them: DISP does not need
{'...'}-syntax for wildcards.

In the light of the above example, the reader may ask: why use the INDEX statement
at all? The answer is three-fold:

· Often, one would just like to see the result of a wildcard search, without putting the
result into any list. To that end, for instance index *:f*; is practical.

· In addition to the above, for INDEX, the ['....'] part of the wildcard can often be

dropped, using the shorter index *:f*; instead of using {'*:f*'} or ['*:f*'].

The shorter notation does not work generally for all statement types, for instance

316 Gekko 3.1.x help system

T-T Analyse

#m = *:f*; or prt *:f*; would fail with an error. Do not expect "naked"

wildcards to work in statements that accept mathematical expressions.
· The INDEX statement provides options regarding the search. For instance, index

string %*; only matches string scalars. You may also indicate the bank in which

the variables are searched, and you may indicate how you want bank and
frequency information shown in the resulting list.

For instance:

reset;
fa = 1; fb = 2; fc = 3;
clone; //copies the series into the Ref
databank
index {'*:f*'}; //just prints 'fa', 'fb', 'fc',
'Ref:fa', 'Ref:fb', 'Ref:fc'
index *:f*; //same, shorter
index <bank=ref> f*; //same as ref:f*, result = 'Ref:fa',
'Ref:fb', 'Ref:fc'
index <showbank=no> *:f*; //omits banknames, result = 'fa',
'fb', 'fc', 'fa', 'fb', 'fc' (note dublets)
index <showbank=all> *:f*; //all banknames, result = 'Work:fa',
'Work:fb', 'Work:fc', 'Ref:fa', 'Ref:fb', 'Ref:fc'
index <showfreq=all> *:f*; //all freqs, result = 'fa!a', 'fb!a',
'fc!a', 'Ref:fa!a', 'Ref:fb!a', 'Ref:fc!a'
index string {'%*'}; //indicate type of variable, will
find all strings in first-position bank

Matching rules: the wildcard * does not just match any variable. The wildcard * does

not match starting characters % or # at the start of the variable name, nor does it

match any frequency indicators at the end of the variable name (for instance !a or

!q). So the following rules apply:

· * matches all series of the current frequency in the first-position databank

· *!* matches all series of all frequencies in the first-position databank

· %* matches all scalars in the first-position databank

· #* matches all collections in the first-position databank

· ** matches all variables in the first-position databank

The last two-star wildcard is special, and can be understood as ** = *!* + %* + #*. If

you need to perform the same search in a particular databank, or in all databanks,
just add bankname and colon:

· *:* matches all series of the current frequency in all databanks

· *:*!* matches all series of all frequencies in all databanks

· *:%* matches all scalars in all databanks

· *:#* matches all collections in all databanks

· *:** matches all variables in all databanks

You may of course indicate a particular databank, for instance b2:*. To match

everything, use the following three-star wildcard:

317Gekko User Manual

T-T Analyse

· *** matches all variables in all databanks, that is, 'everything'.

Array-series

You can match sub-series inside an array-series like this:

reset;
x = series(1);
x[ia] = 1; x[ib] = 2; x[ja] = 3; x[jb] = 4;
index x[i*]; //x[ia], x[ib]
y = series(2);
y[i, a] = 1; y[i, b] = 2; y[j, a] = 3; y[j, b] = 4;
index y[i, *]; //y[i, a], y[i, b]
index y[**]; //y[i, a], y[i, b], y[j, a], y[j, b]
index y[*, b] to #m; //y[i, b], y[j, b]
prt #m; //list: ('y[i, b]', 'y[j, b]')
prt {#m}; //y[i, b], y[j, b]

If you want to use sub-series wildcards when for instance printing or in general
expressions, you cannot use the 'naked' form of the wildcards (otherwise the meaning
of * would become ambiguous). Instead, elements containing wildcards must be

enclosed in single quotes ('), for instance:

//continued...
prt y['*', b]; //y[i, b], y[j, b]

Note

If you use variable names without wildcards or ranges, a kind of existence check is
performed. The variable name will be kept in the resulting list only if the variable
exists.

You may also try series ?;.

See also the wildcards page regarding wildcards, syntax, etc.

Related statements

LIST, COUNT

318 Gekko 3.1.x help system

T-T Analyse

4.3.44 INI

The INI statement runs any gekko.ini file, if this file is present in the program folder
(where gekko.exe is located) and/or working folder.

See concrete examples of INI files in the RESTART help file.

Syntax

ini ;

Note

The RESTART statement is in reality a RESET statement followed by an INI
statement. If no gekko.ini files are present, RESTART and RESET are equivalent.

Note: With option interface remote = yes;, Gekko may be remote-controlled

from a special remote.gcm program file in the working folder (cf. OPTION).

You maybe put a gekko.ini next to gekko.exe, so that every time Gekko is started up,
you can be sure that this gekko.ini is run. This can be practical for very general
settings, like MODE, initial time period, file folders etc. Alternatively, you can put a
gekko.ini in your working folder, so that this gekko.ini will be run when Gekko starts
up in that folder. You may put a gekko.ini in both locations, in which case the
gekko.ini next to gekko.exe will be run first.

Settings etc. in a gekko.ini file can with advantage be put in the Global databank, for
instance global:%start_period = 1980;. Variables in the Global databank survive

READ, CLEAR, etc., and do not 'pollute' the first-position databank if this is later on
written to file.

Related statements

RESTART, RESET

319Gekko User Manual

T-T Analyse

4.3.45 INTERPOLATE

INTERPOLATE transforms (disaggregates) a lower-frequency timeseries to a higher-
frequency timeseries, for instance converting annual data to quarterly data. Use
COLLAPSE to perform the inverse transformation. The statement ignores the global
time period, and a local time period cannot be set.

Instead of the INTERPOLATE statement, you may alternatively use the similar
interpolate() function, for instance x!a.interpolate(); (see under functions).

Syntax

interpolate highfreq = lowfreq method;

highfreq Higher frequency timeseries. Frequency can be indicated with
suffix !a, !q, !m or !w. Banknames may be used. Lists of names

can be used, like for instance {#m}.

lowfreq Lower-frequencey timeseries. Frequency can be indicated with
suffix !a, !q or !m. Banknames may be used. Lists of names can be

used, like for instance {#m}

method (Optional). Choose between:

· repeat: Repeats the lower-freq observation (rep may be used as

synonym).
· prorate: Also repeats, but divides the result so that the sum of

the higher-freq observations corresponds to the lower-freq
observation.

· dentona1: Uses the so-called Denton method, cf. this paper.

(reproduces the delta(x-z) column on page 101). The a1 suffix

means "additive" and "first degree of differencing". See example
below. Note that during calculations, no matter TIME settings or
local <...> period, the method will always use the longest

possible period where there is data for both the low-frequency
and high-frequency input series. In the interpolate() function

variant, TIME or <...> period only affect which periods are

updated after the calculation is performed. Beware that
dentona1 ensures that the resulting high-frequency series sum

up to (collapse into) the low-frequency input series, but the level
of the (collapsed) input indicator series should be comparable to
the level of the low-frequency input series (thus: be a good
indicator). If not, strange movements will occur at the beginning
of the resulting series!

https://www.oecd.org/sdd/21779760.pdf

320 Gekko 3.1.x help system

T-T Analyse

Note: default is repeat. You can alter the default with option

interpolate method = ... ; (cf. OPTION). More methods may

be added by popular demand.

· If a variable without databank indication is not found in the first-position databank,
Gekko will look for it in other open databanks if databank search is active (cf.
MODE).

· Looping: with a list like for instance #m = x1, x2;, you may use interpolate

{#m}!q = {#m}!a; to interpolate x1!a into x1!q, and x2!a into x2!q.

Examples

Use this to convert frequency:

reset; time 2018 2020;
x!a = 2, 3, 4;
interpolate x!q = x!a;
prt <n> x!a, x!q;

Since the method is repeat as default, this will create the quarterly timeseries x!q

where each quarterly observation in x!q is the same as the corresponding annual

observation in x!a. Alternatively, you use prorate option (interpolate x!q = x!a

prorate;). Now, the quarters will sum up to x!a instead of just being repeated.

Note that when interpolating from a, q or m frequency into w (weeks), the weeks at

the start/end will often become missing values, when the weeks do not fit exactly
inside the years, quarters or months. Consider this example:

reset; option freq m; time 2017m1 2017m2;
x!m = 1;
interpolate x!w = x!m prorate;
option freq w; time 2016w52 2017w9;
prt<n> x!w;
prt sumt(<2017w1 2017w8>, x!w); //1.8963

// x!w
// 2016w52 M //6 missing days
// 2017w1 0.2258
// 2017w2 0.2258
// 2017w3 0.2258
// 2017w4 0.2258
// 2017w5 0.2431
// 2017w6 0.2500
// 2017w7 0.2500
// 2017w8 0.2500
// 2017w9 M //5 missing days

321Gekko User Manual

T-T Analyse

The data for the months 2017m1 and 2017m2 are interpolated into the weeks 2016w52-

2017w9. Week #52 of 2016 actually contains January 1, 2017 (a Sunday), but since

the six previous days of that week are missing (December 26 to December 31, 2016),
the interpolation sets 2016w52 to missing values. Similarly, week #9 of 2017
contains the days February 27 and February 28, but the five subsequent days are
missing. The sum is not exactly 2, because one day of January and two days of
February are "spilled" (1.8963 = 2 – 1/31 – 2/28). (Weeks are defined and
numbered following the ISO 8601 standard, where days around New Year may belong
to week 52, week 53 or week 1. Active 'workdays' will be implemented, omitting for
instance weekends and holidays. For now, see the getSpecialDay() function).

Denton

The Denton method (dentona1) is more sophisticated. Example:

//Cf. example Denton: Adjustment of Monthly or Quarterly Series to
Annual Totals: An Approach Based on Quadratic Minimization
(https://www.oecd.org/sdd/21779760.pdf)
reset;
time 2001 2005;
y!a = 500, 400, 300,
 400, 500;
z!q = 50, 100, 150, 100, 50, 100, 150, 100, 50, 100, 150, 100,
 50, 100, 150, 100, 50, 100, 150, 100;
interpolate z2!q = y!a indicator=z!q dentona1; //Or: z2!q =
interpolate(y!a, z!q, 'dentona1');
p <n> z2!q.collapse(), y!a, z!q.collapse(); //Shows that z2!q
sums up to y!a, but z!q does not!
 //z!q.collapse()
should be comparable to y!a levels!
prt <n> z2!q;

// --> result:
// z2!q
// 2001
// q1 66.9868
// q2 126.9868
// q3 180.0000
// q4 126.0263
//
// 2002
// q1 65.0658
// q2 104.6553
// q3 144.7947
// q4 85.4842
//
// 2003
// q1 26.7237
// q2 72.5300
// q3 122.9032
// q4 77.8432
//
// 2004
// q1 37.3501

https://en.wikipedia.org/wiki/ISO_8601

322 Gekko 3.1.x help system

T-T Analyse

// q2 96.2128
// q3 154.4314
// q4 112.0058
//
// 2005
// q1 68.9360
// q2 124.1337
// q3 177.5988
// q4 129.3314

The above can be exactly reproduced with the tempdisagg package in R:

library(tempdisagg)
d.q <- ts(rep(c(50, 100, 150, 100), 5), frequency = 4)
d.a <- ts(c(500, 400, 300, 400, 500))
a1 <- predict(td(d.a ~ 0 + d.q, method = "denton", criterion =
"additive", h = 1))
print(a1)

--> result:
 Qtr1 Qtr2 Qtr3 Qtr4
1 66.98684 126.98684 180.00000 126.02632
2 65.06579 104.65527 144.79474 85.48420
3 26.72367 72.52999 122.90316 77.84319
4 37.35007 96.21279 154.43136 112.00577
5 68.93603 124.13372 177.59885 129.33141

Note

323Gekko User Manual

T-T Analyse

If a frequency indicator is omitted, Gekko will use the current frequency.

Interpolate with prorate option an collapse with total option are in a sense mirror

images, and for example for an annual timeseries x!a, x!a.interpolate('prorate')

will disaggregate into quarters, and
x!a.interpolate('prorate').collapse('total') will aggregate the quarters back

to the original annual series (this identity does not work if you are interpolating to
and collapsing from weekly data).

Related options

OPTION interpolate method = repeat; [repeat|prorate]

Related statements

COLLAPSE, SMOOTH

324 Gekko 3.1.x help system

T-T Analyse

4.3.46 ITERSHOW

The statement ITERSHOW show details of previous Gauss-Seidel iterations (cf. SIM).

Syntax

itershow < period > variables;

period (Optional). Local period, for instance 2010 2020, 2010q1

2020q4 or %per1 %per2+1.

variables Variable(s) or a list like {#m}.

Example

Use this syntax to show iterations for the variable gdp for the year 2010:

itershow <2010 2010> gdp;

Details

The statement produces output containing (for each iteration) the value of the
endogenous variable before and after simulating the Gauss-Seidel loop, and
differences, different criteria etc.

The output shows the iteration number, values before and after the iteration. The
next column "Hist. var" is the historical variance/variability in the data, obtained by
means of looking at lagged historical values of the endogenous variables.

The next column is the difference between the values before and after the iteration,
and "Relative1" is this difference divided by the historical variance. This is the
criterion Gekko uses for relative convergence per default.

The last column is the difference divided by the value before the iteration.
"Relative2" is the criterion used in the software package PCIM. So "Relative1"
corresponds to setting "OPTION solve gauss conv = conv1" (default), and "Relative2"
corresponds to setting "OPTION solve gauss conv = conv2".

325Gekko User Manual

T-T Analyse

It is often the case that "Relative1" is larger than "Relative2", so using this criterion
is stricter and would demand more iterations given the same relative criterion
(0.0001 for instance). Sometimes the inverse is true, however, especially when the
"Before" value is close to zero, whereas the historical variability is large. In that case,
the PCIM-like criterion ("Relative2") would be stricter. But often this will just
postpone the solution, in case the variable just happens to be have a solution close to
zero in that particular year (but without being close to zero in general). Examples of
this could be balances and flows, for instance the balance of payments, net
investments, revaluation ("omvurderinger") etc. Close-to-zero solutions for such
variables are different in kind from variables with levels generally close to zero (in
ADAM, for example interest rates). Looking at historical variability as done in Gekko
is actually a means to try distinguishing such classes of variables from each other
regarding convergence. If, for instance, the balance of payments can change by an
amount of around 20000 (million DKK) from year to year, and the true solution in a
particular year just happens to be 1 million DKK, we are not interested in obtaining
an extreme precision (i.e., many digits after the decimal point) regarding that
particular value. If the variable normally can change by an amount of 20000 from
year to year, a solution of 2 is nothing to worry about, even if the true solution is 1.
Whereas if the true solution regarding an interest rate is 0.04, an alternative solution
of 0.08 is worrying.

Note

In order for this statement to work, option solve gauss dump must first be set to

yes, and a simulation performed. Beware that setting this option consumes a lot of

RAM when simulating, and also slows simulations down. In case of a RAM error, try to
limit narrow the time period.

Related statements

SIM

326 Gekko 3.1.x help system

T-T Analyse

4.3.47 LIBRARY

The LIBRARY statement can be used to load and handle libraries of user-defined
functions, procedures or external files. A Gekko library is basically a .zip-file
containing user-defined functions/procedures inside Gekko program files (.gcm), and
data files inside the \data subfolder of the zip file (data files can be for instance table

or plot schemas, list files, databanks, etc.).

Don't be scared
Gekko libraries are designed to be as easy as possible to develop and use. If the
user knows how to zip one or more program .gcm files into a zip file, that will be
enough to create a library. There is no compiling, packaging, registering,
uploading, installation, etc. Just zip the file(s), and the library is ready to use and
share, and because of caching and so-called lazy loading, a LIBRARY statement
normally executes very quickly, even if the library is large.

Libraries are organized in a hierarchy, similar to how the databanks hierarchy works.
There is a special kind of library always available: the so-called Local library (empty

when Gekko starts up). The Local library stores all "normal" functions/procedures,

defined in a normal .gcm program file (or the statement prompt). With the LIBRARY
statement, additional libraries can be loaded from library files, and when a function
f() or a procedure f is called, Gekko searches for it in the hierarchical list of loaded

libraries. If you need to be sure that a function/procedure is taken from a particular
library, you may use colon (:) to indicate the library, for instance lib1:f(x). The

Local library is always searched first in the library hierarchy.

Inside the library .zip file, you may organize your .gcm files (containing
functions/procedures) as you please, but note that libraries operate with the special
subfolders \data and \meta. Gekko will not look for .gcm files with

functions/procedures inside these folders, which are used for possible data files
and/or meta information (descriptions etc.). If you put for instance a file data.csv in

the subfolder \data of the library lib1.zip, you may subsequently use read <csv>

lib1:data.csv (or just read <csv> data.csv;), and Gekko will find the file,

provided that the library is loaded (such library files are read-only). Note that when
referring to a library with colon (:), backslashes should never be used.

Syntax

library lib1, lib2, ... ; //Load these files/libraries
library lib1 as l1, lib2 as l2, ... ; //Alias names
library <close> lib1, lib2, ... ; //Close libraries (not possible
for the Local library).
library <close> *; //Close all libraries (except
Local library).
library <clear> local; //Clear the Local library.
library ?; //Show info about loaded
libraries.

327Gekko User Manual

T-T Analyse

To refer to a function/procedure from a particular library, use colon (:). For instance

lib1:f() or lib1:f. When loading a library with LIBRARY, if no file path is provided,

Gekko will look for library files in the working folder. If not found there, it will
additionally look in the folders designated with option folder command = ...,

option folder command1 = ..., and option folder command2 = This is

where Gekko also looks for normal .gcm files, cf. RUN.

Examples

As noted above, Gekko libraries are simply a collection of .gcm files (and possibly
other files) stored inside a .zip file. You may use any folder structure inside the .zip
file: this structure has no significance (apart from the folder names \data and \meta

being specially treated). Try creating the following two .gcm files (you may use EDIT
to do that, or use some other text editor). After the files are created, pack them into
individual zip files (you may alternatively download the two .zip files here and here).

lib1.zip, containing lib1.gcm

//lib1.gcm
function string f1();
 return 'lib1';
end;

lib2.zip, containing lib2.gcm

//lib2.gcm
function string f1();
 return 'lib2';
end;

function string f2();
 return f1();
end;

The two zip-files, lib1.zip and lib2.zip, should be located in the working folder.

Now, we can try out the libraries:

reset;
library lib1; //loads lib1.zip
prt f1(); //prints 'lib1'
library <close> lib1; //closes the library
prt f1(); //error
library lib1; //(re)load it
library lib2; //load lib2.zip, too. Library list is now
Local, lib1, lib2
library ?; //Info on libraries and their contents.
prt f1(); //prints 'lib1' because lib1 is before
lib2.

328 Gekko 3.1.x help system

T-T Analyse

prt lib2:f1(); //prints 'lib2' because lib2 is denoted
with colon.
prt f2(); //prints 'lib2' because own library f1()
version has priority
function string f1(); return 'Local'; end;
prt f1(); //prints 'Local', because local functions
have priority
prt f2(); //still prints 'lib2' because own library
f1() version has priority

When both lib1.zip and lib2.zip are loaded, lib1 is before lib2 in the

hierarchical list of loaded libraries. When f1() is called, Gekko first looks in Local

(empty), and then in lib1, where it is found. Therefore, prt f1(); prints 'lib1',

because it is the version of f1() in lib1 that gets called. When instead lib2:f1() is

used to denote the library explicitly, Gekko locates f1() in lib2 instead. In the last

line above, f2() is called. This function only exists in lib2, and the function basically

just calls f1(). When f1() is called from within f2(), Gekko first looks for f1() in

the same library as the calling function resides in (namely lib2). Therefore, prt

f2(); prints 'lib2'. As shown with the function statement above, if you define

f1() locally, without putting it inside a library zip file, it will take priority over other

versions of f1().

The library ?; statement will print the following on screen:

 If you for instance click more regarding lib2, its functions are shown:

If you click a function, its contents (Gekko code) is shown in the output tab.

External files inside libraries

As mentioned above, you may also put other kinds of data files inside a library. Such
external files must be placed inside a \data subfolder inside the .zip file. Such files

will be read-only and can be for instance table or plot schemas (.gtb/.gpt), Gekko
databanks, data files, etc. In general, when encountering a filename without a path,
Gekko will first look for the file in the working folder, and next in folders stated with
option folder ... ;. If not present there, and if libraries are loaded, Gekko will

also look for the file inside the \data subfolder of the libraries.

For instance, consider the plot schema file (setting the plot style to show
histograms):

329Gekko User Manual

T-T Analyse

pretty.gpt

<gekkoplot>
 <type>boxes</type>
</gekkoplot>

Try storing this as a file pretty.gpt, and put it inside a \data subfolder of a zip-file

called lib3.zip (or download the zip file from here). Next, place the zip file in your

working folder, and try the following:

reset;
time 2021 2025;
x1 = 2, 4, 3, 5, 4;
x2 = 3, 6, 5, 7, 8;
plot x1, x2; //normal lines
library lib3; //loads lib3.zip
plot <using=pretty.gpt> x1, x2; //boxes/histograms
option plot using = pretty.gpt; //set global plot schema
plot x1, x2; //boxes/histograms

If you want to be completely sure that a file originates from a particular library, you
may prefix the library name like lib3:pretty.gpt. Inside the \data folder of

lib3.zip, you may place pretty.gpt as you please. Examples of file types that can

be stored in the \data subfolder: databanks, data files, listfiles, model files, program

files, R/Python files, menu browser files, table files, plot files, download definitions
(.json), etc.

Difference between the Local library and loaded libraries

As mentioned above, external libraries are loaded in a lazy fashion, that is, the
functions/procedures inside the library are not actually parsed and compiled, until
they are called. Therefore, syntax errors in a function or procedure definition do not
show up immediately, in contrast to functions/procedures defined in a normal .gcm
file. Normal functions/procedures end up in the Local library, which is always first in
the hierarchical list of loaded libraries. The Local library cannot be closed, but it can
be cleared with library <clear> local;. The Local library never contains external

files, only functions and procedures.

Strategy when developing a library

If you are developing a library, you may proceed following these steps:

1. Define the function/procedure in a normal .gcm file (for instance called lib.gcm).

http://www.t-t.dk/gekko/lib3.zip

330 Gekko 3.1.x help system

T-T Analyse

2. Run the .gcm file with run lib.gcm;, and fix any syntax errors. (If

incomprehensible errors are encountered, you may try to out-comment the
FUNCTION statement and corresponding END statement for better error
messages).

3. When lib.gcm has no more syntax errors, try calling and testing the

function/procedure from the statement prompt. This will reveal possible run-time
errors.

4. If this works as expected, you may put the function/procedure into a library zip
file: zip lib.gcm into the zip file lib.zip. Try issuing the statement library

lib;, and try subsequently to call the function/library again.

5. Later on, you may need to change the function/procedure inside lib.zip.

Debugging from within a library zip file may be a bit confusing, because syntax
errors do not show up at once, but first when the function/procedure is called. But
you may always unpack the .gcm file inside the .zip file and try it out directly with
run lib.gcm;, essentially returning to step (2) above. When the file is error-free

and tested, re-zip it back into lib.zip.

Private functions/procedures/files

If the library lib1 contains a function f(), and this function calls a function g(),

Gekko will first look for g() in lib1 (similarly regarding procedures and external

files). In this sense, a library has a concept of "locality".

If you need further encapsulation to guard against naming ambiguities, there are the
following possibilities:

· Private names: After loading a library, per default all of its functions, procedures
and external files will be available from outside of the library. If you do not want
some helper functions/procedures/files to be accessible (exposed) for use from
outside of the library itself, you may prefix the name of the function/procedure/file
with __ (double underscore) to ensure privateness.

· 'This' keyword: Inside a library function/procedure, you may use this: prefix on

function/procedure/file names to refer to the library itself (guarding against bugs if
the function/procedure/file does not exist in the library, but accidentally exists
somewhere else).

How does this compare to R/Python packages?

A Gekko library is similar to a R or Python package. In R, packages are typically first
installed with syntax like install.packages("lib1"), and in Python with syntax like

pip install "lib1". After installation, in R the package is loaded with

library(lib1), and in Python with import lib1. Gekko skips the installation part

and only performs loading, so in Gekko, the statement library lib1; is comparable

to library(lib1) in R or import lib1 in Python. Gekko libraries are intentionally

simpler to create than their package counterparts in R and Python. Anyone capable of

331Gekko User Manual

T-T Analyse

putting a function or procedure into a .gcm file and zip this file should be able to
create a Gekko library!

Notes and details

For user-defined functions and procedures, beware that it is not advised to use the
same name as an in-built Gekko function or statement name (in that case, the in-
built version always takes precedence, unless an explicit library name is designated
with colon :). You may encounter the problem that an new Gekko version uses the

same function or statement name as your user-defined function/procedure. In that
case, it is advised to rename your user-defined function/procedure (Gekko will issue
warnings in such cases).

The names of the .gcm files outside of the \data subfolder of the zip file have no

significance. Some people prefer to store the function f() inside a file called f.gcm,

whereas others store all functions/procedures inside the same large .gcm file. The
.gcm files outside of the \data subfolder of a zip file may only contain functions or

procedures, nothing else (and nested functions/procedures are not legal). When
referring to functions/procedures/files inside a library file, the internal folder
structure of the zip file has no significance (other than external files reside in the
\data subfolder, and functions/procedures do not). You may define different versions

of the same function or procedures, provided that they have different numbers of
arguments (so-called overloads).

Libraries are loaded in a lazy fashion. So when referencing a library via a statement
like library lib1;, the functions/procedures inside lib1.zip are not actually

parsed and compiled, until a particular function/procedure from lib1.zip is called. In

order for LIBRARY to read a library .zip file as fast as possible, the statement uses
text heuristics to locate the functions/procedures inside the .gcm files of the .zip file.
The heuristics are mostly a question of locating the FUNCTION or PROCEDURE
statements and using these to cut the .gcm file into parts corresponding to different
functions/procedures. If a library function/procedure fails mysteriously, try to RUN
the unzipped .gcm file normally, too see if the library heuristics are to blame.

Library names must be of length > 1, because libraries can also be used to store
external files. The length restriction is to avoid the possibility of storing for instance a
pretty.gpt schema file for plots inside a c.zip file, and later refer to the schema file

with c:pretty.gpt. This would be confusing, since c: could be a drive letter. You

cannot use the following names as library names: Local, Global, this, null, or any

name that begins with Gekko.

Beware that functions/procedures in a zip library lib1 have a sense of "locality": if

function f() from lib1 calls function g(), Gekko will first look in lib1 for g().

Similarly for files: if function f() from lib1 uses a file data.csv, Gekko will first look

in the \data folder of lib1 for the file. You may use the special keyword this as

library name to be completely sure that a library function or procedure only may use
its own functions/procedures/files. For instance inside the function f(), you may call

the function this:g() or use the file this:data.csv. Since per default a library

https://en.wikipedia.org/wiki/Lazy_evaluation

332 Gekko 3.1.x help system

T-T Analyse

function or procedures first looks in its own library for a function/procedure/file,
this: is mostly used to guard against the following: consider a library function f()

that uses another library function g() from the same library. This works fine, but

then someone deletes g() from the library by accident. This would typically result in

an error, but what if -- by coincidence -- g() is defined in the Local library or in some

other library? Using this: guards against that possibility.

An even more restrictive option for library functions/procedures is to prefix the
names with double underscore (__), which makes them private (non-accessible from

outside of the library). In that case, f() of the library lib1 could call the private

function __g() (also from lib1), but this function is not callable from outside of lib1.

Regarding external files in the \data subfolder of the library lib1, you may follow

the same convention and prefix the file names with __. (these files will not be

accessible from outside of the library lib1). Functions/procedures/files with prefix __

are typically helper functions/files that the user does not want to expose for general
use.

If your library lib1 uses/depends upon the library lib2, it is safest to refer to the

components of lib2 with colon. So a function f() from lib1 may load the library

lib2 (with library lib2;, possibly first checking if it is already open with

if(isLibraryLoaded('lib2')), and then the function g() from lib2 can be called

with lib2:g() to make sure that g() is really from that library.

Instead of storing Gekko statement lines in an external .gcm file inside the \data

subfolder of a given library, consider storing the same lines as a procedure in the
non-\data part of the library.

Note that Gekko supports "zip paths", so that in principle you may "manually" refer
directly to a file inside a zip file. So using a file name like
lib1.zip\data\pretty.gpt is possible and will work without loading lib1.zip as a

library (using a zip path, Gekko will automatically extract pretty.gpt from inside of

lib1.zip). Still, loading the .zip file as a library in such cases is typically more

convenient.

Related options

OPTION folder command = [empty];
OPTION folder command1 = [empty];
OPTION folder command2 = [empty];
OPTION folder working = [empty];

Related statements

FUNCTION, PROCEDURE, RUN

333Gekko User Manual

T-T Analyse

4.3.48 LIST

A Gekko list contains sequentially ordered variables (elements) of any type. List
names always start with the symbol #, like the other collection types map and matrix.

You may refer to list elements by means of indexes, for instance #m[1] for the first

element of #m. Listfiles can be used, using for instance #(listfile m) instead of #m,

where the list elements are stored in the external file m.lst instead of in a databank.

Guide: lists
For an easier introductory guide on Gekko lists, see this page.

Upgrade note
Gekko 2.x uses syntax like list m = a, #m1, d, #m2;, which in Gekko 3.x

would be #m = a, {#m1}, d, {#m2}; (the string 'a' plus the strings inside #m1,

etc.).

Scrape data from xls(x) spreadsheets
See SHEET<import> to see how to load a spreadsheet as a nested list of "cells"
and scrape data from these with loops.

A general list is defined with parentheses and commas, for instance #m = ('a', 120,

2020q3);. In that case, the list contains a string, a value, and a date. In the special

case where all the list elements are simple alphanumeric words (including '_') without
special characters, you may use for instance #m = a, a38, 7z, 5, 007, 2001q1;

instead of the more cumbersome #m = ('a', 'a38', '7z', '5', '007',

'2001q1');. The 'naked' version without parentheses and quotes is practical for lists

of names etc. If all the list elements are values, like #m = 1, 2, 3;, a list of values

is produced instead of a list of strings (among other things, this is practical regarding
the series statement, for instance y = 1, 2, 3;). A naked list either returns a list of

strings or a list of values, cf. the page on naked lists.

You may may use the operators += and -= to add or subtract elements from a list

(this works for naked lists, too: #m = a, b; #m += c, d; #m -= c, d;). If you need

to use a naked list with one element, use a trailing comma, for instance #m = a,;.

This way, you can easily add or remove a single element like this: #m = a, b; #m +=

c,; #m -= c,;. Single-item lists (so-called singletons) can alternatively be stated as

#m = list('a') or #m = ('a',). Using #m = a or #m = ('a') will fail with an error,

since Gekko understands this as setting a list equal to a series or a string. An empty
list can be created with #m = list().

The first element of a list #m is #m[1], and the last element is #m[#m.length()].

Slices/sublists can be cut out by means of ranges, for instance #m[2..5]. Non-naked

lists may contain any other variable types, including lists, so #m = (1, (2, 3)); is a

nested/reursive list, where #m[2][1] would refer to 2 (because #m[2] refers to the

sublist (2, 3)).

334 Gekko 3.1.x help system

T-T Analyse

Syntax

#name = (expr1 REP n1 , expr2 REP n2, ...); //REP repeats the item
#name = name, name, ... ; //short form for 2 or more
string variables
#(listfile m1) = #(listfile m2); //use of listfiles m1.lst
and m2.lst (for lists of scalars, or nested lists of scalars)
#name = list(...); //useful for singleton
lists or empty lists like #m = list('a') or #m = list().
list #name = ...; //list keyword may be
added, but is typically not necessary.
list ?; //show/count lists in open
databanks

It is no longer legal to use for instance list m = ... ;, omitting the # on the left-

hand side.

Referring:

{#m} //use braces {...} to use strings as variable names.

You may pick out individual items from a list with the []-brackets. For instance:

· #x[%i] = element number %i (a scalar)

· #x[%i1..%i2] = elements %i1 to %i2 (inclusive), returns a list (slice)

· #x[%i1..%i2, %j1..%j2] = matrix-like selection of nested list

· #x[%i1..%i2][%j1..%j2] = beware that this is different from above (nested

indexing).
· #x['fx*'] = returns a list of those string elements that start with 'fx'

· #x['f?a'] = strings that match the pattern 'f?a'

· #x['pxa'..'pxqz'] = strings in the range 'pxa' to 'pxqz' (both inclusive)

· #x['a'] = check if the string 'a' is an element in the non-nested list #x.

· #x['a', 'b'] = check if the list ('a', 'b') is a sublist in the nested list #x.

ALso works for more dimensions.

Use #x.length() or length(#x) to get the number of elements in #x, #x[0]

cannot be used for this anymore. In IF statements and $-conditions, you can use
the syntax if(#x['a'] == 1) or if('a' in #x) to condition on #x containing

some particular element.

Operators:

· #y = #x1 + #x2;. Same as #y = #x1.extend(#x2);. Adds the elements of #x2

to #x1, use of += is possible. Note that #x1 + %s is not legal (where for instance

#x1 is a list of strings and %s is a string): to append to each list item, use

#x1.suffix(%s) instead.

· #y = #x1 - #x2;. Same as #y = #x1.except(#x2);. Subtracts the elements of

#x2 from #x1. Use of -= is possible.

335Gekko User Manual

T-T Analyse

· #y = #x1 || #x2;. Same as #y = #x1.union(#x2);. Union of two lists, dublets

removed.
· #y = #x1 && #x2;. Same as #y = #x1.intersect(#x2);. Intersection of two

lists.

In order to generate sequences you can use the function seq(), for instance #a =

seq(1, 100); produces a list of values 1, 2, ... , 100, and that #a = seq(1,

100).strings(); produces a corresponding list of strings '1', '2', ... '100'.

The LIST keyword is optional and can typically be omitted. Use rep to repeat items.

For the last item, you may use rep * which has special capabilities in relation to

timeseries. You may use a list definition with parentheses (strict version) everywhere
a variable or expression is expected.

There are quite a lot of functions to deal with string lists, for instance sort() to sort
elements, unique() to remove dublets, prefix()/suffix() to add prefixes/suffixes to
elements, etc. You can also use the union(), except(), and intersect() functions for
lists of strings, or equivalently via operators ||, -, and &&. Please see the examples

below, and the functions section. Regarding string lists of variable names, there are a
lot of functions to handle banks, frequencies, indexes, etc., cf. the functions section,
under 'Bank/name/frequency/index manipulations'.

A listname always starts with the symbol '#', like the other collection types map and
matrix. If you prefer to refer to a list item by name instead of numbers/indexes, see
the MAP collection. In that case, you could use for instance #m['nairu'] or #m.nairu

rather than for instance #m[1] to refer to a particular named object in the collection

(this makes the programs easier to read).

String lists with variable names, optionally including banks, frequencies, indexes, etc.
are often used, and to refer to the variables themselves, {}-curlies must be used. For
instance: #m = ('x', 'b2:y!m[a, u]', '%z'); contains the strings corresponding

to x (series x without bank indication, and with default frequency), monthly array

series y from bank b2 with indexes [a, u], and finally a scalar %z. If you want to

refer to the variables corresponding to these strings, use {}-curlies, for instance
PRINT {#m};. This is the same as PRINT x, b2:y!m[a, u], %z;.

Lists of values are often used, for instance to define series. A list of values could be
#m = 1, 2, 3;, omitting the parentheses. If you need to use the sequential data in

linear algebra, instead of #m = 1, 2, 3; or #m = (1, 2, 3); you may use a row or

column vector instead, for instance #m = [1, 2, 3]; or #m = [1; 2; 3];. The latter

column vector is a bit more similar to the list in the sense that #m[1], #m[2] is

allowed regarding column vectors, where row vectors would have to use #m[1, 1],

#m[1, 2], etc. If a list of values is given as mathematical expressions, you must use

enclosing parentheses, for instance #m = (1/7, 2 + %v, 3*%v);.

All Gekko functions implement so-called UFCS so that a function like for instance
extend(#x, #y) can generally be written as #x.extend(#y). This makes chaining of

such function calls more readable, for instance #m = #m1.extend(#m2).except(#m3).

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

336 Gekko 3.1.x help system

T-T Analyse

List functions:

Note that some of the functions assume that the lists are lists of strings. This will be
fixed regarding values and dates.

Function
name

Description Examples

[x]-index Index: picks out a single
element. In contrast to R,
this does not return a 1-
element list containing the
variable. If you need that,
use for instance #m[3..3].
Returns: var

#m[3]; //the third element

[x1..x2]-
index

Index: picks out a range of
elements. You may omit x1
or x2.
Returns: list

#m[3..5]; //the third to
fifth elements

[x1, x2]-
index

For a nested list of lists,
#m[3, 5] will return the

same element as #m[3][5],

so this is just convenience
to make a nested list
accessible like a matrix. See
more here.
Returns: variable

[New in 3.0.6].

#m = ((1, 2), (3, 4));
prt #m[2, 1], #m[2]
[1]; //same

[x1..y1,
x2..y2]-
index
[x1..y1, x2]-
index
[x1, x2..y2]-
index

For a nested list of lists,
#m[2..3, 2..4] will select

the given 'rows" and
"columns", corresponding to
selecting a submatrix from
a matrix. Beware that in
general, #m[2..3, 2..4] is

completely different from
#m[2..3][2..4]. See more

here.
Returns: list
[New in 3.0.6].

// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
#m = ((1, 2, 3), (4, 5, 6),
(7, 8, 9), (10, 11, 12));
prt #m[2, 2..3];
prt #m[2][2..3]; //same as
above
prt #m[2..4, 2]; //matrix-
like selection
prt #m[2..4][2]; //different
from above!
prt #m[2..4, 2..3]; //matrix-
like selection
prt #m[2..4]

337Gekko User Manual

T-T Analyse

[2..3]; //different from
above!

append(x1,
x2)
append(x1,
i, x2)

Adds variable x2 as it is at
the end of list x1. Note that
if x2 is a list of for instance
3 items, only 1 element is
added (the list itself). If you
need to add the 3 elements
individually, use extend().

If used with i argument, x2
is inserted at index i,
instead of at the end. See
also extend().

To prepend, use append(x1,
1, x2).

Returns: list

#y = #x1.append(#x2); //or:
append(#x1, #x2)
#y = #x1.append(2,
#x2); //insert at position 2

contains(x1,
x2)

Checks if the list of strings
x1 contains the string x2.
Returns 1 if true, 0
otherwise. You may
alternatively use x2 in x1,

see the last example. See
also the count() and index()
functions. The comparisons
are case-insensitive.
Returns: val

%v = #x1.contains(%s);
if(#x1.contains(%s) == 1);
tell 'yes'; end;
if(%s in #x1); tell 'yes';
end;

count(x1,
x2)

Counts the number of times
the string x2 is present in
the list of strings x1. See
also the contains() and
index() functions.

Note: to obtain the number
of elements in a list, use
the length() function. The
comparisons are case-
insensitive.

Returns: val

%v = #x1.count(%s); //or:
count(#x1, %s)

338 Gekko 3.1.x help system

T-T Analyse

data(x) Accepts a string of blank-
separated values x and
turns them into a list of
values. This is handy for
long sequences of blank-
separated numbers, instead
of manually setting the
commas.
Returns: list

#m = data('1.0 2.0 1.5');

dates(x) Tries to convert each
element of the list x to a
date.
Returns: list

#y = dates(#x);

except(x1,
x2)

The except() function
subtracts x2 from x1. You
may alternatively use the
operator -. Only works for

lists of strings. See also
intersect() and union().

Was called difference() in
Gekko 2.0. See also
extend().

Returns: list

#y = #x1.except(#x2); //or:
except(#x1, #x2)
#y = #x1 - #x2; //same

#y -= #x1; //subtract from
itself

extend(x1,
x2)
extend(x1, i,
x2)

The arguments x1 and x2
must be lists. The function
inserts the elements of list
x2 one by one at the end of
(or at position i in) the list
x1. The resulting list may
contain dublets.

For two lists x1 and x2, you
may alternatively use the +

operator. See also except()
and append().

To pre-extend, use
extend(x1, 1, x2).

Returns: list

#y = #x1.extend(#x2); //or:
extend(#x1, #x2)
#y = #x1 + #x2; //same as
above
#y = #x1.extend(2,
#x2); //insert at position 2

#y += #x1; //add to itself

flatten(x) For at list x, the function
returns a flattened version

#m1 = (1, (2, 3));
#m2 = #m1.flatten(); //or:
flatten(#m1).

339Gekko User Manual

T-T Analyse

of the list. For instance, the
list (1, (2, 3)) is

transformed into a non-
recursive list of non-list
elements: (1, 2, 3).

Returns: list

index(x1,
x2)

Returns the index of the
first occurrence of the
string x2 in the list of
strings x1. Returns 0 if x2
is not found in x1. See also
the count() and contains()
functions. The comparisons
are case-insensitive.
Returns: val

%i = #x1.index(%s); //or:
index(#x1, %s)

intersect(x1,
x2)

The intersect() function
finds the common elements
of the two list of strings x1
and x2. The resulting list
will not contain dublets. You
may alternatively use the
operator &&. Only works for

lists of strings. See also
except() and union().
Returns: list

#y =
#x1.intersect(#x2); //or:
intersect(#x1, #x2)
#y = #x1 && #x2;

length(x) Returns the number of
elements in the list x. You
may use len() instead of
length().
Returns: val

%v = #x.length(); //or:
length(#x).
%v = #x.len(); //the same

list(x1,
x2, ...)

Returns a list of the
variables x1, x2, etc. The
function is handy for lists
with only 0 or 1 elements.
See examples.
Returns: list

#m = (); //will fail
#m = list(); //ok: empty
list
#m = (1, 2); //easy
#m = (1); //will fail
#m = (1,); //is ok
#m = list(1); //is ok

lower(x) Returns string elements in
the list as lower-case.
Returns: list

#y = #x1.lower(); //or:
lower(#x1)

340 Gekko 3.1.x help system

T-T Analyse

pop(x1, i)
pop(x1)

Removes the element at
position i in the list x1.
Removes the last element if
called with pop(x).
Returns: list

#y = #x1.pop(2); //or:
pop(#x1, 2)
#y = #x1.pop(); //last
element
#y = #x1.pop(1); //first
element

preextend(x
1, x2)

Same as extend(x1, 1, x2),
putting the elements of x2
in the first position of x1.

#y =
#x1.preextend(#x2); //insert
at position 1

prefix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 prefixed (prepended)
Returns: list

#y = #x1.prefix(%s); //or:
prefix(#x1, %s);

prepend(x1,
x2)

Same as append(x1, 1, x2),
putting x2 in the first
position of x1.

#y =
#x1.prepend(#x2); //insert
at position 1

sort(x)
sort(x,
'natural')

Returns a sorted list of
strings, provided that x is a
list of strings. Sorting is
case-insensitive.
When the 'natural'

argument is used, strings
containing numbers will sort
naturally, for instance
returning a8, a9, a10,

instead of a10, a8, a9.

Returns: list
Natural sort: [New in
3.1.10].

#y = #x.sort(); //or:
sort(#x)
#y = #x.sort('natural');

remove(x1,
x2)

Removes any string x2 from
the list of strings x1. See
also the except() function.
Returns: list

#y = #x1.remove(%s); //or:
remove(#x1, %s);
#y = #x1 - %s; //also
legal

replace(x1,
x2, x3)
replaceinside
(x1, x2, x3)
replaceinside
(x1, x2, x3,
max)

replace(): In the list of
strings x1, if this string
element is the same as x2,
x3 is inserted instead.

replaceinside(): the string
element has any occurences
of x2 inside the string
replaced with x3. The

#y = #x1.replace(%x2, %
x3); //or: replace(#x1, %x2,
%x3)

#y = #x1.replaceinside(%x2, %
x3); //or: replace(#x1, %x2,
%x3, 'inside')

https://en.wikipedia.org/wiki/Natural_sort_order

341Gekko User Manual

T-T Analyse

replacements may be
limited via the max
argument.

Returns: list

reverse(x) To be done

split(x, s) To be done

strings(x) Tries to convert each
element of the list x to a
string
Returns: list

#y = strings(#x);

suffix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 suffixed (appended)
Returns: list

#y = #x1.suffix(%s); //or:
suffix(#x1, %s);

t(x) For a nested list of lists, the
t() function returns the
transpose, similar to
transposing a matrix. [New
in 3.0.6].
Returns: list (of lists)

#m = ((1, 2), (3, 4));
p #m, t(#m);

union(x1,
x2)

The union() function finds
the union of the two lists.
Alternatively use the
operator ||. The resulting

list will not introduce
dublets, in contrast to the
similar + operator (simple

concatenation). Only works
for lists of strings. See also
except() and intersect().
Returns: list

#y = #x1.union(#x2); //or:
union(#x1, #x2)
#y = #x1 || #x2;

unique(x1) Retains only those elements
of list x1 that are unique
(list of strings only).
Returns: list

#y = #x1.unique(); //or:
unique(#x1)

upper(x) Returns string elements in
the list as upper-case.
Returns: list

#y = #x1.upper(); //or:
upper(#x1)

342 Gekko 3.1.x help system

T-T Analyse

vals(x) Tries to convert each
element of the list x to a
value
Returns: list

#y = vals(#x);

venn(x1, x2) For two lists of strings, this
function prints out lists
corresponding to a Venn
diagram.

That is, intersection and
two differences. For
instance, venn(#m1, #m2)

corresponds to printing out
the following:

· #m1 && #m2
· #m1 - #m2
· #m2 - #m1

See also intercept(),
except() and union().
Returns: nothing.

#m1 = a, b, c, d, e;
#m2 = c, d, e, f, g;
venn(#m1, #m2);

//Results:

//The following 3 strings are
in both lists:
//'c', 'd', 'e'

//The following 2 strings are
in list #1, but not in list
#2:
//'a', 'b'

//The following 2 strings are
in list #2, but not in list
#1:
//'f', 'g'

A string (or list of strings) representing variable names may be manipulated by
means of Gekko's inbuilt functions to handle these. Variable names here include
bank, frequency, indexes, etc., and examples of such functions could be setBank(),
removeBank(), replaceBank(), setFreq(), removeFreq(), setNamePrefix(), etc. There
are many more of such functions, see the functions section, under
‘Bank/name/frequency/index manipulations’.

For instance, if you have a list #m = ('x', 'y');, you may use prt {#m}; to print

out x and y, prt {#m.setBank('b')}; to print out b:x and b:y, or prt

{#m.setFreq('q')}; to print out x!q and y!q (here, prt b:{#m}; and prt {#m}!q;

will work, too).

Examples

Define a list:

#m = ('a', 'b', 'c'); //list of strings

343Gekko User Manual

T-T Analyse

#m = a, b, c; //naked list syntax, only allowed
for a list of simple names.
#m += d, e; //naked list adding two elements.
#m -= d, e; //naked list removing them again
#m += d,; //naked list adding one element,
note the comma
#m -= d,; //naked list removing it again,
note the comma
#i = x, y;
#m = x[a], x[#i]; //naked list allows indexes too
(#i is a list of strings)
#m += #m2; //adding another list
#m = 1, 3, 2; //list of simple numbers,
parentheses can be omitted
#m = (2020q1, 2020q4, 2021q1); //list of dates
#m = (a, b, c); //NOTE: this is a list of series
objects, not strings!
#m = (('a', 'b'), (1, 3)); //list of lists
#m = seq(1, 3).strings(); //the strings '1', '2' and '3'

If instead of for instance d, e, etc. above you need to use strings like %s1 or %s2, you

may use for instance #m += {%s1}, {%s2}; or #m += {%s},;.

As shown, for naked lists you may use indexes to state array-series, for instance
x[#i] is unfolded into x[a], x[b], x[c], if #i = a, b, c. In the last list, #m[1]

refers to the list ('a', 'b'), #m[2] refers to the list (1, 3), and for instance #m[1]

[2] refers to 'b'. To print a list, simply use prt #m;. If the list is a list of strings, and

you want to print the variables corresponding to the strings, use {}-curlies:

#m = ('a', 'b', 'c'); //list of strings, or: #m = a, b,
c;
prt #m; //print the raw strings
prt {#m}; //print the variables (series) a,
b, and c. Same as "prt a, b, c;".

There are two functions to add items to a list: append() and extend():

#m1 = (1, 2, 3); //or: #m = 1, 2, 3;
#m2 = (4, 5);
#m = #m1.append(#m2); //result: (1, 2, 3, (4, 5)),
nested list
#m = #m1.extend(#m2); //result: (1, 2, 3, 4, 5)

Gekko functions implement so-called UFCS, so the function append(#m1, #m2) may

alternatively be written #m1.append(#m2), moving the first argument of the original

function out of the parentheses. This provides a more fluent interface, and enables
easy chaining of list functions (see examples below). As it is seen, append() puts the
list #m at position 4 in #m1, whereas extend() unpacks #m2 and puts the two elements

at positions 4 and 5 in #m1. Therefore, if you need to add a single value to a list, use

append(), but if you need to add the elements of a list to another list, use extend():

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

344 Gekko 3.1.x help system

T-T Analyse

#m1 = (1, 2, 3);
#m = #m1.append(4); //result: (1, 2, 3, 4)
#m = #m1.extend(4); //Fails with an error

Instead of #m1.extend(#m2), the + operator can be used instead of extend() when

dealing with two lists:

#m1 = (1, 2, 3);
#m2 = (4, 5);
#m = #m1 + #m2; //result: (1, 2, 3, 4, 5), same as
#m1.extend(#m2)

It should be noted that #m1 + %s does not append %s to the list (but will fail with an

error). Use #m1.append(%s) or #m1 + list(%s) instead. In earlier Gekko versions,

the expression #m1 + %s appended %s to each element of #m1, but this behavior is

deprecated.

Lists in Gekko may contain dublets. Still, set operations are possible with the
functions union(), except() and intersect():

#m1 = ('a', 'b', 'c'); //or: #m1 = a, b, c;
#m2 = ('b', 'd');
#m = #m1.union(#m2); //result: ('a', 'b', 'c', 'd')
#m = #m1.except(#m2); //result: ('a', 'c')
#m = #m1.intersect(#m2); //result: ('b')

It is noted that union() avoids introducing dublets in the list, which is not the case
regarding extend() and the + operator. Instead of these functions, you may use

operators ||, - and &&:

#m1 = ('a', 'b', 'c'); //or: #m1 = a, b, c;
#m2 = ('b', 'd');
#m = #m1 || #m2; //result: ('a', 'b', 'c', 'd')
#m = #m1 - #m2; //result: ('a', 'c')
#m = #m1 && #m2; //result: ('b')

If the list #x1 contains none of the #x2 elements, the expression #x1 + #x2 - #x2

will be = #x1. However, Gekko lists may contain dublets, and you can use the

unique() function to remove these, and the sort() function for sorting. For instance:

#m1 = ('c', 'b', 'a'); //or: #m1 = c, b, a;
#m2 = ('b', 'c', 'd', 'e');
#m = #m1.extend(#m2); //result: ('c', 'b', 'a',
'b', 'c', 'd', 'e')
#m = #m1.extend(#m2).unique(); //result: ('c', 'b', 'a',
'd', 'e')

345Gekko User Manual

T-T Analyse

#m = #m1.extend(#m2).unique().sort(); //result: ('a', 'b', 'c',
'd', 'e')

The above example also illustrates function chaining. The expression
#m1.extend(#m2).unique().sort() is easier to understand than the equivalent but

more backwards expression sort(unique(extend(#m1, #m2)).

To check if a list contains an item, use contains() or index():

#m = ('a', 'b', 'c'); //or: #m = a, b, c;
%v = #m1.contains('b'); //result: 1 (true)
%i = #m1.index('b'); //result: 2 (the position)

You may replace elements in a list, for instance:

#m1 = ('ax', 'bx', 'xc'); //or: #m1 = ax, bx,
xc;
#m = #m1.replace('bx', 'y') //result: ('ax', 'y',
'xc')
#m = #m1.replaceinside('x', 'z') //result: ('az', 'bz',
'zc')

The last function, replaceinside(), replaces text inside the individual elements.

List elements may be of mixed types, for instance (1, 'two', 2003q3), and lists of
values are often used to feed values into timeseries:

time 2020 2026;
x = 100, 101 rep 3, 102, 103 rep *; //parentheses can be
omitted for simple values
prt x; //result: 100, 101, 101,
101, 102, 103, 103

You can use rep to repeat values, and rep * is special when used to define a series,

since it repeats the last item to make the list fit with the sample (here: 7
observations). If you have input data with (a lot of) blank-separated values, you may
use the data() function instead of manually setting the commas:

time 2020 2026;
x = data('100 101 101 101 102 103 103'); //result: 100, 101,
101, 101, 102, 103, 103

Lists can be looped, for instance:

#m = ('a', 'b', 'c'); //or: #m = a, b, c
%s = '';

346 Gekko 3.1.x help system

T-T Analyse

for string %i = #m;
 %s += %i;
end;
prt %s; //result: 'abc'

Lists can be nested, for instance an #alias list (cf. OPTION interface alias):

x = 100;
y = series(1); y[z] = 200;
option interface alias = yes;
global:#alias = (('a', 'x'), ('b', 'y[z]'));
prt a, b; //will be the same as prt x, y[z]

An #alias list can among other things be convenient as a bridge between the naming

conventions of two different models.

Listfiles

Instead of storing lists in a databank, you may optionally use an external file instead.
Using a listfile animals.lst (you may use edit animals.lst; to do this):

------------ animals.lst ------
//comments like these are allowed, and blank lines too
dog
cat
mouse
fish

You can use the listfile in the following way:

#animals = #(listfile animals);

Listfiles may contain strings or values, and for simple strings starting with a letter,
you may omit single quotes. If you need to make sure that an element is interpreted
as a string and not as a value, you can enclose the string in single quotes.

When Gekko reads an element, if it is enclosed in quotes, it always becomes a string.
Otherwise, the interpretation rules are the same as for naked lists. When writing
elements, if all elements are simple strings starting with a letter, Gekko will omit the
quotes. Else it will write strings with single quotes, and dates are written as strings,
too. To convert a list of strings into a list of dates, just use the dates() function. Like
normal lists, listfiles may contain elements beginning with '-',for instance:

------------ items.lst -------
x1
-x2

347Gekko User Manual

T-T Analyse

x3

But you cannot put complicated items like expressions into a listfile (use a normal list
for that). You can create a listfile m.lst with #(listfile m) = a, b, c;. Nested

listfiles are possible: just separate the elements with the ';' symbol:

------------ nested.lst ------
1
2; 3
mouse
2010q1; 2010q3

All these items are converted into strings, because they are not all values. You could
create this file with #(listfile nested) = ('1', ('2', '3'), 'mouse',

('2010q1', '2010q3')). The last element can be followed by the ';' symbol, but it

may also be omitted. The following list is similar to a matrix:

------------ matrix.lst ------
1; 2
3; 4

If #m = #(listfile matrix), for instance #m[2][1] = 3, corresponding to row 2,

column 1. This is similar to the matrix #m = [1, 2; 3, 4], where #m[2, 1] = 3. In

general, the listfile format corresponds to .csv, and the reason ',' is not used to
delimit elements is that csv files may allow numbers to be stored with decimal
separator ',' instead of '.'.

Instead of using a two-dimensional csv-like listfile like matrix.lst above, you may

instead store such data in an Excel spreadsheet, and load them with sheet <import

list> #m file = ... ;.

Searching

You may search a list of strings using wildcards, in order to return certain patterns of
string elements.

#m1 = ('abd', 'abcd', 'abcde'); //or: #m = abd, abcd,
abcde
#m2 = #m1['a*d']; //result: 'abd', 'abcd'
#m3 = #m1['a?d']; //result: 'abd'
#m4 = #m1.addbank('b1').addfreq('q'); //result: 'b1:abd!q',
'b1:abcd!q', 'b1:abcde!q'

348 Gekko 3.1.x help system

T-T Analyse

As the last line shows, there are a lot of functions available, if you need to handle for
instance banknames, frequency indicators, etc. on such lists of names. See under
functions, bank/name/frequency/index manipulations. Note that if you need to for
instance print the elements of #m1 with a particular bank and frequency, you may use

either prt {#m1.addbank('b1').addfreq('q')};, or the easier prt b1:{#m1}!q;.

You may use a 'naked' wildcard to obtain variable names from open databanks, for
instance:

abd = 1; abcd = 2; abcde = 3;
#m2 = ['a*d']; //result: 'abcd', 'abd',
list is alphabetical
#m3 = ['a?d']; //result: 'abd'

The wildcards match variable names found in open databanks. Please keep in mind
that the logic regarding such 'naked' wildcards is a bit different from searching inside
a list of strings. A wildcard like ['a*d'] will look for series starting with 'a' and

ending with 'd', but only in the current first-position databank, and only regarding
variables with the same frequency as the current frequency. To get series names
from all banks with all frequencies, starting with 'a' and ending with 'd', you would
have to use ['*:a*d!*']. And to get, for instance variables starting with % (scalars),

and then followed by 'a' and ending with 'd', you would have to use ['%a*d']. See

more on the wildcards page and on INDEX section.

To print out results of wildcards searches, {}-curlies must be used, for instance:

abd = 1; abcd = 2; abcde = 3;
prt ['a*d']; //prints the two strings
'abcd' and 'abd'
prt {['a*d']}; //result: same as prt
abcd, abd;
prt {'a*d'}; //shortcut: the inner []-
brackets may be omitted here

As seen above, you must use {}-curlies to print out the variables corresponding to a

wildcard search. And as shown, you do not have to use the pattern {['....']}, but

can omit the innermost []-brackets and just use {'....'} to print wildcard variables.

Lists and array-series

As a last note, lists can be used to define domains for array-series. See the SERIES
section, but the following example illustrates the use:

time 2020 2022;
x =
series

349Gekko User Manual

T-T Analyse

(
1); //arra
y-series with 1 dimension
x[a] = 1; x[b] = 2; x[c] = 3;
#i = a, b, c;
p <n> x[#i], sum(#i, x[#i]), sum(#i, x[#i] $ (#i in
#i.remove('b')));

The result is the following:

 sum(#
i, x[#i]
 s $
(#i in #i.
 x[a] x[b] x[c] um(#i, x[#i])
remove('b')))
 2020 1.0000 2.0000 3.0000 6.0000
 4.0000
 2021 1.0000 2.0000 3.0000 6.0000
 4.0000
 2022 1.0000 2.0000 3.0000 6.0000
 4.0000

So x[#i] prints out the three elements, sum(#i, x[#i]) sums them up, and sum(#i,

x[#i] $ (#i in #i.remove('b'))) show the sum for the list #i except the element

'b'.

You may assign a domain to array-series dimensions with the setdomains() function,
and you may restrict which elements are printed/plotted via a special #default map.
See more in the SERIES section.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

You can remove <direct> in list<direct> from older Gekko 2.0/2.2/2.4 code.

You can use minus (-) before a list item in a naked list. This can for instance be used

in the Laspeyres chain index function laspchain(), to indicate a variable that is to be
deducted. For instance:

#p = p1, p2, p3, p4; //same as: #p = ('p1', 'p2', 'p3', 'p4');
#q = x1, x2, -x3, x4; //same as: #q = ('x1', 'x2', '-x3', 'x4');
#m = laspchain(#p, #q, 2010);

350 Gekko 3.1.x help system

T-T Analyse

The function returns a map #m containing the aggregated p and q series as named

elements, where series x3 is to be deducted from the aggregation (and the price p is

set to 1 in 2010). The resulting series and quantities can be accessed with #m.p and

#m.q.

If you have input data with blank-separated values, you may use the data() function
to avoid having to set the commas, for instance #m = data('1.0 2.0 1.5');. This

function can be practical for long lists of numbers. Data from an Excel spreadsheet
can be loaded into a nested list by means of sheet <import list>.

Note that an assignment like #m1 = #m2;, where #m2 is a list, #m1 will become a copy

of #m2, not a reference to it. The same is the case regarding function arguments,

where manipulating #m1 inside the function body of f(#m1) will not affect #m1 after the

function has been left.

The lists #all (all model variables), #endo (all endogenous variables), and #exo (all

exogenous variables) and some more are defined beforehand, if a model is loaded by
the MODEL statement. These lists are located in the Global databank. See list ?;.

The reader may wonder why it is not possible to add a list #m and a scalar %s like

this: #m + %s, appending %s to #m? This is tempting, but then what about %s1 + %s2

+ #m + %s3? Should this mean a list with %s1, then %s2, then the elements of #m,

and lastly %s3? But if %s1 and %s2 are two strings, these strings are added into

another string. And if they are values, the values are added first. Hence, to avoid
such confusion, using + between a list and a scalar is disallowed (which is also the

case in Python and other languages).

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko list relates to the following in different languages:

· Gekko: #m = ('x', 2.2);.

· R: list (holds different types of variables), m <- list("x", 2.2). A R vector is

similar, but holds only variables of the same type, for instance m <-

c("a","b","c"). Note that #m[%i] in Gekko returns the object at position %i, not a

1-element list containing the object, like R. Use #m[%i..%i] to get such a R-like

slice. In this sense, #m[%i] in Gekko corresponds to m[[i]] in R.

· Python: list (holds different types of variables), m = ["x", 2.2]. Python has a

built-in set type, with union(), intersection() and difference() methods. Note that
for union(), Python uses operator | where Gekko uses ||, for intersection() Python

uses operator & where Gekko uses &&, and for difference() both Python and Gekko

use operator - (difference() is called except() in Gekko). Python sets do not allow

dublets, but Python lists do not provide methods union(), intersection() and
difference().

· Matlab: same type elements: array, else: cell array, m = {"x", 2.2}.

351Gekko User Manual

T-T Analyse

Related statements

MAP, MATRIX, FOR

352 Gekko 3.1.x help system

T-T Analyse

4.3.49 LOCAL

The LOCAL statement is used to designate variable names that are to be located in
the Local databank. Following a local x; statement, any subsequent use of x

(without databank designation) will be understood as local:x.

After Gekko leaves the program file, function or procedure, these local variables do
not live on, so the variables only live in the local context. Therefore, using LOCAL or
local:x = ... can be practical regarding temporary variables that are not intended

to live on, polluting the databanks (such variables are called "side-effects").

You may use local<all>; to render all bankless variables local inside a function or

procedure. This is useful regarding encapsulation: ensuring that a function only uses
its own arguments and local variables (unless a variable is stated with an explicit
databank reference). After a local<all>, you can still search for a bankless variable

x outside of the Local databank by means of the special all: designation (for

instance y = all:x;).

See also the similar GLOBAL statement for global variables, and the BLOCK structure
for temporary settings.

Syntax

local varnames;
local <all>;

varname
s

Comma-separated list of variables

ALL (Optional). With this option, all following (in the rest of the
program/function/procedure) left-hand side variables without explicit
databank designation are located in the Local databank. This may
practical for functions/procedures where no temporary variables are
supposed to exist after the function/procedure has been left. For a
variable x that you would like to keep despite using a local<all>,

you may use first:x or another bank designation to circumvent

local<all>.

Example

local x, %y, #z;

353Gekko User Manual

T-T Analyse

After this, any use of x, %y, or #z (in the present program file, function or procedure)

will be interpreted as local:x, local:%y, and local:#z, respectively. And after

Gekko leaves the current context (program file, function or procedure), these local
variables cease to exist.

The Local databank is searched first, if databank searching is active (that is, data- or
mixed mode), cf. databank search.

You may use local<all> in functions/procedures:

procedure test;
 local <all>;
 %x = 2;
 %y = 3;
 first:%z = %x + %y;
end;
test;
val?;

Only %z will exist (in the first-position databank) after the procedure has been left.

Still, it is perhaps better to use a function to return the value.

Note

You are not forced to use the LOCAL keyword, when operating with local variables.
Defining local:%per1 = 2010; first, and referring to local:%per1 later on is

possible, too. In that sense, the LOCAL keyword is just for convenience, especially if %

per1 is used several times.

Local variables survive READ, CLEAR, etc., but do only live in their local context
(program file, function or procedure). Hence, they do no 'pollute' the first-position
databank if this is later on written to file.

Note that the Local or Global databanks are always searchable, independent of MODE
etc.

Related statements

GLOBAL

354 Gekko 3.1.x help system

T-T Analyse

4.3.50 LOCK

LOCK is used to set a databank non-editable, so that the data inside cannot be
changed, but only read. Per default, databanks are opened non-editable, unless you
use OPEN<edit>. See also the inverse UNLOCK statement.

Syntax

lock databank;

Examples

lock mybank;

This locks mybank (sets it non-editable, provided that it is unlocked already).

Related statements

UNLOCK, OPEN

355Gekko User Manual

T-T Analyse

4.3.51 MAP

A map is a data container, much like a mini-databank, convenient for storage, and for
passing variables into and out of functions. It can also be thought of as a named list,
where the elements are found (looked up) by means of strings (keys), instead of by
consecutive numbers 1, 2, ... etc. Map names always start with the symbol '#', like
the other collection types list and matrix. If, for instance, you need to return several
variables from a user-defined function, a map is a very convenient container for that
purpose.

Syntax

#m = (name = expr, name = expr, ...); //Definition of a map, where
#m is the map name.
map ?; //show/count maps in open
databanks

Refer to the elemements with brackets or dots:

#m['x'] //Refer to element with name (key) 'x'. Blanks and
other symbols can be used.
#m[x] //Simple names may omit the single quotes (only when
the name does not have type symbols)
#m.x //Simple names may use dot, in that case type
symbols are allowed

It is not legal to use for instance map m = ... ;, omitting the '#'.

For instance, the result of the OLS statement could be stored in a list #ols_stats,

where #ols_stats[1] could be residual sum of squares, #ols_stats[2] could be

standard error, etc. This may get confusing, and a map would allow references to look
like #ols_stats['%rss'], #ols_stats['%se'], etc., using expressive names. For

simple names, you can also refer to the elements by means of #ols_stats.%rss,

#ols_stats.%se, etc. Written like this, it is seen that there is a similarity to

databanks, where such a reference to the databank ols_stats would be written as

ols_stats:%r2, ols_stats:%se, etc. The similarity is not coincidal: maps really are

mini-databanks!

Examples

The following example shows the definition of a map #m, consisting of a string and

another map, #mm. The map #mm contains a string with the same name, and a

timeseries.

356 Gekko 3.1.x help system

T-T Analyse

time 2009 2012;
#m = (%i1 = 'a', #mm = (%i1 = 'b', <2010 2011> ts = (1, 2)));
p #m.%i1; //'a', alternatively p #m['%i1'];
p #m.#mm.%i1; //'b', alternatively p #m['#mm']['%i1']
p #m.#mm.ts; //1, 2, alternatively p #m['#mm']['ts']

Another example could be the Laspeyres chain index function laspchain(), which
returns a map containing an aggregated quantity, and an aggregated price.

#p = p1, p2, p3; //or: #p = ('p1', 'p2', 'p3');
#q = x1, x2, x3; //or: #q = ('x1', 'x2', 'x3');
#m = laspchain(#p, #q, 2010);

Now, #m['q'] and #m['p'], or the shorter #m.q and #m.p refer to the aggregated

quantity and price index (as series).

Object orientation

Gekko does not yet provide the possibility of defining classes, with class methods etc.
that an object derived from a given class use. But the map collection can be used
together with the fact that all Gekko functions implement so-called UFCS, so that a
function like for instance f(x, y) can generally be written as x.f(y). This makes a kind
of poor man's object orientation possible, consider the following example:

function val volume(map #m);
 %volume = 0;
 if (#m.%type == 'square');
 %volume = #m.%size * #m.%size;
 else;
 if (#m.%type == 'box');
 %volume = #m.%size * #m.%size * #m.%size;
 end;
 end;
 return %volume;
end;

#sq = (%type = 'square', %size = 2, %color = 'red');
#bx = (%type = 'box', %size = 3, %color = 'green');
tell '';
tell 'Type {#sq.%type}: size = {#sq.%size}, volume =
{#sq.volume()}, color = {#sq.%color}';
tell 'Type {#bx.%type}: size = {#bx.%size}, volume =
{#bx.volume()}, color = {#bx.%color}';

This produces the following output:

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

357Gekko User Manual

T-T Analyse

Type square: size = 2, volume = 4, color = red
Type box: size = 3, volume = 27, color = green

Here, map #sq is defined as type 'square', whereas the map #bx is defined as type

'box'. When the volume() function is called on such a map, a square type will return
size^2, whereas a box type will return size^3. Therefore, #sq.volume() = 2*2 = 4,

whereas #bx.volume() = 3*3*3 = 27. Note that #sq.volume() could alternatively be

written volume(#sq), but the variant #sq.volume() has more object method flavor.

So in the example, the volume() function called on a square or a box 'knows' how to
calculate the volume of that particular object.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

As it is the case regarding array-series, you may omit the single quotes in indexes,
for instance #m[p] will correspond to #m['p']. Please note that this only applies to

simple names without symbols, in other words: timeseries names. So do not expect
#m[%s] to correspond to #m['%s'] (it does not).

Maps are 1-dimensional, more dimensions are not supported regarding names/keys.
If you need to handle multidimensional data, you may look into array-series (or
matrices).

Internally in Gekko, maps are represented in the exact same way as databanks, so in
the longer run it is expected that it will be possible to convert seamlessly between
maps and databanks.

Note that an assignment like #m1 = #m2;, where #m2 is a map, #m1 will become a

copy of #m2, not a reference to it. The same is the case regarding function arguments,

where manipulating #m1 inside the function body of f(#m1) will not affect #m1 after

the function has been left.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko map relates to the following in different languages:

· Gekko: #m = (%a = 'x', %b = 2.2);

· R: named list, m <- list(a="x", b=2.2)

· Python: dict, m = {"a": "x", "b": 2.2}

· Matlab: struct array or the more general container map.

358 Gekko 3.1.x help system

T-T Analyse

Related statements

LIST

359Gekko User Manual

T-T Analyse

4.3.52 MATRIX

A Gekko matrix contains two-dimensional cells with numeric values. Matrix names
always start with the symbol #, like the other collection types list and map. You can

import/export matrices to/from Excel, but only if the cells of the matrix are numerical
values. Matrices can be manipulated with the usual linear algebra operators and
functions, like adding, multiplying, inverting, etc. See the list of matrix functions in
the end of this section.

If you need to manipulate data "cells" of non-numeric values (like for instance an
Excel spreadsheet with values, dates and strings), instead of a matrix, you should use
a nested list. Nested lists can be of any dimension, and indexing, selecting, looping
etc. works similarly for nested lists and matrices.

See the SHEET statement if you need to transfer Excel cells into a matrix (or nested
list).

NOTE: Instead of the former SHOW statement for printing matrices, you should use
PRT in Gekko 3.0.

Syntax

#m = expression;
matrix #m = expression;
matrix < ROWNAMES = #list COLNAMES = #list > #m = expression;
matrix ?; //show/count matrices in open
databanks

It is no longer legal to use for instance matrix m = ... ;, omitting the '#'.

ROWNAMES = A list containing the names (labels) of the rows of the
matrix, to be shown with PRT. You may use quotes (') when
creating the list elements, if you need special characters
like blanks etc.

COLNAMES = A list containing the names (labels) of the cols of the
matrix, to be shown with PRT. You may use quotes (') when
creating the list elements, if you need special characters
like blanks etc.

name The name of the matrix.

expression Any expression. You may omit the expression if you just
need to decorate an already existing matrix with row- or

360 Gekko 3.1.x help system

T-T Analyse

colnames.

? Query regarding a particular matrix, or all matrices

Note to Excel users: to import data from a spreadsheet, use the SHEET statement
(SHEET<import matrix>). To export a matrix #m from Gekko to Excel, you can use

export <xlsx> #m file = matrix.xlsx;.

Examples

The MATRIX statement supports quite a lot of the more common matrix capabilities.
More capabilities will be added over time. Regarding matrix functions, please consult
the Gekko functions page, under the 'Matrix functions' section (for instance
determinant, inverse, transpose, diagonal, summation, etc.). These functions are also
shown at the end of this help page.

You may construct a 2x2 matrix like this:

#m = [1, 2; 3, 4]; //or: matrix #m = [1, 2; 3, 4];

The commas separate the row items, and the ';' separates columns. The MATRIX
keyword may be omitted, since the right-hand side is guaranteed to be a matrix
defintion. To construct matrices, you may use values or other matrices instead of the
fixed numbers shown here. In general, matrices are referred to by means of the '#'
indicator, just like lists. Use PRT to print out a matrix:

prt #m;

This will print out the following:

 #m
 1 2
 1 1.0000 2.0000
 2 3.0000 4.0000

Note: after printng a matrix like this, you may use Copy-button in the main Gekko
window to copy/paste the matrix to Excel. To decorate with custom row- and col-
names, you may do the following (you may alternatively use listfiles to contain the
labels, cf. LIST):

#rn = ('Agriculture', 'Services etc.');
#cn = ('Employed', 'Unemployed');

361Gekko User Manual

T-T Analyse

<rownames=#rn colnames=#cn> #m = [1, 2; 3, 4];
prt #m;

This will print the following labeled matrix:

 #m
 Employed Unemployed
 Agriculture 1.0000 2.0000
 Services etc. 3.0000 4.0000

You may concatenate existing matrices like this:

#a = [#m1; #m2]; //column-wise
#b = [#m1, #m2]; //row-wise
#c = [#m1, #m2; #m3 ,#m4]; //both

You may get a list of all matrices or a particular matrix with

matrix ?;

You may construct matrices filled with 0's, 1's or missing values by means of the
functions zeros(n, k), ones(n, k), or miss(n, k), for instance:

#m = zeros(5, 10);

You can use +, -, * and / on two matrices, to add, subtract, multiply or divide.

Regarding division, you can only divide a matrix by a value or a 1x1 matrix.
Otherwise, use the element-by-element functions multiply() and divide().

You may index a matrix by means of the indexer []. For instance:

%v = #m[2, 4];

This picks out the element in row 2, column 4. Please note that the indexes are 1-
based. The inverse operation:

#m[2, 4] = %v;

Sub-matrices can be picked out by means of the range dots ('..'), for instance:

#m2 = #m[1..2, 5..7];

362 Gekko 3.1.x help system

T-T Analyse

This picks out rows 1 and 2, and combines them with columns 5, 6 and 7. Note that
these ranges may not be descending, for instance #m[2..1, 7..5]. The inverse

operation:

#m[1..2, 5..7] = #m2;

To select a full row or column, use an 'empty' range like this:

#m2 = #m[3, ..];

This selects all the items in row 3. You may also use for instance '2..' to pick out the
elements from 2 and onwards, or '..10' to pick out the elements from 1 up to and
including 10. Use '..' to pick out all rows/columns.

For a column vector #c (that is, a n x 1 matrix), you may omit the column index, so

in that case, these two will amount to the same:

%v = #c[5];
%v = #c[5, 1];

You may pack and unpack matrices from timeseries, for instance:

reset;
time 2001 2003;
x1 = 1, 2, 3;
x2 = 3, 4, 5;
p #m;
#m = pack(2001, 2003,x1, x2);
y1 = #m[.., 1].unpack(2001, 2003);
y2 = #m[.., 2].unpack(2001, 2003);
p<n> x1, y1, x2, y2;

This will pack the two timeseries x1 and x2 into a 3 x 2 matrix #m (with data from

2001-2003). You may unpack back to two timeseries again with the unpack()
function as shown. The indexes [.., 1] and [.., 2] pick out all rows of the two

columns in #m. You may also consult the pack/unpack example in the R_RUN section.

Column vectors can be handy, when you use them as a list of values:

#m = [100; 150; 120];
for val %i = 1 to #m.rows();
 tell 'Index {%i} has value {#m[%i]}';
end;

This will print out the numbers 100, 150 and 120:

363Gekko User Manual

T-T Analyse

 Index 1 has value 100
 Index 2 has value 150
 Index 3 has value 120

Since #m is a column vector, you may use #m[%i] instead of the more cumbersome

#m[%i, 1].

There are min, max, avg and sum functions, working on rows or columns. For
instance, you may decorate a matrix with grand totals like in the code below (where
the third row and column are totals). The functions sumr() and sumc() sum the rows
and columns, respectively. The last expression, #m.sumc().sumr(), could just as well

have been stated as #m.sumr().sumc(). The divide(#m1, #m2) function divides two

matrices element by element, but #m2 may have only 1 row or column stated. In that

case, the function works on rows or columns, respectively.

#m = [1, 2; 3, 4];
prt [#m, #m.sumr(); #m.sumc(), #m.sumc().sumr()];
prt divide(#m, #m.sumr());
prt divide(#m, #m.sumc());

Output:

 [#m, #m.sumr(); #m.sumc(), #m.sumc().sumr()]
 1 2 3
 1 1.0000 2.0000 3.0000
 2 3.0000 4.0000 7.0000
 3 4.0000 6.0000 10.0000

 divide(#m, #m.sumr())
 1 2
 1 0.3333 0.6667
 2 0.4286 0.5714

 divide(#m, #m.sumc())
 1 2
 1 0.2500 0.3333
 2 0.7500 0.6667

In the first print, the rows sum to 1, and in the second print, the columns sum to 1.
Matrices can be exported and imported from Excel, for instance:

#m = [1, 2, 3; 4, 5, 6];
export <xlsx> #m file = m.xlsx;
sheet <import matrix> #m2 file=m.xlsx;
prt #m, #m2;

The example below estimates a linear least squares model with five parameters. You
may consult the OLS section to see the same parameters calculated via the OLS

364 Gekko 3.1.x help system

T-T Analyse

solver, or the R_RUN section to see the same parameters calculated via the R
interface.

reset;
create lna1, pcp, bul1;
lna1 <1998 2010> = data(' 166.223000 173.221000 179.571000
187.343000 194.888000 202.959000
209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
pcp <1998 2010> = data(' 0.9502030 0.9699920 1.0000000
1.0235000 1.0401100 1.0605400
1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
bul1 <1998 2010> = data(' 0.0684791 0.0591698 0.0560344
0.0535439 0.0535003 0.0631703
0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
time 2000 2010;
create s0, s1, s2, s3, s4, s5;
s0 = dlog(lna1);
s1 = dlog(pcp);
s2 = dlog(pcp.1);
s3 = bul1;
s4 = bul1.1;
s5 = 1;
#x = pack(2000, 2010, s1, s2, s3, s4, s5);
#y = pack(2000, 2010, s0);
#b = inv(t(#x)*#x)*t(#x)*#y; //OLS formula
prt #b;

The statements produce the following parameter estimates:

 #b
 1
 1 0.1445
 2 0.6139
 3 0.1867
 4 -0.3509
 5 0.0298

Matrix functions

Matrix functions:

Function
name

Description Examples

avgc(x) Average over cols. #m2 = avgc(#m1);

365Gekko User Manual

T-T Analyse

Returns: matrix

avgr(x) Average over rows
Returns: matrix

#m2 = avgr(#m1);

chol(x)
chol(x, type)

Cholesky decomposition of
matrix x. Accepts type
(string), either 'upper' or
'lower'.
Returns: matrix

#m2 = chol(#m1, 'upper');

cols(x) Returns the number of
colums of x
Returns: val

%v = cols(#m);

design(x) Returns a "design" matrix,
equivalent to the same
Gauss function. The
function is practical for
aggregating rows or
columns.

Input: is a n x 1 column
matrix
Returns: n x k matrix of 0's
and 1's. The input numbers
specify the columns in
which the 1's should be
placed.

In the example, a 4 x 5
matrix #x of 1's is defined,

and by means of the
aggregation matrix #m, it is

aggregated from size 4 x 5
to 4 x 3. In this case, the
new column 1 is the old
columns 2 and 3, the new
column 2 is the old column
5, and the new column 3 is
the old columns 1 and 4.

#a = [3; 1; 1; 3; 2];
#m = design(#a);
#x = ones(4, 5);
p #m, #x * #d;

#m
 1
 2 3
 1 0.0000
0.0000 1.0000
 2 1.0000
0.0000 0.0000
 3 1.0000
0.0000 0.0000
 4 0.0000
0.0000 1.0000
 5 0.0000
1.0000 0.0000

#x * #d
 1
 2 3
 1 2.0000
1.0000 2.0000
 2 2.0000
1.0000 2.0000
 3 2.0000
1.0000 2.0000
 4 2.0000
1.0000 2.0000

det(x) Determinant of a matrix.
Returns: val

%v = det(#m);

diag(x) Diagonal. If x is a n x n
symmetric matrix, the

#m2 = diag(#m1);

https://docs.aptech.com/gauss/design.html

366 Gekko 3.1.x help system

T-T Analyse

method returns the
diagonal as a n x 1 matrix.
If x is a n x 1 column
vector, the method returns
a n x n matrix with this
column vector on the
diagonal (and zeroes
elsewhere).
Returns: matrix

divide(x1,
x2)

Element by element
division of the two matrices.
If x2 is a row vector, each
x1 column will be divided
with the corresponding
value from the row vector.
And if x2 is a column
vector, each x1 row will be
divided with the
corresponding value from
the column vector.
Returns: matrix

#x = divide(#x1, #x2);

i(n) Returns a n x n identity
matrix.
Returns: matrix

#m = i(10);

inv(x) Inverse of matrix x
Returns: matrix

#m2 = inv(#m1);

maxc(x) Max over cols
Returns: matrix

#m2 = maxc(#m1);

maxr(x) Max over rows
Returns: matrix

#m2 = maxr(#m1);

minc(x) Min over cols
Returns: matrix

#m2 = minc(#m1);

minr(x) Min over rows
Returns: matrix

#m2 = minr(#m1);

m(r, c) or
miss(r, c)

Returns a n x k matrix filled
with missing values. Cf.
also m() function for
values.
Returns: matrix

#m = m(5, 10);

367Gekko User Manual

T-T Analyse

multiply(x1,
x2)

Element by element
multiplication of the two
matrices. If x2 is a row
vector, each x1 column will
be multiplied with the
corresponding value from
the row vector. And if x2 is
a column vector, each x1
row will be multiplied with
the corresponding value
from the column vector.
Returns: matrix

#x = multiply(#x1, #x2);

ones(n, k) Returns a n x k matrix filled
with 1's
Returns: matrix

#m = ones(5, 10);

pack(v1,
v2, ...)
pack(<t1
t2>, v1,
v2, ...)

Using period t1-t2, the
timeseries v1, v2, ... are
packed into a n x k matrix,
where n is the number of
observations and k is the
number of variables. If the
period is omitted, the global
time period is used.
Returns: matrix

#m = pack(<2020 2030>, x, y,
z); Returns: a 11 x 3 matrix
#m with the values.

rows(x) Returns the number of rows
of x.
Returns: val

%v = rows(#m);

sumc(x) Sum over cols
Returns: matrix

#m2 = sumc(#m1);

sumr(x) Sum over rows
Returns: matrix

#m2 = sumr(#m1);

t(x) Returns the transpose of a
matrix.
Returns: matrix

#m2 = t(#m1);

trace(x) Returns the trace of a
matrix.
Returns: val

%v = trace(#m);

unpack(m)
unpack(<t1

The column matrix m (with
only one column) is

//This picks out the second
column of #m (and all the
rows).

368 Gekko 3.1.x help system

T-T Analyse

t2>, m) unpacked into a timeseries
spanning the period t1-t2.
If the period is omitted, the
local/global time period is
used.
The unpack() function is not
strictly necessary: you may
alternatively assign a nx1
matrix directly to a series
(see example).
Returns: series

y = #m[.., 2].unpack(<2020
2030>);
y <2020 2030> = #m[..,
2].unpack(); //same
y <2020 2030> = #m[..,
2]; //also works

zeros(n, k) Returns a n x k matrix filled
with 0's. Zeroes() can be
used as alias.
Returns: matrix

#m = zeros(5, 10);

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

You may use m() to indicate a missing value for a matrix element. You can also use
m(r, c) to get a matrix with missing values.

Note that an assignment like #m1 = #m2;, where #m2 is a matrix, #m1 will become a

copy of #m2, not a reference to it. The same is the case regarding function arguments,

where manipulating #m1 inside the function body of f(#m1) will not affect #m1 after

the function has been left.

Matrices are printed with PRT, the former SHOW statement is obsolete.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko matrix only supports numeric values inside the cells. It relates to the
following in different languages:

· Gekko: #m= [1, 2; 3, 4];

· R: matrix data structure, m = matrix(c(1, 2, 3, 4), nrow=2, ncol=2)

· Python: list of lists (with numeric values), m = [[1, 2], [3, 4]]

· Matlab: two-dimensional array of numeric values

369Gekko User Manual

T-T Analyse

Related statements

VAL, SERIES, LIST, SHEET

370 Gekko 3.1.x help system

T-T Analyse

4.3.53 MEM

Prints a list of all scalar variables (value, date, string). Before Gekko 3.0, such scalar
variables were stored in memory (ram), hence the name of the statement. In Gekko
3.0, scalars are stored in databanks, like series and other variable types.

Syntax

mem;

Example

Consider this example:

%s1 = 'cat';
%s2 = 'dog';
%v = 123.45;
%d1 = date(2010); //or use 2010a or 2010a1 to make it a date.
%d2 = 2011q3;
mem;

This will produce an overview similar to this:

 6 scalars found in 'Work' databank

 type name value

 DATE %d1 2010
 DATE %d2 2011q3
 STRING %s1 'cat'
 STRING %s2 'dog'
 VAL %v 123.45

Note

For scalars, you may use VAL?, DATE?, STRING?, to print out these individually.

Otherwise, you can also print scalars with the PRT statement.

371Gekko User Manual

T-T Analyse

Related statements

STRING, DATE, VAL

372 Gekko 3.1.x help system

T-T Analyse

4.3.54 MENU

MENU is not a statement, but the 'Menu' tab will open up a .html menu file when
clicked (regarding the .html file, see 'Related options' below). Menus can for instance
be used to organize tables (.gtb) in hierarchies, or call Gekko program files (.gcm).
The easiest way to start up the menu system is to click on the 'Menu' tab. Another
possibility is via 'Window' --> 'Restart Menu' (in the Gekko user interface).

Menu's are browsable, i.e., you may use the backwards and forwards arrows. The
'Home' button will point the menu to the starting .html file.

Details

The html file will be shown in the 'Menu' tab in the same way as the html file would
be shown in an internet browser. The only real difference is that links work in a
slightly different way. If the link is to a file with extension .gtb, Gekko will show that
particular table (as text in the 'Main' tab, or as html in the 'Menu' tab, depending
upon the setting option table type...).

For instance, the html may contain the following HTML code:

Production
Run scenario 1

The first <a> tag indicates a link, with link text "Production". The linked file is

s43.gtb. Since this is a .gtb file, Gekko shows this particular table when the link is

clicked. Instead of a .gtb file, you may indicate a .gcm file (program file) inside the
quotes. In that case, if the link is clicked, Gekko will RUN the .gcm file.

You may design the HTML pages in any way you like, for instance it can be
convenient to style menus by means of a common stylesheet (CSS), so that their
design can be controlled centrally. Gekko will show just about all legal HTML code you
may come up with, including images etc.: the engine showing the HTML in the 'Menu'
tab is in reality the same engine that is used for showing pages in Internet Explorer.

The HTML files can be made by means of any HTML editor, for a free and quite robust
editor, you may for instance try the free Kompozer.

There is an automatic menu conversion tool from the older PCIM menus to the new
HTML format. See the menu: 'Utilities' --> 'Converters' --> 'PCIM converters' -->
'Convert PCIM menus...'.

Example file

https://sourceforge.net/projects/kompozer/

373Gekko User Manual

T-T Analyse

The HTML code below shows a menu ('OVERVIEW') with five items. The two first
items link to two different submenus (menu1/menu2.html), whereas the two
following links link to two different tables (s1/s2.gtb). The last item gives the
opportunity to browse a level up to a parent menu (main.html).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <link rel="stylesheet" href="styles.css" type="text/css">
 <meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
 <title>OVERVIEW</title>
 </head>
 <body>
 <big>OVERVIEW</big>

 SUPPLY BALANCE
 IMPORTANT KEY FIGURES ETC.
 Production S1
 Productivity S2
 MAIN MENU
 Back

 </body>
</html>

You may run Gekko program files via the menus, for instance adding the following list
item to the menu system:

Run menutest.gcm

This will provide a link ("Run menutest.gcm"), and when the link is clicked,
menutest.gcm is executed.

The HTML file uses a stylesheet (styles.css) which can be common the all the HTML
files in the menu system. In addition, a small table icon is used (table.png), to
indicate that the item points to a table. The stylesheet styles.css could be something
like this:

body {
 color: #000000;
 font-family: Verdana;
 font-size: 10pt;
 font-style: normal;
 font-variant: normal;
 background-color: white;
}
a {text-decoration: none;}
img {border-style: none;}

374 Gekko 3.1.x help system

T-T Analyse

This sets colors, font, size etc., and indicates that HTML links (<a>) should have no

underline, and HTML images () no border.

Note

A menu system may be organized in folders and sub-folders, if preferred. In that
case, call the html file in the subfolder with for

instance. To navigate to a parent folder, use '..', for instance . These are standard html conventions regarding relative

paths.

Anything can be put into the html file, but for security reasons Gekko will not open
up Internet links in the Menu tab. If an external Internet link is present (for instance
http://www.t-t.dk/gekko), Gekko will open that link with the default web browser.

You may use the EDIT statement to edit the files (for instance: EDIT menu.html;),

but using a special html editor may be easier.

Related options

OPTION menu startfile = menu.html;
OPTION folder menu = ...;
OPTION interface table operators = yes; //click transformations on tables

Related statements

TABLE, EDIT

http://www.t-t.dk/gekko

375Gekko User Manual

T-T Analyse

4.3.55 MODE

The MODE statement switches between sim mode (model simulation), data mode
(data revision programs etc.), and mixed mode (mixing sim- and data mode). Mixed
mode is default. The modes are reflected on the status bar at the bottom of the main
window (cf. the colors in the table below: green, blue or yellow).

· Sim mode: Focused on MODEL, READ, SERIES, SIM, PRT/MULPRT, WRITE and
similar statements. The Ref (reference) databank is essential in sim mode (to show
simulation differences/multipliers). See here regarding an overview of statements
that have primarily sim flavour.

· Data mode: Focused on OPEN, COPY, IMPORT, SERIES, PRT, CLOSE and similar
statements. The reference bank is often not used at all in this mode. See here
regarding an overview of statements that have primarily data flavour.

· Mixed mode: models and data handling can be mixed as the user wishes. Please
note that this mode is more flexible, but also has more room for errors, if care is
not taken (for instance whether a variable is a model variable, or whether a
variable is from the first-position databank or stems from some other open
databank).

It should be emphasized, however, that most statements and functionality can be
used in all modes, but there are some nuances. Below, an overview of the settings
associated with the three different modes.

Mode Sim Data Mixed

option databank search = ...
In sim-mode, the user should use READ ... TO ...
(which is equivalent to OPEN) to open extra
'named' databanks, and in this case, explicit
databank colon must be used afterwards to refer to
the timeseries. In data- and mixed mode, Gekko
will search for a timeseries x (without databank

colon) in all databanks except Ref in the F2
window.

no yes yes

option databank create auto = ...
In sim-mode, the user has to first CREATE a new
timeseries, before putting data into it with the
SERIES statement. This is to avoid that the user
accidentally issues a "SERIES x = ... ;" statement,
thinking that he or she changes a model variable,
when in fact x is not part of the model. (If the
timeseries name starts with 'xx', CREATE is not
mandatory in sim mode). In data- and mixed
modes, a SERIES statement will auto-create the
timeseries, if it does not exist beforehand.

no yes yes

376 Gekko 3.1.x help system

T-T Analyse

option solve data create auto = ...
In sim-mode, when the user issues a general READ
statement, any model variables (contained in the
list #all) not present in the data file will be auto-

created (including missing variables of D-, J-, and
Z-types). In data-mode, such creation is not
performed, even if a model is present.

yes no yes

In addition to this, 'OPTION interface mode' is set to sim/data/mixed. This
option directs the following behavior:

· In sim-mode, READ ... TO ... is recommended instead of OPEN. OPEN<edit>,
OPEN<first> or OPEN<ref> are warned against.

· In sim- and mixed-mode, general READ will tell the user about superfluous
variables not in the model.

· In data-mode, general READ is warned against
· In data-mode, MODEL, SIM, CLONE and MULPRT are warned against.

Gekko starts out in mixed mode per default. You may set the mode in the gekko.ini
file (see INI). If you need Gekko to always start out in a particular mode, you can use
a gekko.ini containing for instance the statement mode sim; in the same folder as

the gekko.exe file.

Syntax

mode mode;
mode ?;

mode Choose between sim, data or mixed. Default is sim

mode.

? Shows the current mode.

Example

This statement changes to sim mode:

mode sim;

377Gekko User Manual

T-T Analyse

Note

The MODE functionality will be continuously developed, but the intention is to avoid
making modes more complicated than they really are. Modes try to help the user
focus on the tasks at hand, rather than being confused about non-relevant Gekko
capabilities.

See also the databank search page.

Note that the Local or Global databanks are always searchable, independent on MODE
etc.

Related options

OPTION databank search = ...
OPTION databank create auto = ...
OPTION solve data create auto = ...
OPTION interface mode = [sim | data | mixed];

Related statements

RESET, RESTART, INI

378 Gekko 3.1.x help system

T-T Analyse

4.3.56 MODEL

The MODEL statement is used in one of two ways:

· Load Gekko equations contained in a .frm file
· Load GAMS equations stored in a GAMS file. GAMS models are not solved, but their

equations can be displayed or decomposed. GAMS equations can either be loaded as
raw equations or unrolled equations, cf. the GAMS section below.

A MODEL statement loading a Gekko model is best put before READ statements: in
that way all model variables not found in the databank will be auto-created when
issuing the READ statement.

Failsafe note: if you experience problems solving the model (SIM), try using the
Gauss-Seidel method (default) together with the setting option solve failsafe =

yes. Gekko model equations may be executed individually (one by one) with the

PREDICT statement.

Syntax

model < DEP=... DUMP GMS > filename ;

DEP= (Optional). Together with the <gms> option, the user can provide a
list that identifies what variables individual equations determine.
For instance, in a GAMS equation e_1 specified like e_1[i, t] ..

p[i, t] * q[i, t] =E= v[i, t]; there is the question of which

variable is determined in the e_1 equation? In a system of

simultaneous equations, what is determined is a complicated
question, but in many cases it makes sense to designate a
"dependent" variable. In the e_1 equation, we would expect the

dependent variable to appear on the left-hand side of the equation,
but then there is the question of whether this is p or q?

Gekko can try to find the dependent variable in two ways, controlled
by option model gams dep method = Either it will look for

the first variable that is not inside a []-bracket or $-condition; in
the above case p. Alternatively, it will look at the equation name,

and if this is for instance e_p, it will assume that p is the dependent

variable. If these rules do not designate the "right" variable, you
may use the <dep> local option like this: model <gms

dep=#(listfile dep)> model.gms;. In the listfile (you may

alternatively use a normal list), you can state lines like this:

p; e3; e10;
q; e2;

379Gekko User Manual

T-T Analyse

This tells Gekko that equations e_3 and e_10 designate p as

dependent variable, whereas equation e_2 designates q as

dependent variable. These designations overrule the above-
mentioned logic (either picking the first variable on the left-hand
side, or using the equation name), so only the special cases that do
not follow that rule need to be stated. For instance, if e_1 was

determining q instead of p, the q-line of the listfile could be q; e_1;

e_2. instead of just q; e_2.

When using the first variable on the left-hand side, Gekko will allow
lagged or leaded variables to be dependents. This can be switched
off with option model gams dep current = yes, after which only

current (non-lagged and non-leaded) variables can be identified as
dependents.

Note: The identification of "dependents" is only used in the DISP
and DECOMP statements, not elsewhere. [New in 3.0.2]

DUMP (Optional). With this option together with the <gms> option, a
GAMS model will be dumped in Gekko form, as the file dump.gcm.

This file can be used to inspect how Gekko translates GAMS-
equations, and which variables are indentified as dependents in
each equation (and if they are identified via a DEP list). These
equations may not run in Gekko, at the moment <dump> is only for
debugging. [New in 3.0.2]

GMS (Optional). With this option, Gekko will read GAMS equations from a
.gms file (extension .gms will be added if missing). Gekko will
search the .gms file for equations which can be shown with the DISP
statement. A MODEL<gms> statement, will set option model type

= gams; automatically.

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip paths"

are allowed too (for instance c:\projects\data.zip\bank.gbk).

See more on filenames here.
If the filename is set to '*', you will be asked to choose the file in
Windows Explorer.
The extension .frm is automatically added, if it is missing.

380 Gekko 3.1.x help system

T-T Analyse

Gekko models

Model equations may be decorated with formula codes, and there are also some
special markers to indicate different parts of the model:

Equation types

_ These formula codes begin with the character _, and the following

codes may follow:

· position 2: an arbitrary character to indicate the type of
equation, for instance I for identity, G for 'guessed' equation, S

for stochastic, etc. The chosen characters are completely ignored
in simulations etc. and can be thought of as meta information.

· position 3 and 4: add-factor, either J_ or JD for additive add-

factors, or JR for relative add-factors.

· position 5: indicate exogenization dummy, D.

· position 6: not used
· position 7: a Z for damping in the Gauss-Seidel algorithm

Example: _SJRD_Z means S for stochastic, JR for relative add-

factor, D for exogenization dummy, and Z for damping.

Y An equation with code Y means that the equation is run after the

simulation (for each period). Such Y-type equations are often of
technical character, calculating different kinds of add-factors (J-
variables) etc.

T Equations with code T are run exactly like Y-type equations. The

only difference is that the T indicates that such equations are

"interesting" and should be part of documentation systems, etc. T
can be read as "table variables".

P Equations with code P are not run at all in SIM, since they are not

considered part of the model. P-type equations can be used to
store mathematical relationships in frm files, together with the
normal equations. P-type equations can only be run via the
PREDICT statement, and can therefore be thought of as "predict
equations". Examples may be an equation like FRML P ye =

(y[-1] + y + y[+1])/3;, calculating a moving average of y,

including leads. Such an equation will trigger a forward-looking
algorithm unless stated as a P-type equation. (The equation may
still be run as part of a SIM statement, if the RUNAFTER$ part of
the model contains a PREDICT of the equation, cf. example below).

Model parts (tags)

381Gekko User Manual

T-T Analyse

Note: The AFTER$ and AFTER2$ tags are placed between normal model equations
(which are located at the top of the file). The RUNBEFORE$, RUNAFTER$ and
VARLIST$ tags must be placed after the normal model equations, and these tags
separate each other, so they do not need an ending tag.

AFTER$ This tag indicates that the following variables are to be understood
af part of the 'AFTER$' equations. The AFTER$ distinction is only
used in the special SIM<after> statement, not anywhere else (a
normal SIM statement ignores the tag). See the note above.

AFTER2$ This tag indicates that the following variables are to be understood
af part of the 'AFTER2$' equations. In Gekko, there is no difference
between AFTER$ and AFTER2$. The AFTER2$ distinction is only
used in the SIM<after> statement, not anywhere else (a normal
SIM statement ignores the tag). See the note above.

RUNBEFOR
E$

After a RUNBEFORE$ tag, you may put normal Gekko statements
that are to be executed just before the model is simulated (SIM).
In these statements, you may refer to the dates %__simt1 and %

__simt2 which indicate the start and end of the simulation period.

See the note above.

RUNAFTER
$

After a RUNAFTER$ tag, you may put normal Gekko statements
that are to be executed just after the model is simulated (SIM). In
these statements, you may refer to the dates %__simt1 and %

__simt2 which indicate the start and end of the simulation period.

The RUNAFTER$ tag must be placed after the normal model
equations. See the note above.

VARLIST$ You may put a variable list after a VARLIST$ tag, instead of using a
separate file for this. See the note above.

The MODEL statement automatically analyzes and splits the model into three internal
parts: the prologue (pre-model), the simultaneous part, and the epilogue (post-
model). So Gekko will automatically detect any pre- and post-model and will use this
information to speed up simulations (hence, for SIM purposes, AFTER$ and AFTER2$
tags are ignored). The simultaneous part of the model is sub-divided into two parts:
the feedback variables, and the simultaneous recursive variables. This information is
used to speed up the Newton algorithm, by reducing the dimensionality of the
simultaneous equations.

The MODEL statement used on a Gekko model emits some files containing lists of
exogenous, endogenous, and DJZ-type variables (that is, add-factors and variables
used for exogenization). It also emits a file with ordering information. These files are
assembled into a .zip-file with the name [model]__info.zip, where [model] is the

name of the model. Gekko also creates the lists #all, #endo, #exo, #exod,

382 Gekko 3.1.x help system

T-T Analyse

#exodjz, #exoj, #exotrue and #exoz with lists of different kinds of variables. The

lists are located in the Global databank, so that they survive READ statements.

The Gekko model equations have the following syntax:

FRML code variable = expression;

code See the above table regarding equation types

variable A variable, or an expression on a variable: log(x), dlog(x), dif(x) or pch(x)

express
ion

Mathematical expression

As an example to illustrate, we will consider a particularly simple equation:

FRML _SJ_D c = 0.4 * y + 0.4 * y[-1];

The equation code is _SJ_D, which means that an absolute add factor (Jc) will be

added to the equation. So our equation is augmented into

c = 0.4 * y + 0.4 * y[-1] + Jc;

Last, exogenization dummies are added, too (the D in the fifth position of the

equation code). This is done in order to ease exogenization of the equation, if
needed. In general, such variables are implemented in the following way:

c = (1 - Dc) * (0.4 * y + 0.4 * y[-1] + Jc) + Dc * Zc;

Two more variables are added, Dc and Zc. If Dc = 0, the variables Dc and Zc have no

effect, but if Dc = 1, the equation reduces to c = Zc. In that case, the equation is

controlled by the exogenous variable Zc. In addition to this equation, Gekko adds two

more 'reverted' equations regarding Jc and Zc. These equations are of Y-type, run

after the simulation.

FRML Y Jc = c - (0.4 * y + 0.4 * y[-1]);
FRML Y Zc = c;

If Dc = 0, it is easy to see that Jc will not change its value via its Y-type equation.

But if Dc = 1, Jc will attain the value that corresponds to what Zc has been set to, or

Jc = Zc - (0.4 * y + 0.4 * y[-1]). Therefore, you may set Dc = 1, and Zc to

some chosen value. When you simulate, c will attain that value. Later on, if you reset

Dc = 0 and simulate, you will notice that c still assumes the chosen value (but is

otherwise free to change if variables on the right-hand side change). So these
exogenization dummies can be used to change the levels of endogenous variables, in
a sense performing an implicit goals-means analysis, where c is the goal, and Jc is

the means.

383Gekko User Manual

T-T Analyse

The same functionality is often used for log-linear equations. Such an equation would
look like:

FRML _GJRD Dlog(y) = Dlog(x);

The add-factor (J-variable) is now relative (code JR), and the resulting equations are

as follows:

y = y[-1] * exp(log(x) - log(x[-1])) * (1 + JRy);

This equation is the 'unfolded' equation used in the simulations (try taking log() on

both sides of the equation). In general, a JR-variable is always implemented by
multiplying the unfolded equation with (1 + JR). Note that in this equation, the

relative add-factor corresponds to Dlog(y) = Dlog(x) + log(1 + JRy), so the

relative add-factor can be interpreted as an additive add-factor in logarithms (also
note that log(1 + JRy JRy for small values of JRy).

If in doubt about how a particular equation unfolds, including how D-, J- and Z-
variables are implemented, you may DISP it and click the link "Show detailed
equation".

You may use parameter values instead of numerical values, for instance:

val %c = 0.758812; //Note: you must use the VAL keyword in frml
files
FRML _i Y = %c*X1 + (1-%c)*X2;

The parameter value must be located inside the model file itself, either before or
after the FRML statement(s) using it.

Gekko models: supported functions

In addition to the normal functions like log(), exp(), abs(), pow(), the following
functions are possible:

Name Description Possib
le on
left-
hand
side

dif(x) or
diff(x)

Absolute time-
difference

yes

384 Gekko 3.1.x help system

T-T Analyse

dify(x) or
diffy(x)

Yearly absolute
time-difference

yes

dlog(x) Logarithmic time-
differences

yes

dlogy(x) Yearly logarithmic
time-differences

yes

lag(x, lag) Lags x a number of
periods. Note the
sign of the lag:
lag(x, 2) = x[-2].
Can be used if x is
an expression.

no

max(x1,
x2)

Max of the two
values

no

min(x1,
x2)

Min of the two
values

no

movavg(x,
lags)

Moving average no

movsum(x
, lags)

Moving sum no

pch(x) Percent time-
difference

yes

pchy(x) Yearly percent
time-difference

yes

Gekko models: variable list

You may add a variable list with variable explanations at the end of the model file
(.frm), after a VARLIST$ (or VARLIST;) tag. The list can be 'folded', using indices like

qJ{j}{i}. The list must be in UTF-8-format, if for instance 'æ', 'ø' and 'å' or other
special characters are to be shown correctly. In Notepad, you can choose encoding
UTF-8 under 'Save as'. These variable explanations show up in for instance DISP or
DECOMP.

An example:

FRML Qu = ;
FRML fMz01 = ;

VARLIST$

Qu
Antal beskæftigede i alle erhverv ekskl. landbrug mv.

385Gekko User Manual

T-T Analyse

(1000 pers.)
Kilde: Statistikbanken, NAT18, branche: jf. fX{j}

fMz{i} i=01,2,3q,59,s
Den del af importgruppe {i}, der har en generel
substitutionselasticitet til dansk produktion
(mio.kr., 2005-priser, kædede værdier)
Kilde: Nationalregnskabet
Beregning: fMz{i} = Mz{i}/pm{i}

Note that each variable has a section delimited by '------'. The rules are as follows:

· Every variable section must end with a line with "---" (at least three of these). The
variable list as a whole must end with such a line in order to get the last variable
section read.

· You may use {}-placeholders that are auto-unfolded. If you need more than one
list in one section, the lists can be delimited by blanks or ';'. Example: qJ{j}{i}

j=t,e;i=a,b (compact) or qJ{j}{i} j = t, e i = a, b (more spacing).

· The index inside the {}-placeholder can be an arbitrary letter, but only one letter.
· The lists can be of arbitrary depth/dimension, for instance: qJ{i}{j}{k}{m}

i=a,b;j=1,2;k=x,y;m=nm,nk.

· The lines following the first line (with the variable name) are descriptions. All {}-
placeholders are in-substituted in the descriptions, too.

· You can use an arbitrary number of description lines. For instance, (1) description,
(2) unit, (3) source, (4) calculation. You may use empty description lines.

Instead of putting the variable list in a model (.frm) file, it can instead exist in a
stand-alone file called varlist.dat (without the VARLIST$ line).

Gekko models: examples

If the model file name is simple.frm, you may load the file as follows:

model simple;

Note that extension '.frm' is automatically added if it is missing (you may
alternatively use model *; to choose the model in Windows Explorer).

Consider the following model file (called simple.frm):

FRML _I y = c + i + g;
FRML _S c = (1 - Dc) * (0.4 * y + 0.4 * y[-1] + Jc) + Dc * Zc;
FRML Y Jc = c - (0.4 * y + 0.4 * y[-1]);
FRML Y Zc = c;
FRML T cy = c/y;

386 Gekko 3.1.x help system

T-T Analyse

FRML P ye = (y2[-1] + y2 + y2[+1])/3; //y2 can be read as y

// --
RUNAFTER$
series <%__simt1 - 2 %__simt2 > y2 = y;
series <%__simt2 + 1 %__simt2 + 1> y2 %= 0;
predict <%__simt1 - 1 %__simt2 > ye;

// --
VARLIST$

y
Gross domestic product
(US dollars)
Source: Eurostat

c
Consumption
(US dollars)
Source: Eurostat

The two first equations are the 'real' equations which are simultaneous and are
simulated in a SIM statement. The two next Y-type equations are technical, making it
possible to use Dc = 1 to exogenize c via Jc (cf. descriptions above, and see below

how to autogenerate these Y-type equations via equation codes). These equations are
not part of the simulation, but are run after each simulated period. The T-type
equation calculates a table variable that is not part of the simultaneous part of the
model. Like the two Y-type equations, this equation is run after each simulated period
(the equation calculates a simple consumption share for later tabelling).

The P-type equation calculates a variable ye (expected y) from another variable y2.

This variable is essentially just y, but extended with a constant value after the

simulation period. This equation is ignored by SIM, and can only be used together

with the PREDICT statement. In the RUNAFTER$ part of the model, the ye equation is

called via such a PREDICT statement, and the equation is calculated one year before
the simulation start, because ye it depends on leaded y-values and therefore must be

updated before simulation start.

Instead of the two manually constructed Y-type equations above, you may instead
use this equation for c:

FRML _SJ_D c = 0.4 * y + 0.4 * y[-1];

This equation code automatically emits the two Y-type equations in the above
example.

Gekko models: note

387Gekko User Manual

T-T Analyse

You cannot use broken lags, for instance x[-0.3]. This will perhaps be added later on

(would be translated into 0.7*x + 0.3*x[-1]). Leads like x[+1] are allowed.

For exponents, please use either a^b or a**b (in addition, pow(a,b) is also possible).

Comments: use // to out-comment the rest of the line or /* ... */ to comment out

several lines.

You may put meta-information into the model file (.frm). As of now, Info, Date,

Freq, and Signature fields are supported. Example (to be put in the top of the model

(.frm) file):

// Info: Model used for forecasting 2012-2030
// Date: 7-11-2012 15:37:00
// Freq: q
// Signature: fp88RzyZfJNaoTi3I4X3Ww

Gekko will complain if this format deviates, for instance the Info field is to be written

with capital 'I', with no blank before the colon, and one blank after the colon. This
rigorousness regarding form is to make it easy to spot the information in different
.frm files.

The Info, Date and Freq (if q or m) fields will be displayed when loading the model

(MODEL statement), and the Signature field is used for verifying that .frm files have

not been changed relative to an 'official' version. The signature for a particular .frm
file can be obtained with the SIGN statement. For quarterly or monthly models it can
be an advantage to state the frequency explicitly, else Gekko may complain that an
option freq = ... ; should be set before the MODEL statement.

If you have a variable that is defined implicity, for instance as f(x) = 0, but where

the x cannot be isolated, you may use the following pattern:

FRML _d x = x + f(x);

where f(x) is an expression where x cannot be isolated. If you choose option solve

method = newton, an equation like the above should solve just fine with SIM.

GAMS models

You may load a GAMS model in two ways: either as "raw" GAMS equations, or as
"unrolled" GAMS equations.

· Raw: or instance, the raw GAMS equation E_y .. y[i, t] =E= sum(j, x[i, j,

t]); could be translated into the corresponding Gekko statement y[#i] = sum(#j,

388 Gekko 3.1.x help system

T-T Analyse

x[#i, #j]);, and Gekko can use such translated "raw" equations in the DISP

statement and other places.
· Unrolled: Gekko also supports the use of "unrolled" scalar GAMS euations. If in the

above GAMS equation i runs over a and b, and j runs over x and y, the raw

equation can be unrolled into the following (for the year 2020 here): y[a, 2020] =

x[a, x, 2020] + x[a, y, 2020]; and y[b, 2020] = x[b, x, 2020] + x[b, y,

2020]; These equations are in a sense "atomic", and Gekko uses them for the

DECOMP statement, because they are precise and unequivocal.

To load raw GAMS equations, use for instance MODEL <gms> eqs.gms;, where the

equations are contained inside the .gms file. Gekko will search for .. inside the .gms

file to locate the equations.

To load unrolled equations, you need to construct a .zip file with suitable unrolled

equations. Per default, you may use the following file names inside the .zip:

· gams.gms: Unrolled equations

· dict.txt: Dictionary with real variable names

· raw.gms: Raw GAMS equations (optional)

The unrolled equations and the dictionary can be produced by GAMS' convert

statement. A simple example:

raw.gms

set t / 2000, 2001, 2002, 2003 /;
set t0[t] / 2001, 2002 /;
variable y[t], c[t], g[t];
y.l['2001'] = 499; y.l['2002'] = 531;
c.l['2001'] = 459; c.l['2002'] = 471;
g.fx['2001'] = 40; g.fx['2002'] = 60;
y.fx['2000'] = 500; y.fx['2003'] = 540;
equation e1[t], e2[t];
e1[t] $ t0[t] .. y[t] =E= c[t] + g[t];
e2[t] $ t0[t] .. c[t] =E= 0.3 * y[t-1] + 0.3 * y[t] + 0.3 *
y[t+1];
model m /all/ ;
option mcp=convert;
solve m using mcp;

Run this file in GAMS, for instance with the Windows DOS call /

...gams_path/gams.exe raw.gms, which produces the two files gams.gms and

dict.txt. If you do not want to set option mcp=convert; inside your GAMS file,

drop the line and instead use the call /...gams_path/gams.exe raw.gms

solver=convert. Zip gams.gms, dict.txt and raw.gms into simple.zip (or

download here if you like). Put simple.zip in your Gekko working folder, and try this

(in Gekko):

model<gms>simple.zip;

http://www.t-t.dk/gekko/simple.zip

389Gekko User Manual

T-T Analyse

y <2000 2003> = 500, 499, 531, 540;
c <2001 2002> = 459, 471;
g <2001 2002> = 40, 60;
decomp <2002 2002> y;

This fires up DECOMP, using the equations inside simple.zip. Because there are no

Ref databank values, the decomp cannot show multiplier decompositions.

Inside the .zip file you may optionally put a ModelInfo.json file describing file

names, for instance:

ModelInfo.json

{
 "unrolledModel": "gams.gms", //GAMS scalar model, with
variables x1, x2, x3, ... (GAMS output)
 "unrolledNames": "dict.txt" //Translation of x1, x2,
x3, ... into "normal" variable names (GAMS output)
 "rawModel": "raw.gms", //Raw model eqs (optional)
}

Default values are gams.gms, dict.txt and raw.gms as shown above, so if you are

using these names inside your .zip file, you do not need a .json file. You may put
other helper files in the .zip file if you wish (for instance databanks etc.). If your
equations are scattered inside a system of GAMS files, you have to assemble these
files into a single .gms file, but Gekko does not care about extraneous code inside
such a file (it only locates the equations, searching for ..).

Gekko does not (at the moment) offer to solve a full GAMS model with the SIM
statement, but residuals can be computed with SIM<res>.

Related options

OPTION folder model = [empty];
OPTION model type = default; //default | gams
OPTION model gams dep current = no; //yes | no

Related statements

SIM, SERIES, READ

390 Gekko 3.1.x help system

T-T Analyse

4.3.57 MULPRT

The MULPRT statement prints multipliers of variables, lists or expressions. A
'multiplier' is the difference between values in the first-position and reference
databanks.

MULPRT is a specialized version of the more general PRT statement. The key
difference between the two print statements is that the operators are different:

· Short operators like d, p, m, q etc. cannot be used in the MULPRT statement

· The long operators have different interpretation than in the PRT statement.
· There is the additional operator v for 'verbose' MULPRT.

Please note that after any MULPRT, you may click the Copy-button in the main
window to copy-paste the print to Excel or other spreadsheets.

Syntax

mulprt < period operators decimals width ROWS FILTER=... BANK=...
 REF=... > period elements HEADING=... FILE=... ;

where:

period (Optional). Local period, for instance 2010 2020, 2010q1

2020q4 or %per1 %per2+1.

operators operator operator ...

operator lev, abs, pch, gdif, v (note: v overrides any other operators)

decimals DEC=number | NDEC=number | PDEC=number

width WIDTH=number | NWIDTH=number | PWIDTH=number

elements element, element, ...

element variable 'label' < operators decimals width >

details:

391Gekko User Manual

T-T Analyse

operators Long operators: lev, abs, pch or gdif. These can be switched

off by means of prefix no (for instance nopch), or added to

existing default operators by means of underscore (for instance
_lev). Default operators are abs and pch (absolute and

percentage multiplier is printed). Finally, you may use the v

operator to get verbose (detailed) output. Also see option

print mulprt (The so-called 'short' operators cannot be

used in MULPRT).

element The variable can be a variable name, a list (for instance {#m}),

or an expression. Labels are put in single quotes (will be
ignored for lists). Operators here will override other operators
(global ones, or those set on the MULPRT statement), so
element-operators are local to the particular element.

DEC= Sets number of decimals, will apply to all kinds of numbers.

NDEC= Sets number of decimals for non-percentage numbers. See also
option print fields ndec....

PDEC= Sets number of decimals for percentage numbers. See also
option print fields pdec....

WIDTH= Sets width, will apply to all kinds of numbers.

NWIDTH= Sets width for non-percentage numbers. See also option print

fields nwidth....

PWIDTH= Sets width for percentage numbers. See also option print

fields pwidth....

ROWS If set, the result will be transposed, i.e., with variables running
downwards.

FILTER= A timefilter can be activated or deactivated (see TIMEFILTER
statement). With <FILTER> or <FILTER=yes>, the current

timefilter is used. With <NOFILTER> or <FILTER=no>, any

filtering is deactivated. The filter type can also be changed
locally, for instance <FILTER=hide> hides the out-filtered

periods, whereas <FILTER=avg> averages the out-filtered

periods. See option timefilter....

BANK (Optional). A bankname where variables are looked up. For
instance MULPRT <bank = b1> x; is equivalent to mulprt

392 Gekko 3.1.x help system

T-T Analyse

b1:x;. See also <REF = ...>. These options can be convenient

instead of opening and closing banks.

REF (Optional). A bankname where reference variables are looked
up. For instance mulprt <bank = b1 ref = b2 m> x; uses

banks b1 and b2 for the multiplier. See also <BANK = ...>.

These options can be convenient instead of opening and closing
banks

HEADING= A heading in quotes.

FILE= A filename that the print is put into.

Note: You must specify at least one element.

For instance, mulprt <2010 2015> x1, x1/x2, {#y}; will print out multiplier

differences regarding x1, x1/x2 and the variables corresponding to the list #y, for the

period 2010-2015.

Long operators for MULPRT

lev Absolute level: x

abs Absolute multiplier: x-@x[-1]

pch Relative multiplier: (x/@ -1)*100

gdif Multiplier in growth rate: (x/x[-1] -1)*100 - (@x/@x[-1] -1)
*100

v Prints verbose output (detailed, overrides other operators)

Note: For MULPRT the so-called 'short' operators are not available (see PRT).

Per default, MULPRT always prints out corresponding to mulprt <abs pch>, i.e.,

printing out the absolute difference and percent difference. These default options can
be altered in option print mulprt ... (see 'Related options' below). For instance,

to only print the absolute multiplier of a variable, use mulprt<abs>, to only print the

relative multiplier, use mulprt<pch>. You can alternatively switch options off with a

preceding 'no', for instance mulprt<nopch> (same as mulprt<abs>) etc. In addition,

you can use the 'glue' character '_' to add options to existing options. For instance,
mulprt<_lev> will correspond to mulprt<lev abs pch>, because lev is added to the

default options (abs and pch). You may put the codes after individual elements, for

instance mulprt var1<pch> var2<abs>;, to have var1 displayed as pch and var2

displayed as abs. Codes put on an element override more general codes put directly

after MULPRT, so mulprt<pch> var1 var2<abs>; yields the same result.

393Gekko User Manual

T-T Analyse

In addition to the above transformations, the print can be formatted regarding the
width of each data column, and the number of decimals. Please see the PRT help file
regarding the syntax and capabilities.

The output can be transposed by means of the ROWS keyword, for instance
mulprt<rows> gdp, pgdp;. This is handy for printing a long list of timeseries, or for

copy-pasting the cells to a spreadsheet by means of the copy-button in the Gekko
interface.

Finally, you can use a timefilter (see TIMEFILTER) in the MULPRT option field. See
examples in the PRT help file.

If referencing a variable in a particular databank beware that mulprt b:variable;

will print the difference between b:variable and ref:variable, that is, Gekko looks

for a variable with the same name in the reference databank.

Examples

After performing some experiment, you may use mulprt fy; to print out the

multiplier regarding the variable fY:

 fy (E)%
 2011 806.0090 0.06
 2012 917.4147 0.06
 2013 872.7069 0.06
 2014 834.6051 0.06

The '(E)' indicates that fy is endogenous ('(X)' indicates exogenous)). Regarding

width and decimals formatting, or using timefilters, see the examples in the PRT help
file.

You may use mulprt<v> (v for verbose) to obtain more detailed multiplier output:

 fY % Reference %
Difference %
 2011 1432173.5090 3.82 1431367.5000 3.76
806.0090 0.06
 2012 1464027.0397 2.22 1463109.6250 2.22
917.4147 0.06
 2013 1492288.9569 1.93 1491416.2500 1.93
872.7069 0.06
 2014 1513081.9801 1.39 1512247.3750 1.40
834.6051 0.06

The last two columns correspond to the normal MULPRT statement, whereas the four
first columns show levels and growth rates from the first-position and reference
databanks respectively. Note that the last percentage column is not the difference

394 Gekko 3.1.x help system

T-T Analyse

between the other percentage columns. Such a difference is the growth rate
multiplier (mulprt<gdif> or PRT<mp>). So the 0.06 in the last row above is

(834.6051/1512247.3750)*100, not 1.39-1.40.

If you prefer to have levels of the variable shown in a normal MULPRT statement, you
can use mulprt<_lev>. To add levels in all MULPRT statements, use this:

option print mulprt lev = yes;
mulprt fy; //this and the following MULPRT's will include levels

Note

If a model is loaded (see MODEL), the MULPRT statement indicates (E) for

endogenous, and (X) for exogenous variables. Missing values are shown with a M

instead of numbers. If some variable is missing in the databank, an error message
will be issued.

You may change what is printed as default via the option print mulprt ... options

(see 'Related options' below). For instance you may want to switch off printing of
percentage growth permanently: option print mulprt pch = no.

The so-called 'short' operators (d, p, m, q, etc.) can only be used with the PRT

statement.

Related options

OPTION freq a; [a|q|m|d|u]
OPTION print width = 100;

OPTION print fields ndec = 4;
OPTION print fields nwidth = 13;
OPTION print fields pdec = 2;
OPTION print fields pwidth = 8;

OPTION print mulprt lev = no;
OPTION print mulprt abs = yes;
OPTION print mulprt pch = yes;
OPTION print mulprt gdif = no;
OPTION print mulprt v = no;

OPTION timefilter type = hide;
OPTION timefilter = no;

395Gekko User Manual

T-T Analyse

Related statements

PLOT, SHEET, CLIP, PRT, DISP, DECOMP

396 Gekko 3.1.x help system

T-T Analyse

4.3.58 OLS

The OLS statement performs linear regression (ordinary least squares) on an
equation, optionally with linear restrictions on the parameters.

Note: a constant term (intercept) is added automatically, unless suppressed with
<constant = no>.

In the OLS output, there are different links that can be clicked, showing for instance
how the equation fits on data, decomposition with respect to the right-hand side
variables, and parameter stability regarding different estimation periods.

Syntax

ols <period XTREND=... XFLAT=... CONSTANT=... DUMP=... DUMPOPTIONS=...>
name leftside = var1, var2, ... IMPOSE=... ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4

or %per1 %per2+1.

XTREND= (Optional). Trend polynomial of the stated degree (must be
positive). When using XTREND, Gekko will estimate the trend
parameters on a linear timeseries with value -1 in the start period
and 0 in the end period. [New in 3.1.2]

XFLAT= (Optional). Restrictions on the endpoints of the trend polynomial
(cf. the XTREND option). This creates so-called 'Finnish' trends,
and the arguments is a list containing s{i} or e{i} for start- or
end-points, where {i} states the order for which the derivative
must be zero. For instance ols <xtrend=5 xflat=s2, e2>... will

use a polynomial of 5'th degree, where the second-order
derivatives are zero in the start- and end-points. This means that
plot dif(ols_trend); will show a curve that is flat at both ends

(ols_trend is the trend part of the right-hand side). If ols

<xtrend=5 xflat=s1, e1>... had been used instead, the curve

plot ols_trend; would be flat at both ends. [New in 3.1.2]

CONSTANT
=

With <constant = no>, a constant term is not added

automatically.

DUMP= (Optional). Dumps the results as a FRML equation for use in
models. You may use ols<dump> to produce a ols.frm file.

ols<dump=eqs.frm> will use the filename eqs.frm instead. Note

that there is no firm guarantee that a subsequent MODEL
statement will load the file, but in most cases it will (FRML

397Gekko User Manual

T-T Analyse

statements only support a limited subset of general Gekko
expressions). If the equation loads, you may consider a SIM<res>
to check its residuals. Gekko will put parentheses around all
expressions that contain a + or -. This will introduce superfluous

parentheses in expressions like a * (b + c) or exp(a - b) etc.

Note that a limited set of functions like for instance log(y) or

dlog(y) on the left-hand side will produce a valid FRML equation,

whereas more complicated expressions on the left-hand side will
need manual resolving afterwards. [New in 3.0.6]

DUMPOPTIO
NS=

(Optional). If you use ols<dump=eqs.frm

dumpoptions='append'>, the results will be appended to an

existing eqs.frm file. These options will be augmented with

styling, FRML code, etc. [New in 3.0.6]

name (Optional). A name for the equation, used to name the results. If
no name is given, ols is used as name.

leftside The leftside variable (may be an expression)

var1, ... A list of variable names or expressions. A constant term is added
automatically, unless you use option <constant = no>.

IMPOSE (Optional). You can impose linear restrictions on the parameters,
via a suitable matrix. One restriction per row of the matrix, cf.
example below. Remember to count any coefficients corresponding
to a trend polynomium (XTREND).

Results:

Note that if a name is given, ols is replaced with that name.

ols_predict A timeseries with the predicted values

ols_residual A timeseries with the residuals

#ols_param A matrix with estimated parameters

#ols_se A matrix with standard errors on parameters

#ols_t A matrix with t-values on parameters

#ols_covar A matrix with the variance-covariance matrix (of
parameters)

398 Gekko 3.1.x help system

T-T Analyse

#ols_corr A matrix with the correlation matrix (of parameters)

#ols_stats A matrix containing different measures (analogous to
the .stats matrix in AREMOS):

1: Residual sum of squares
2: Standard error
3: Residual mean
4: Root mean square error (RMSE)
5: R squared
6: R bar squared
7: [empty]
8: Dependent variable mean
9: Durbin-Watson with lag 1

(At some point, a map will be used instead for these
measures).

Example

This example estimates a linear model with five parameters. You may consult the
MATRIX section to see the same parameters calculated with linear algebra, or the
R_RUN section to see the same parameters calculated via the R interface.

reset;
create lna1, pcp, bul1;
lna1 <1998 2010> = data(' 166.223000 173.221000 179.571000
187.343000 194.888000 202.959000
 209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
pcp <1998 2010> = data(' 0.9502030 0.9699920 1.0000000
1.0235000 1.0401100 1.0605400
 1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
bul1 <1998 2010> = data(' 0.0684791 0.0591698 0.0560344
0.0535439 0.0535003 0.0631703
 0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
ols <2000 2010> dlog(lna1) = dlog(pcp), dlog(pcp.1), bul1, bul1.1;

The statements produce the following screen output:

 OLS estimation 2000-2010 (n = 11)
 dlog(lna1)

https://en.wikipedia.org/wiki/AREMOS

399Gekko User Manual

T-T Analyse

 Variable Estimate Std error T-stat

 dlog(pcp) 0.144517 0.227011 0.64
 dlog(pcp.1) 0.613875 0.236473 2.60
 bul1 0.186740 0.202534 0.92
 bul1.1 -0.350908 0.203182 1.73
 CONSTANT 0.0298039 0.0089418 3.33

 R2: 0.625034 SEE: 0.00346154 DW: 1.8651

In addition to the screen output, the timeseries ols_predict and ols_residual are

produced, together with the matrices #ols_param, #ols_se, #ols_t, #ols_covar,

#ols_corr, and #ols_stats. The matrices can be printed out with the PRT

statement.

In the example above, you may, for example, restrict the first two parameters to sum
to 0.80, and the third and fourth to be equal like this (cf. the MATRIX statement):

#r = [1, 1, 0, 0, 0, 0.80; 0, 0, 1, -1, 0, 0];
ols <2000 2010> dlog(lna1) = dlog(pcp), dlog(pcp.1), bul1, bul1.1
IMPOSE = #r;

If the parameters are called b{i}, the first restriction is equivalent to 1*b1 + 1*b2 +

0*b3 + 0*b4 + 0*b5 = 0.80, or b1 + b2 = 0.80. The second restriction is

equivalent to 0*b1 + 0*b2 + 1*b3 + (-1)*b4 + 0*b5 = 0, or b3 = b4. So the last

column of the #r matrix contains the values that the linear restrictions should sum

up to. The restrictions produce the following:

 OLS estimation 2000-2010 (n = 11)
 dlog(lna1)

 Variable Estimate Std error T-stat

 dlog(pcp) 0.167642 0.180625 0.93
 dlog(pcp.1) 0.632358 0.180625 3.50
 bul1 -0.0863480 0.0794747 1.09
 bul1.1 -0.0863480 0.0794747 1.09
 CONSTANT 0.0291952 0.0085164 3.43

 R2: 0.491156 SEE: 0.00349218 DW: 1.6847

Note

You may consider R to perform econometrics, cf. this page. But Gekko also has some
pretty good interfaces to TSP (with its rock-solid LSQ estimator).

http://www.tspintl.com/

400 Gekko 3.1.x help system

T-T Analyse

The variables do not need to have similar magnitude to obtain precise parameter
estimates (pre-scaling is performed internally).

Instead of ols<dump>, some people prefer to compose FRML equations for models by

hand, using TELL and PIPE. In this way, the equations can be formatted exactly as
the user prefers. To control the formatting of paramaters, you may use the inbuilt
format() function, for instance using tell 'FRML y = {format(#ols_param[1],

'0.000000')} * x + ({format(#ols_param[2], '0.000000')})';. The last

parenthesis is to deal with #ols_param[2] being negative. See more on formatting of

strings in the TELL section.

After an OLS, you may use the Copy-button in the main Gekko window to copy/paste
(with full precision) the matrix of parameter values/errrors to Excel or other
spreadsheets.

OLS produces quite a lot of timeseries containing data for the clickable graphs. You
may use index ols_*; to obtain a list of these -- for instance, ols_trend will contain

the trend component of the right-hand side (if a trend is stated).

If there are missing values at the start or end of the data, Gekko will report this and
suggest a truncated (shorter) estimation period. You may use PRT to print out the
expressions if missing values are reported.

Related options

OPTION fit ols rekur dfmin = 10;

Related statements

 ANALYZE, MATRIX, MODEL, R_RUN

401Gekko User Manual

T-T Analyse

4.3.59 OPEN

The OPEN statement opens databanks. In general, there are (potentially) the
following databanks in Gekko:

Number Searchable Non-searchable

Local

1. First Ref

2. Another databank

3. Another databank

... ...

n'th Last databank

Global

More info on this databank list on the databank search page. The first-position
databank can always be referred to by for instance first:x, and the reference

databank by ref:x.

In sim-mode, the order in the above list is not significant, since all banks that are not
the first-position or local/global databank must be referred to by either bankname
(like b2:x) or operators (like prt<m>x;, to print the difference between first:x and

ref:x). In other modes, for instance data-mode, Gekko will search for variables in

the databanks shown in the 'Searchable' column. Note here that the Ref databank is
never searchable, since the purpose of the Ref databank is to ease different kinds of
comparisons.

When looking for a variable x in a statement (for instance prt x; or at the right-

hand side of an expression (for instance y = x;), Gekko will look first in the Local

databank (if it contains variables), then in the first-position databank (often called
Work), then in the second-position, third-position etc. databanks, and finally in the
Global databank. The Local databank is used to store temporary variables, for
instance variables used in functions and procedures, whereas the Global databank is
used to store permanent variables that can survive a RESET or RESTART. These
databanks are created at Gekko startup, but they are not shown in the databank list
(F2) if they are empty. The same goes for the Ref databank, which is not shown in
the F2 list if empty. Therefore, when Gekko starts up in a clean state, only the first-
position databank (default: Work) is shown in the F2 list.

The OPEN statement reads timeseries from a databank file into a databank with the
same name as the file (minus the extension). A databank opened in the way is called

402 Gekko 3.1.x help system

T-T Analyse

a 'named' databank (in contrast to READ which operates on the first-position and/or
reference databanks). Named databanks may be written to if they are opened with
OPEN<edit>, and the databanks are closed with the CLOSE statement.

NOTE: Gekko opens up databanks in the last position in the databank list. This
behavior deviates from AREMOS and is only relevant for data- or mixed-mode users.

To open a databank file as the first databank in the list of databanks (cf. the F2
window), you may use open<first> -- or open<edit> if you want it in first position

and editable. The first-position databank is the bank in which timeseries are found
per default, and the reference databanks is often used for multiplier purposes
(analyzing differences between two banks, for instance via MULPRT, PLOT<m>, etc.).

Variables in named (OPEN) databanks are referred to by means of colon (:), for

instance adam:x if the opened databank is the file adam.gbk, containing the variable

x. Note that you can get the list of available in-memory databanks by means of the

F2 key.

The order in which normal OPEN databanks (that is, opened with OPEN, not for
instance OPEN<edit>, OPEN<first> or OPEN<ref>) are opened is only of importance
if option databank search = yes is set (it is set to no as default in sim-mode, but

set to yes as default in data-mode). So regarding a bank-less variable like x, it

depends upon the databank search settings how x is searched for in the different

open databanks (cf. the databank search page). The variable @x (same as ref:x) is

always x taken from the reference databank, and adam:x is always x taken from the

in-memory databank adam.

With option databank search = yes, which is default, Gekko will search for a

bank-less variable x first in the Local databank, then all numbered databanks in the

F2 window (bank number 1, 2, and so on), and finally in the Global databank.

Syntax

open < EDIT FIRST LAST POS=... REF SAVE=... CREATE format COLS
DATEFORMAT=... DATETYPE=... TRACE=... > filename1 AS alias1,
filename2 AS alias2, ... ;

EDIT The databank is opened in first position, as editable. (See also
OPEN<create>). If the databank is already open, the databank will
be moved to first position as editable.

FIRST The databank is opened in first position, as non-editable
(protected). If the databank is already open, the databank will be
moved to first position.

403Gekko User Manual

T-T Analyse

LAST The databank is opened in last position, as non-editable
(protected). Note: open <last> bank1; is equivalent to open

bank1;. If the databank is already open, an error will be issued.

POS= (Optional) Indicate an integer value. The databank is opened in
the n-th position, as non-editable (protected)

SAVE With open <save=no>, Gekko will not write the databank to file

when it is closed, even if the databank contents has changed. In
that way, you may change the contents of a databank in RAM only
(that is, the data is changed while the databank is open and the
session lasts), but without altering the underlying databank file
(.gbk). See also close <save=no>.

CREATE If this option is set, Gekko will accept an open <create> b1, even

if b1.gbk does not exist beforehand. Regarding a non-existing file,

this is similar to open <edit>, the difference is that open <edit>

puts the bank in first position, as editable. The reason why
<create> is not the default way of opening a databank is to avoid

errors if a user misspells a databank name.

TRACE (Optional). Default is yes. Set no to omit reading of data traces.

The databank will load faster and use less RAM (if traces are
present). Only relevant for Gekko databanks (.gbk files).

format (Optional). Can be tsd, gbk, pcim, csv, prn, xls, xlsx. The default

file format is gbk.

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip

paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

If the filename is set to '*', you will be asked to choose the file in
Windows Explorer.
The extension .gbk is automatically added, if it is missing.

COLS (Optional). Only for .xlsx and .csv files: this indicates whether the
timeseries are running downwards in columns. Note that for .csv
files, you indicate this in the first 'cell' (date/name).

DATEFORM
AT=
DATETYPE=

(Optional). These options control the date format for .xlsx and .csv
files, and for the use of SHEET in Gekcel. DATEFORMAT can be

either 'gekko' (default, for instance 2020q3 or 2020m11) or a

404 Gekko 3.1.x help system

T-T Analyse

format string like 'yyyy-mm-dd', and the latter may contain a

first or last indicator, for instance 'yyyy-mm-dd last', which

indicates for quarterly, monthly or weekly data that the last day of
the quarter/month/week is used. DATETYPE can be either 'text'

or 'excel'. In the former case, the dates are understood as text

strings (for instance '2020q3' or '2020-09-30' for a quarterly

date), and in the latter case (not relevant for .csv files), the date is
understood as an Excel date, which basically counts the days since
January 1, 1900. This number would correspond to 44104 for the
date 2020-09-31, and can be shown in Excel in different ways
depending upon date format settings, language settings, etc., but
the internal number itself is unambiguous. When using SHEET in
Gekcel, using DATETYPE='excel' is advised for consistency. [New

in 3.0.5].

alias (Optional). The name that is used when referencing the databank.
Default is the filename minus extension.

Example

Opening a .gbk file called bk1 is done with

open bk1;

or by

open *;

and then selecting the databank. Afterwards, you may reference variables in the
databank by means of for instance:

prt fy, @fy, bk1:fy;

This will print out the fy variable from the first-position, reference, and bk1

databanks. You may use an AS alias to shorten the databank name:

open bk1 as b;
prt fy, @fy, b:fy;

405Gekko User Manual

T-T Analyse

Try pressing F2 to open up the databanks window. This window provides an overview
regarding the different open databanks (including Work and Ref).

If you open up two databanks like this:

open bank1;
open bank2;

bank1 will show up above bank2 in the databank list, because the OPEN statement

puts databank in the last position on the list. The following yields the same:

open bank1, bank2;

You may use open<first>, open<pos=n>, open<last> to open a databank in a

specific position on the databank list (F2). The statement open<edit>mybank; is the

same as open<first>mybank; unlock mybank; -- and in that case, a subsequent xx1

= 100; will put the series xx1 into mybank:

open <edit> mybank;
xx1 = 100;
close mybank;

After the CLOSE statement, the altered databank is automatically written to file, so
mybank.gbk will contain the xx1 series.

Note

To get an editable databank in the second position or below, OPEN it and use UNLOCK
afterwards.

When reading, extension '.gbk' is automatically added if it is missing. Global time
settings does not affect the OPEN statement, so all the data in the .gbk file is read
into the databank regardless of how the timeperiod is set in Gekko.

See the IMPORT statement for more information on databank formats.

You can use series ?; to see what kinds of series reside in all open databanks

(including their frequencies).

Banks are opened as 'protected' (non-editable) as default, unless you use open<edit>

or unlock with UNLOCK (see LOCK/UNLOCK).

You may use the isopen() function to test if a particular databank is open.

406 Gekko 3.1.x help system

T-T Analyse

See the Gekko menu 'Options' --> 'Program dependency tracking' or use option

global dependency tracking = ...; to activate dependency tracking, so that the

use of external files (for instance program files, read/written databanks etc.) are
shown as a list at the end of a Gekko session.

Related options

OPTION databank file copylocal = yes; [yes|no]
OPTION databank search = no; [yes|no]
OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];

Related statements

READ, WRITE, CLONE, LOCK, UNLOCK, CLEAR, CLOSE, CLOSEALL, DELETE

407Gekko User Manual

T-T Analyse

4.3.60 OPTION

Three types of options
Gekko operates with three types of options: global options, block-options and local
options. Global options are stated with the OPTION command and apply until
changed. Block options are stated with the BLOCK command and apply for a block
of Gekko statements. Local options are stated inside the <> local option field and

apply to that single statement only. See more here.

The OPTION statement sets various global option values, in a hierarcical tree of
possibilities. "OPTION ?" gives an overview regarding different options and their
current values. Below, the different options are described (with their default values
indicated).

Note that Gekko provides suggestions (a small popup-window) for the OPTION
statement (to switch suggestions off, use option interface suggestions = none;).

The popup-window looks like the following, where you can select and click [Enter].

Syntax

option type = value;

type One or more space-delimited options

value · Boolean (e.g.: yes|no)

· Integer (e.g.: 200)

· Floating point number (e.g.: 0.45)

· String (eg.: 'newton')

· Name (eg.: newton)

· Filename (eg.: t:\forecast\b.gbk)

For strings/names/filenames, it is optional whether to
use quotes (string like 'q') or not (name like q). For

instance, these all set quarterly frequency:

%f = 'q';
option freq = q;
option freq = {%f};
option freq = 'q';

408 Gekko 3.1.x help system

T-T Analyse

option freq = %f;

Note: the = may be omitted in most cases: option freq q; and option freq = q;

are equivalent. For Gekko 4.0, the = will probably become mandatory, so keeping the

='s in Gekko program file is probably wise.

Below the full list of options are provided, with their default values. You may set
temporary options via the BLOCK structure.

Options

option collapse method = total; [total|avg|first|last]
This option sets the default collapse method. Applies to the COLLAPSE statement and
the collapse() function.

option collapse missing d = strict; [strict|flex]
When collapsing from series of d (daily) frequency, Gekko will per default be strict

regarding missing values (missing days will entail missing data in the lower-
frequency timeseries). Set this to flex if you prefer flexibility (skipping the missing

days). Applies to the COLLAPSE statement and the collapse() function.

option copy respect = no; [yes|no]
Regarding the COPY statement, if no period is given, the global period is used
(default: no). [New in Gekko 3.1.15].

option databank create auto = yes; [yes|no]
If yes, timeseries will be auto-created. For instance, y1 = 100; will be possible

without create y1;, even if y1 does not exist in the first-position databank. Setting

option databank create auto = yes; and option databank search = yes; can

be practical in data revision programs. See also the MODE statement.

option databank file cache = nongbk; [all|nongbk|none]
Whether or not a databank file cache is used for faster databank (re)reading. The
none option corresponds to Gekko < 3.1.14. Because a Gekko .gbk file is essentially

a cache file, the speed gains of using a file cache for .gbk files are limited, and

therefore the default option is nongbk. You may use option all to cache .gbk files,

too (will save a bit of unzipping time). The databank file cache applices to all kinds of
databank files that can be read with READ or IMPORT.

 If yes, when reading (READ/IMPORT) or opening (OPEN) a databank, the file will

first be copied into a temporary file on the user's hard

option databank file copylocal = yes;
If yes, when reading (READ/IMPORT) or opening (OPEN) a databank, the file will first

be copied into a temporary file on the user's hard drive. This will often speed up
reading/opening files on network drives.

409Gekko User Manual

T-T Analyse

option databank file gbk compress = yes;
option databank file gbk internal = 'databank.data';
Some options regarding the .gbk format, applying only to writing or closing databanks
(WRITE/CLOSE). Without compression there are some speed gains while writing and
reading, but in most cases the speed gains do not outweigh having to deal with much
larger databank files. The internal name for the data file inside the zipped .gbk file is
normally databank.data, but can be changed here. Gekko 3.1.x always writes gbk

databanks in the 1.2 version of that format (but it can read both 1.0, 1.1 and 1.2 gbk
databanks, that is, from all older Gekko's).

option databank search = no;
If yes, variables will be searched for in all open databanks except the Reference

databank (cf. the F2 window). Setting option databank create auto = yes; and

option databank search = yes; can be practical in data revision programs. See

also the MODE statement, and the databank searching page. Note that the Local or
Global databanks are always searchable, independent on MODE etc.

NOTE: When running the same series statements again and again iteratively (for
instance, iterating over rows and columns in an input-output table until
convergence), you may consider switching off data tracing with option databank

trace = no;. For such solver-like scenarios, data tracing may slow down the

calculations needlessly.

option databank trace = yes; [yes|no]
If yes (default) timeseries changes (including array-series) are "recorded" in the form

of traces. Traces are shown with DISP (with Gekko version >= 3.1.16) and are stored
in Gekko databanks (.gbk), too. If, for instance, you activate tracing with option

databank trace = yes; and issue the following statements: x1 = 1/100; and x2 =

x1 + 1;, a DISP of x1 will show the trace x1 = 1/100, whereas a DISP of x2 will

show the trace x2 = x1 + 1; and also link to the trace viewer which will also show

you the sub-trace x1 = 1/100 (even x1 is subsequently deleted). Databank-wise,

any traces are lost if a databank containing traces is READ with a Gekko version <
3.1.16, followed by a WRITE (the same goes for OPEN<edit> and CLOSE). Databank
tracing is experimental, and therefore the TRACE2 command has a '2' suffix that will
be removed when the functionality is mature enough. [New in 3.1.16].

option decomp maxlag = 10;
option decomp maxlead = 10;
When decomposing, effects via lags are restricted within these values (larger values
= slower decomp). This does not apply to GAMS scalar models.

option decomp plot zoom = 100;
A DECOMP plot may appear too large or too small on some screens and resolutions.
This is being investigated, but until then, you can use the zoom option to change the
size of DECOMP plots (default = 100%).

option fit ols rekur dfmin = 10;

410 Gekko 3.1.x help system

T-T Analyse

Minimum degrees of freedom when doing recursive estimations for OLS.

option folder = yes; [yes|no]
If yes, Gekko will look for files in predefined folders (is switched on per default).

option folder bank = [empty];
option folder bank1 = [empty];
option folder bank2 = [empty];
While reading, importing or opening databanks (READ/IMPORT/OPEN), Gekko will
first look for databanks in the working folder, and then in the bank, bank1 and bank2

folders (in that order). If the folder contains blanks, single quotes should be used (for
instance option folder bank = 'c:\my banks'). Relative paths may be used:

option folder bank = \databanks. In that case, Gekko will look for a sub-folder

databanks in the working folder. If bank is set, databanks are written to that folder

(WRITE).

option folder command = [empty];
option folder command1 = [empty];
option folder command2 = [empty];
While looking for Gekko program files (see RUN), Gekko will first look for .gcm files
in the working folder, and then in the command, command1, command2 folders (in that

order).

option folder help = [empty];
Folder where Gekko looks for the help system (gekko.chm file). Normally this file is
located where Gekko is installed (and comes bundled with the installer files).

option folder menu = [empty];
Folder where Gekko looks for menu files (.html files).

option folder model = [empty];
Folder where Gekko looks for model files (.frm files).

option folder pipe = [empty];
Folder where Gekko pipes out text output files (see the PIPE statement). If no folder
is indicated, piped files will end up in the working folder.

option folder table = [empty];
option folder table1 = [empty];
option folder table2 = [empty];
Folders where Gekko looks for table files (.gtb files). Gekko will first look in table,

then table1, and last table2 folders.

option folder working = [empty];
This changes the Gekko working folder. The option survives RESET or RESTART
statements. (For advanced users: note that you can also use the parameter '-folder'
with the gekko.exe file, for instance: gekko.exe -folder:c:\mygekkofiles).

411Gekko User Manual

T-T Analyse

option freq = a; [a|q|m|w|d|u]
Sets frequency of timeseries to a (annual), q (quarterly), m (monthly), w (weekly), d

(daily) or u (undated). Note that week numbering follows the ISO 8601 standard.

option gams exe folder = [empty];
This option starts out empty, and if so, GAMS will try to auto-detect the location of
the executable for GAMS (gams.exe). The auto-detection seems to be pretty good at
locating a 32-bit GAMS for a 32-bit Gekko, and a 64-bit GAMS for a 64-bit Gekko.
Instead of this auto-detection, you may try to set the folder name manually, for
instance option gams exe folder = 'c:\GAMS\win32\24.1';. Note that only the

path is indicated, excluding the file name. Please use quotes if the folder contains
dots (.).

option gams fast = yes;
Default GAMS read is using a fast reader (so-called low-level API). If this poses
problems, try the more robust normal API by setting option gams fast = no;.

option gams time detect auto = no;
option gams time freq = a; [a, q, m, d, u]
option gams time offset = 0;
option gams time prefix = '';
option gams time set = t;
These options describe how the time dimension is obtained from the GAMS variables
and parameters. The default values correspond to the time being the GAMS set name
t, with natural annual values like 2020, 2021, 2022, etc. If the time values are

instead, for instance, t0, t1, t2, you may use option gams time prefix = t;

option gams time offset = 2020;. In that case, t0 will be understood as 2020, t1

as 2021, etc. If a variable/parameter does not use a strict set (for instance with the
name t in this case, cf. option gams time set) or this set name is not recognized,

Gekko may in that case represent these as for instance x['2020'], x['2021'], etc.,

where each of these sub-arrayseries is a timeless series (this representation is pretty
much useless). To remedy this problem, either decorate the time dimension in the
gdx file with for instance the set/domain name 't', or use option gams time

detect auto = yes. With this option, for any variable/parameter where a time

dimension is not recognized as a domain name, Gekko will "taste" the individual data
lines of the variable/parameter, and try to identify a dimension that seems like a
time dimension. For annual time values, if all values of a particular dimension are
integers in the range 1500 <= t <= 3000, Gekko will presume that this is a time
dimension.

option gams trim = 0;
For GDX files, with this setting set to n, only variables/parameters with >= n
elements (in the GAMS sense) are imported. For instance, setting option gams trim

= 1, variables/parameters with 0 elements are ignored (this can be set in order to

clean up, or for comparison purposes (cf. COMPARE)). When counting GAMS
elements, elements that have value 0 or "eps" are not counted.

https://en.wikipedia.org/wiki/ISO_8601

412 Gekko 3.1.x help system

T-T Analyse

Note: 'global' options can only be set in a gekko.ini file next to the gekko.exe file.

option global dependency tracking = none; [none|simple]
When set to simple, Gekko tracks the use of external files (for instance program

files, read/written databanks etc.). A list of such files is shown at the end of a Gekko
session (you may alternatively use the Gekko menu 'Options' --> 'Program
dependency tracking').

option interface alias = no; [yes|no]
When this option is set, Gekko will look for at list with the name #alias to perform

alias substitution of names. For instance, global:#alias = (('a', 'x'), ('b',

'y[z]')); will mean that prt a, b; is interpreted as prt x, y[z];. So the #alias

list is a list of lists, where the inner lists contain the source name and the destination
name. Among other things, #alias can be convenient as a bridge between the

naming conventions of two different models. You can switch on and off the use of
alias with this option, but if you need to use another #alias list, you have to first

perform a RESET/RESTART.

option interface clipboard decimalseparator = period; [period|comma]
The option is used in three places: (1) in the CLIP statement, (2) regarding the
'Copy'-button on the user interface (copying cells from the last print to the clipboard),
and (3) regarding copy-pasting cells from the DECOMP window. The setting is not
relevant for SHEET which does not use the clipboard.

option interface csv decimalseparator = period; [period|comma]
Used with IMPORT<csv> and EXPORT<csv>, where the databank is a csv (comma
separated) file.

option interface csv delimiter = semicolon; [semicolon|comma|tab]
Used with IMPORT<csv> and EXPORT<csv>. The field delimiter is ; per default, but

can be set to , or [tab-symbol] instead. This symbol delimits the columns of data.

Regarding EXPORT<csv>, combining option interface csv delimiter = comma;

with option interface csv decimalseparator = comma; will issue a warning.

[New in 3.0.5].

option interface csv ignoremissing = no;
When yes, all missing values in an exported (EXPORT<csv>) csv file are represented

as blank cells. The default is no, which makes for instance subsequent summing of

Excel cells less prone to missings-bugs. [New in 3.1.16].

option interface csv ndec = 100;
Number of decimals when writing levels in a .csv file. A value > 20 is interpreted as
"full machine precision". [New in 3.1.2].

option interface debug = dialog; [dialog|none]
Choose between dialog or none. If dialog, the user may rerun a file on syntax

errors, or skip lines on runtime errors.

413Gekko User Manual

T-T Analyse

option interface edit style = gekko; [gekko | gekko2 | rstudio | rstudio2]
The default style is gekko. With gekko2, an [Enter] will execute the line AND move

the cursor to the next line. Therefore, with gekko2, multiple lines can be executed

with [Enter] [Enter] ... [Enter] instead of [Enter] [downarrow] [Enter]

[downarrow] ... [Enter]. With gekko and gekko2, [CTRL+Enter] issues a new line

without executing anything (like a newline in Notepad). The rstudio style emulates

RStudio, where [Enter] works like a newline in Notepad, and [Ctrl+Enter]

executes the line. With rstudio style, an issued statement moves the cursor to the

next line (similar to gekko2). With rstudio2 style, [Ctrl+Enter] does not move to

the next line (similar to gekko).

option interface errors = normal; [old|normal]
Sets how error messages are shown. Choose old for error messages corresponding to

Gekko version < 3.1.14. The normal (that is: new) error messages handle program

structure a lot better.

option interface excel ignoremissing = no;
When yes, all missing values in an exported (EXPORT<xlsx>) Excel file are

represented as blank cells. The default is no, which makes for instance subsequent

summing of Excel cells less prone to missings-bugs. [New in 3.1.16].

option interface excel language = danish; [danish|english]
If set to danish, CLIP, SHEET and the 'Copy' button will use the Excel code

"ikke.tilgængelig()" instead of "na()" to indicate missing values. Also, if set to

danish, EXPORT<csv> will use '#N/A' for missing values (instead of '#I/T'),

provided that option interface csv ignoremissing = no.

option interface excel modernlook = yes; [yes|no]
Turns on modern looking blue colors in SHEET.

option interface help copylocal = yes;
If this option is active, Gekko will copy the file gekko.chm into a local folder on the
user's hard disk, before it is opened (for instance with F1, or the HELP statement). In
Windows 7 and 8, problems will arise when trying to open up a .chm files from a
network drive, so keeping the option active should eliminate such problems.

option interface mode = data; [sim|data|mixed]
Sets some interface messages/warnings etc. regarding different modes (see the
MODE statement). This option is not intended for direct use: please use the MODE
statement that changes the mode explicitly.

option interface mute = no; [yes|no]
When this option is set to yes, all screen output (or pipe file output) is suppressed. If

errors occur, this option is automatically set to no. Alternatively, PIPE can also be

used to suppress screen output and direct it to a file instead. The option is is
primarily set in program files/procedures/functions to avoid voluminous screen output
blocking and slowing the user interface. [New in 3.0.6].

option interface prn decimalseparator = period; [period|comma]
Used with IMPORT<prn> and EXPORT<prn>, where the databank is a prn file. [New
in 3.1.16].

https://rstudio.com/

414 Gekko 3.1.x help system

T-T Analyse

option interface prn delimiter = blank; [blank|semicolon|comma|tab]
Used with IMPORT<prn> and EXPORT<prn>. The field delimiter is blank per default,
but can be changed. Regarding EXPORT<prn>, combining option interface prn

delimiter = comma; with option interface prn decimalseparator = comma; will

issue a warning. [New in 3.1.16].

option interface prn ndec = 100;
Number of decimals when writing levels in a .prn file. A value > 20 is interpreted as
"full machine precision". [New in 3.1.16].

option interface remote = no; [yes|no]
option interface remote file = '';
If the first option is set to 'yes', Gekko will look for a file named remote.gcm (the

default file name) in the current working folder. If that file is changed (Gekko looks
at Windows time stamps), the whole file is run (corresponding to RUN remote.gcm;).

This makes remote controlling of a Gekko instance possible from, for instance, an
external text editor. For instance, typing Alt+Enter or something similar in the editor
might be set up so that a remote.gcm file containing the contents of the text line (or

block of lines) is created. See also a Gekko-specific add-in for the Sublime text editor
here.

option interface sound = no; [yes|no]
option interface sound type = bowl; [bowl|ding|notify|ring]
option interface sound wait = 60;
If active, Gekko will play a sound when a program file finishes (or has an error). The
sound type can be bowl, ding, notify, ring. The last option is the minimum

duration of the job (in seconds), before for Gekko plays a sound.

option interface suggestions = option; [none|option]
If set to option, small popup with suggestions will appear when entering options.

option interface table operators = yes;
If yes, html tables will include radio buttons to select operators by point-and-click, for

instance percentage growth, or multiplier differences. Note: 'operators' was called
'printcodes' in Gekko 2.4 and earlier.

option interface zoom = 100;
The zoom level (default = 100%) regarding font sizes in the user interface (the three
tabs in the main window). May be increased on high-res monitors, or for educational
purposes (projector).

option interpolate method = repeat; [repeat|prorate]
This option sets the default interpolate method. Applies to the INTERPOLATE
statement and the interpolate() function.

option library cache = yes; [yes|no]
Whether or not a library cache is used.

https://github.com/MartinBonde/gekko_sublime

415Gekko User Manual

T-T Analyse

option menu startfile = menu.html;
The filename for the html menu file shown in the 'Menu' tab (see MENU).

option model cache = yes; [yes|no]
Whether or not a model file cache is used for faster model (re)loading.

option model cache max = 20;
The maximum number of compiled models kept in RAM (cached), during a Gekko
session. Reduce the number if you for instance are doing a lot of ENDO/EXO
simulations and run into memory issues.

option model gams dep current = no; [yes|no]
When reading a GAMS model with MODEL<gms>, Gekko will try to identify the
dependent variable in each GAMS equation. If option model gams dep method =

lhs (default), Gekko will try to find the first variable on the left-hand side that is not

inside a []-bracket or a $-condition. WIth current = no, Gekko will identify the

variable as dependent, even if it contains a lag or lead. With current = yes, Gekko

will only look for variables that have no lags and no leads. See also the model <dep

= ...> local option under MODEL. [New in 3.0.2].

option model gams dep method = lhs; [lhs|eqname]
When reading a GAMS model with MODEL<gms>, Gekko will try to identify the
dependent variable in each GAMS equation. With option lhs, Gekko will try to find

the first variable on the left-hand side that is not inside a []-bracket or a $-condition.
With option eqname, Gekko uses the equation name instead, for instance the

equationname e_pc_tot is understood as identifying the variable pc as dependent

variable. In both these cases, such identification can be overruled with a list
identifying these relationships, cf. the model <dep = ...> local option under MODEL.

[New in 3.0.3].

option model infofile = yes; [yes|no]
If no, Gekko will not produce a modelname__info.zip file after a MODEL statement

(with default model type).

option model type = default; [default|gams]
If type = gams, Gekko will handle ENDO, EXO, UNFIX and DISP differently to ease

the interaction with GAMS. When you load a Gekko model with MODEL, Gekko
automatically sets option model type = default;, and when you load a GAMS

model with MODEL<gms>, Gekko automatically sets option model type = gams;.

option plot decimalseparator = period; [comma|period]
The type of decimal separator used for tic labels.

option plot elements max = 200;

416 Gekko 3.1.x help system

T-T Analyse

Limits the number of curves in a graph, so that PLOT does not crash or stall when
accidently feeding with too many elements. See PLOT<nomax>.

option plot lines points = yes; [yes|no]
Whether or not the PLOT graph has individual points indicated with markers. This can
also be controlled for each varible via <type = lines> vs. <type=linespoints>.

option plot using = [empty];
With this option, a global .gpt PLOT template file can be set, for instance option

plot using = m:\common\gekko.gpt;. Subsequent PLOT statements will then use

that template (unless the PLOT statement itself has a using argument).

option plot xlabels annual = at; [at|between]
option plot xlabels nonannual = between; [at|between]
Whether or not the data points are at x-tics, or between them. For quarterly and
monthly data, the latter is often the most logical.

option plot xlabels digits = 4; [2|4]
Number of digits in the year (at the x-labels). The option only applies to labels
between tics, not labels at tics (see the preceeding options). With two digits, we get
15, 16, 17, instead of 2015, 2016, 2017.

option print collapse = none; [avg|total|none]
If this option is set to avg or total, Gekko will print averages or totals for timeseries

of frequencies quarterly or monthly. Cf. also the COLLAPSE statement. Only applies
to option print freq = pretty;.

option print disp maxlines = 3;
The number of lines of data shown per default in the DISP statement. You may
choose -1 for infinite, 0 means that no data are shown.

option print elements max = 400;
Limits the number of elements in a print, so that PRT does not crash or stall when
accidently feeding with too many elements. See PRT<nomax>.

option print fields ndec = 4;
option print fields nwidth = 13;
option print fields pdec = 2;
option print fields pwidth = 8;
These options set the default decimals and width of number fields when printing with
PRT or MULPRT. The first two sets decimals and width for for non-percent fields, and
the two last for percent fields. The ndec and nwidth settings also affect printing of

matrices.

option print freq = pretty; [pretty|simple]
If this option is set to pretty, timeseries of frequencies are printed with separation,

blank lines, etc., for better readability. If the option is set to simple, the dates are

shown without such separation.

option print mulprt abs = yes; [yes|no]

417Gekko User Manual

T-T Analyse

option print mulprt gdif = no; [yes|no]
option print mulprt lev = no; [yes|no]
option print mulprt pch = yes; [yes|no]
option print mulprt v = no; [yes|no]
These options set the default way of printing with the MULPRT statement. Per default,
abs and pch are chosen, so MULPRT shows absolute multiplier difference (abs), and

relative difference (pch). These can be overridden via the option fields in the MULPRT

statement.

option print prt abs = yes; [yes|no]
option print prt dif = no; [yes|no]
option print prt gdif = no; [yes|no]
option print prt pch = yes; [yes|no]
These options set the default way of printing with the PRT statement. Per default, abs

and pch are chosen, so PRT shows the absolute level (abs), and the growth rate

(pch). These can be overridden via the option fields in the PRT statement.

option print split = no; [yes|no]
If set, the variables or expressions delimited by comma are shown separately, cf. also
the local option PRT<split>. With the global option set, prt x, y; is shown as if it

had been prt x; prt y;. This may be practical for comparisons of data with similar

columns, for instance prt x[#i], @x[#i];. In that case, you may prefer to use for

instance the <missing = m> option, so that all columns (#i) are shown (and are

hence aligned), regardless of whether the sub-series exist or not.

option print width = 100;
Line width (number of characters) when printing to screen

option python exe folder = [empty]; [New in 3.1.8]
This option starts out empty, and if so, Gekko will try to auto-detect the location of
the executable folder for Python (python.exe). If this auto-detection fails, you may

try to set the folder name manually, for instance option python exe folder = 'c:

\Users\Thomas\AppData\Local\Programs\Python\Python36_64\python.exe';. If

this name does not end with .exe, .bat or .cmd, Gekko will append python.exe or

\python.exe. So in the above example, option python exe folder = 'c:

\Users\Thomas\AppData\Local\Programs\Python\Python36_64'; would have been

equivalent. If you use a .bat or .cmd file, it could contain a line like "c:
\Users\Thomas\AppData\Local\Programs\Python\Python36_64\python.exe" %1 %

2 %3 to preserve the arguments.

option r exe folder = [empty];
This option starts out empty, and if so, Gekko will try to auto-detect the location of
the executable folder for R (R.exe, or to be precise Rscript.exe). If this auto-

detection fails, you may try to set the folder name manually, for instance option r

exe folder = 'c:\Program Files\R\R-3.0.0\bin\R.exe';. Note the single quotes

because of the blank in 'Program Files'. If this name does not end with .exe, .bat or
.cmd, Gekko will append R.exe or \R.exe. So in the above example, option r exe

418 Gekko 3.1.x help system

T-T Analyse

folder = 'c:\Program Files\R\R-3.0.0\bin'; would have been equivalent. If you

use a .bat or .cmd file, it could contain a line like "c:\Program Files\R\R-

3.0.0\bin\R.exe" %1 %2 %3 to preserve the arguments.

option series array calc missing = error; [error|m|zero]
With option error (default), a missing #i element in x in an expression like for

instance sum(#i, x[#i]) will halt with an error. With option m, Gekko will not halt,

but will use missing values instead of x[#i] -- so the sum will return a missing value.

With zero, zeroes are used instead of missing elements in x[#i], so the sum is

calculated as if the missing elements were skipped.

option series array print missing = error; [error|m|zero|skip]
With option error (default), a missing #i element in x in prt x[#i]; will halt with

an error. With option m, missing values will be printed (typically as 'N' instead of 'M'

to indicate that it is a non-existing sub-series). With zero, zeroes are printed instead,

and with skip, the missing #i's are skipped (not shown). See also the local option

<missing = ...> for PRT. As mentioned, with option missing = m, the raw prt

x[#i]; will show missing #i elements as 'N' because they are non-existing, whereas

an expression like prt x[#i] + 1; will show them as 'M', since they are now a result

of a mathematical expression.

option series data missing = m; [m|zero]
With option m (default), missing data/observations in a normal series or array-series

are propagated normally, so that an expression containing a missing value will always
result in a missing value. With option zero, a missing value in an observation will be

treated as if the value was 0. There are other options that deal with the question of
what to do if a normal series or array-subseries does not exist at all, so this option
solely affects the time domain: what to do if an observation inside a series is missing.
In some cases, for instance when importing data from GAMS, such a missing
observation could sensibly be interpreted as the value 0. See more on this, including
examples, on this page, and cf. also the <missing = ignore> local option for SERIES

and PRT/PLOT/SHEET. [New in 3.0.3].

option series dyn = no; [yes|no]
With this option, lagged endogenous variables like in the statement x = x[-1] + 1;

accumulate over time, because the statement is run 'dynamically', one period at a
time consecutively. The option will only be active, if the right-hand side of the
statement is of series type. Because the use of this option entails a speed penalty,
the option can only be activated via BLOCK; ... ; end; (see BLOCK).

option series dyn check = yes; [yes|no]
With this option, statements like x = x[-1] + 1; are checked regarding the

existence of lagged endogenous variables on the right-hand side, and is such
variables are present, the statement must be decorated with a <dyn>, <dyn = no>, or

be inside of a suitable BLOCK that sets the same option (block series dyn = yes|

no). If this is not the case, versions 3.1.7 and higher of Gekko will fail with an error.

This is to guard against simply forgetting to put a <dyn> or block series dyn = yes

on an accumulating statement. [New in 3.1.7].

419Gekko User Manual

T-T Analyse

option series failsafe = no; [yes|no]
When this option is set, Gekko will abort with an error message, when a series
statement like for instance y = x; or y[2020] = %v; tries to insert an observation

containing a missing value into the left-hand series. The option can be practical for
debugging Gekko program files (.gcm), if the source of a missing value is hard to
track. The option is only intended for debugging purposes. See also option solve

failsafe. [New in 3.0.2].

option series normal calc missing = error; [error|m|zero]
With option error (default), a missing series x in a calculation will will halt with an

error. With option m, missing values will be used instead of x, and with zero, zeroes

are used instead of the missing x.

option series normal print missing = error; [error|m|zero|skip]
With option error (default), a missing series x in prt x; will halt with an error. With

option m, missing values will be printed (typically as 'N' instead of 'M' to indicate that

it is a non-existing series). With zero, zeroes are printed instead, and with skip the

missing x series is skipped (not shown). See also the local option <missing = ...>

for PRT. As mentioned, with option missing = m, the raw prt x; will show N's

because the series is non-existing, whereas an expression like prt x + 1; will show

the missings as 'M', since they are now a result of a mathematical expression.

option sheet collapse = none; [avg|total|none]
If this option is set to avg or total, Gekko will show averages or totals for timeseries

of frequencies quarterly or monthly. Cf. also the COLLAPSE statement. Only applies
to option sheet freq = pretty;.

option sheet engine = internal; [internal|excel]
For reading and writing Excel spreadsheet files, Gekko will normally use an internal
engine to do this. This engine is independent upon Excel being installed on the user's
pc. The internal engine only supports .xlsx files, not the older .xls files. If you need to
access the older .xls files, you may set the option to excel which reads and writes

both the old and new format. Beware however, that the excel option demands Excel

being installed on the pc. It is also a bit slow and unstable, and may leave Excel
processes behind, eating up memory.

option sheet freq = simple; [pretty|simple]
If this option is set to pretty, timeseries of frequencies are printed with separation,

blank lines, etc., for better readability. If the option is set to simple, the dates are

shown without such separation.

option sheet mulprt abs = yes; [yes|no]
option sheet mulprt gdif = no; [yes|no]
option sheet mulprt lev = no; [yes|no]
option sheet mulprt pch = no; [yes|no]
option sheet mulprt v = no; [yes|no]
[NOT USED YET]. These options set the default way of printing with the SHEET<mul>
(not implemented yet) statement. Per default, only 'abs' is chosen, so SHEET<mul>

420 Gekko 3.1.x help system

T-T Analyse

shows absolute multiplier difference ('abs'). These can be overridden via the option
fields in the SHEET statement.

option sheet prt abs = yes; [yes|no]
option sheet prt dif = no; [yes|no]
option sheet prt gdif = no; [yes|no]
option sheet prt pch = no; [yes|no]
These options set the default way of printing with the SHEET statement. Per default,
abs is chosen, so SHEET shows the absolute level (abs). These can be overridden via

the option fields in the SHEET statement.

option sheet cols = no; [yes|no]
option sheet rows = yes; [yes|no]
Per defaut, the SHEET statement prints timeseries row-wise, that is, with variable
names in the first column, and time periods in the first row. These options may
change the orientation, or you can use SHEET<rows> or SHEET<cols>.

option smooth method = linear; [linear|geometric|repeat|spline|overlay]
This option sets the default smoothing method. Applies to the SMOOTH statement
and the smooth() function.

option solve data create auto = yes; [yes|no]
If yes, when a databank is read by means of the general READ statement (that is,
excluding READ<first> or READ<ref>, but including READ<merge>), all model
variables not present in the file are auto-created (and filled with missing values). See
also the MODE statement.

option solve data ignoremissing = no; [yes|no]
If yes, if a variable has a missing value when Gekko tries to simulate (SIM), the

number zero will be used instead. Warning: this may get the model to simulate, but
the result may be incorrect!

option solve data init = yes; [yes|no]
If yes, when simulating lagged values are used as starting values for endogenous

variables (this is default and typically the most robust). If no, the current period
values are used as starting values for endogenous variables.

option solve data init growth = yes; [yes|no]
option solve data init growth min = -0.02;
option solve data init growth max = 0.06;
If set yes, Gekko will look at the historical growth rate of endogenous variables, in

order to come up with good initial values. With the sub-options min and max, you may

indicate a range. Per default, the range is set to -2% up to 6%, meaning that only
historical growth rates within that range will be used to initialize endogenous
variables. The 'growth' option typically speeds up SIM convergence, provided
resonable min/max limits are used.

option solve failsafe = no; [yes|no]

421Gekko User Manual

T-T Analyse

If yes, the Gauss algorithm will stop at the exact time when any equation produces a

missing value. The option slows the simulations down a bit (which is why it is not set
per default). When the option is on, variables from the above-mentioned problematic
equation will be printed out on screen automatically (using DISP<info>). See also
option solve newton robust. and option series failsafe.

option solve forward dump = no; [yes|no]
If yes, information regarding the Fair-Taylor iterations is kept. With one lead-

variable, you can see the iterations by means of printing the variables ftabs1_1,

ftabs1_2, ftabs1_3, etc., where the last number is the FT-iteration (try plot

{'ftabs1_*'};). If Newton-Fair-Taylor ('nfair') is used, there will also be matrices

#ft_1, #ft_2, etc., containing the Jacobi interaction between leaded variables.

option solve forward fair conv = conv1; [conv1|conv2]
Set Fair-Taylor convergence type to conv1 (default) or conv2. This corresponds to the

criteria used in the option solve gauss conv ... options.

option solve forward fair conv1 abs = 0.001;
option solve forward fair conv1 rel = 0.001;
Relative criterion for the (default) conv1-type convergence check, and absolute

criterion for the (default) conv1-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

option solve forward fair conv2 tabs = 1.0;
option solve forward fair conv2 trel = 0.001;
Relative criterion for the PCIM-like conv2-type convergence check, and absolute

criterion for the PCIM-like conv2-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

option solve forward fair damp = 0.0;
Damping used regarding leaded endogenous variables in the Fair-Taylor algorithm.
The larger the factor is, the harder the damping. Setting the factor to 0.0 means no
damping at all, whereas setting it to 1.0 means the equations cannot progress.

option solve forward fair itermax = 200;
option solve forward fair itermin = 0;
The maximum and minimum number of iterations done in the Fair-Taylor algorithm.

option solve forward nfair conv = conv1; [conv1|conv2]
Set Newton-Fair-Taylor convergence type to cnv1 (default) or conv2'. This

corresponds to the criteria used in the option solve gauss conv ... options.

option solve forward method = fair; [fair|nfair|none]
The method used regarding leaded endogenous variables. If set to fair, the Fair-

Taylor algorithm is used, and if set to nair, the Newton-Fair-Taylor method us used.

If set to none, no forward-looking method is used. In that case, the leaded

endogenous variables are just taken exogenously as their databank values.

option solve forward nfair conv1 abs = 0.001;
option solve forward nfair conv1 rel = 0.001;

422 Gekko 3.1.x help system

T-T Analyse

Relative criterion for the (default) conv1-type convergence check, and absolute

criterion for the (default) conv1-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

option solve forward nfair conv2 tabs = 1.0;
option solve forward nfair conv2 trel = 0.001;
Relative criterion for the PCIM-like conv2-type convergence check, and absolute

criterion for the PCIM-like conv2-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

option solve forward nfair damp = 0.0;
Damping used regarding leaded endogenous variables in the Newton-Fair-Taylor
algorithm. The smaller the factor is, the harder the damping. Setting the factor to 1.0
means no damping at all, whereas setting it to 0.0 means the equations cannot
progress.

option solve forward nfair itermax = 200;
option solve forward nfair itermin = 0;
The maximum and minimum number of iterations done in the Newton-Fair-Taylor
algorithm. Usually this algorithm need far fewer iterations than standard Fair-Taylor.

option solve forward nfair updatefreq = 100;
How often the Jacobi matrix is updated in the Newton-Fair-Taylor algorithm. For hard
problems, you may set updatefreq = 1.

option solve forward terminal = const; [const|growth|exo]
This sets terminal conditions regarding leaded endogenous variables. If the
simulation period ends in 2100, y[+1] in that period will be set to the value y is

solved for in 2100 (and not the databank value for y in 2101). With growth, y[+1] in

2100 will use the growth rate instead of the level for the solved y in 2100. If the

option is set to none, y[+1] in 2100 will be taken as the databank value of y in 2101

(this is often not a good choice).

option solve forward terminal feed = internal; [internal|external]
This is a technical option that decides wheather the terminal values are used inside
one Fair-Taylor iteration, or only between them.

option solve gauss conv = conv1;
Set Gauss convergence type to conv1 (default) or conv2. Read more about

convergence criteria in the help file related to the statement ITERSHOW.

option solve gauss conv1 abs = 0.0001;
option solve gauss conv1 rel = 0.0001;
Relative criterion for the (default) conv1-type convergence check, and absolute

criterion for the (default) conv1-type convergence check.

option solve gauss conv2 tabs = 1.0;
option solve gauss conv2 trel = 0.0001;
Relative criterion for the PCIM-like conv2-type convergence check, and absolute

criterion for the PCIM-like conv2-type convergence check.

423Gekko User Manual

T-T Analyse

option solve gauss conv ignorevars = yes; [yes|no]
If active, variables indicated by means of the CHECKOFF statement will be ignored
regarding convergence check.

option solve gauss damp = 0.5;
In the Gauss algorithm, this damps any equations with damping set with the given
factor. The larger the factor is, the harder the damping. Setting the factor to 0.0
means no damping at all, whereas setting it to 1.0 means the equations cannot
progress. The damped equations have a 'Z' in their formula codes.

option solve gauss dump = no; [yes|no]
This option activates recording of Gauss iterations, for later inspection by means of
the ITERSHOW statement. Beware that the option may use a lot of RAM, and that it
slows down simulations considerably.

option solve gauss itermax = 200;
option solve gauss itermin = 10;
The maximum and minimum number of iterations done in the Gauss algorithm.

option solve gauss reorder = no; [yes|no]
When active, this option reorders equations in the simultaneous block of the model.
This should normally reduce the number of required Gauss iterations for solving the
model, but it may sometimes induce starting value problems (therefore the option is
set to no as default). The option should be issued before a MODEL statement to take

effect.

option solve method = gauss; [gauss|newton]
Choose between gauss or newton

option solve newton backtrack = yes; [yes|no]
If yes, the Newton algorithm tries to backtrack if an iteration step seems too large.

option solve newton conv abs = 0.0001;
Sets the absolute Newton convergence criterion. This is the value that the square
root of the sum of squared residuals in all the equations may not exceed. So any
residual will be (numerically) lower than this value, and usually a lot lower (since
there are many equations).

option solve newton invert = lu; [lu|iter]
The algorithm used to invert the Jacobian matrix. The lu option is usually the most

robust.

option solve newton itermax = 200;
The maximum number of iterations done in the Newton algorithm, before exiting.

option solve newton robust = yes; [yes|no]
With this option set, the Newton method will be more robust regarding starting
values that normally would result in a crash due to illegal values, such as, for
instance, the logarithm of a negative number etc. The robust mode is experimental,
but if the starting values are legal, robust = yes will perform exactly the same

iterations as robust = no. See also option solve failsafe.

424 Gekko 3.1.x help system

T-T Analyse

option solve newton updatefreq = 15;
This options indicates how often the Newton algorithm should update the Jacobi
matrix, when doing fast steps.

option solve print details = no; [yes|no]
If yes, the Newton algorithm will produce quite a lot of extra information regarding
the iterations.

option solve print iter = no; [yes|no]
If yes, the individual periods are printed out while simulating. Set to no as default.

option solve static = no; [yes|no]
If yes, all lagged endogenous values are taken as their databank values (i.e. not their

simulated values). See also SIM<static> local option.

option string interpolate format val = ''; [string]
When insterting values inside a strings, Gekko can format the values in different
ways. Use '0.000' for 3 decimals, '12:0.000' for 3 decimals inside a 12 chars wide

field, '12:F3' for the same, '-12:0.000' left-aligned. Instead of 0's, #'s can be used,

too. See also the STRING help page, and the format() in-built function.

option system code split = 20; [0 or positive integer]
This is a very technical option related to how Gekko compiles Gekko program files. If
> 0, long non-looping program files are internally chopped up in smaller chunks
which are put into their own C#-methods. This eases the life of the C# compiler,
especially for large/long files. The option tells how many lines of .gcm code are
bundled into sub-methods at a time. A value of 20 seems good regarding speed, but
the special value 0 switches this splitting off altogether. So you may try the value 0,
if Gekko breaks down for mysterious reasons.

option system clone = yes; [yes|no]
This is a very technical option related to how user-defined functions and procedures
behave. If set active (default), when calling a function like %y = f(#x);, Gekko will

clone the function arguments, so that there can be no side-effects on the function
arguments after the function call is done. The option may cost some
performance/speed if a function is called with very large objects, like very large
matrices etc. Setting the option = no only applies to the types series, list, map and
matrix (scalars never have side-effects).

option system read encoding = auto; [ansi|utf8|auto]
Determines the character encoding when reading text files. With auto (default),

Gekko will 'taste' the file to see whether it is ANSI or UTF-8, and try to read it in the
right encoding. You can use ansi to force ANSI encoding, or utf8 to force UTF-8

encoding. ANSI is the old Windows-1252 standard, which is nowadays mostly
replaced by UTF-8 encoding. Beware that auto (but not the other options) also

changes Unicode "no-break space" into normal space, and removes any Unicode "soft
hyphen" (these Unicodes may appear when copy-pasting from html pages, and Gekko
will choke on them).

425Gekko User Manual

T-T Analyse

option system write encoding = ansi; [ansi|utf8]
Determines the character encoding when writing text files. You can use ansi

(default) to force ANSI encoding, or utf8 to force UTF-8 encoding. ANSI is the old

Windows-1252 standard, which is nowadays mostly replaced with UTF-8 encoding. In
the longer run, the default setting for Gekko will become utf8.

option system write utf8 bom = yes; [yes|no]
When option system write encoding = utf8 has been chosen, the bom option

indicates whether a byte order mark should be included or not, when writing a text
file. Byte order marks are in any case superfluous for UTF-8 (UTF-8 files have no
byte order), but they are often added to indicate that the file is an UTF8-file. You
may use option system write utf8 bom = no to omit byte order marks when UTF-

8 files are written.

option system threads = 5; [yes|no]
Max number of threads used for reading/writing from cache.

option table decimalseparator = period; [comma|period]
The type of decimal separator used.

option table html datawidth = 5.5;
For html tables, this is the minimum width of data columns, in so-called 'em' units (in
CSS: "width: 5.5em"). The 'em' units are independent of font size.

option table html firstcolwidth = 5.5;
For html tables, this is the minimum width of the first column, in so-called 'em' units
(in CSS: "width: 5.5em"). The 'em' units are independent of font size.

option table html font = Arial;
option table html fontsize = 72;
You may choose the font and fontsize for html tables. The fontsize is in percent, so
72 corresponds to 72% (in CSS: "font-size: 72%").

option table html secondcolwidth = 5.5;
For html tables, this is the minimum width of the second column (sometimes
containing variable names), in so-called 'em' units (in CSS: "width: 5.5em"). The 'em'
units are independent of font size.

option table html specialminus = no; [yes|no]
If yes, a non-breaking hyphen is insert instead of the normal minus character. This

may avoid some breaking of numbers, but that hyphen is not good for copy-pasting to
Excel via right-clicking the table. (But please use the copy-button in the user
interface to copy a table to Excel).

option table ignoremissingvars = yes; [yes|no]
If yes, missing variables will be shown as 'M', just like missing values for existing

variables.

option table mdateformat = ''; [string in quotes]

426 Gekko 3.1.x help system

T-T Analyse

This option will change for instance "2020m1" to "Jan. 2020" regarding monthly table
dates. Options are: 'english-short', 'english-long', 'danish-short', 'danish-long'. These
can have a '-lower' appended, for instance 'english-short-lower' (lower first letter of
the month). The option must be stated within single quotes.

option table stamp = yes; [yes|no]
If yes, a date and time stamp is added to tables.

option table thousandsseparator = no; [yes|no]
Can activate thousandsseparator (either period or comma, depending upon option

table decimalseparator). Note that you can now use negative decimals places. For

instance, using varformat="f9.-2" in the gtb file, numbers are rounded to nearest
hundreds. Combining these two, a number like 12345 would be printed as "12.300"
or "12,300" depending on the decimalseparator.

option table type = html; [txt|html]
If set to txt, tables will be shown in text format in the Main tab. If set to html, .html

format will be used (shown in the Menu tab). There are some options to control the
html layout: see option table html

option timefilter = no; [yes|no]
Switches the timerfilter on or off (provided a timerfilter has been defined). See
TIMEFILTER.

option timefilter type = hide; [hide|avg]
If set to hide, applying a timefilter will just hide the out-filtered periods (i.e., they

are not shown). If avg is used instead, the non-shown periods will be aggregated into

the shown periods (as averages). See TIMEFILTER.

Note

As stated above, you may omit the '=' in option statements, but it may be a good
idea to keep it in programs for readability.

Setting option interface suggestions = option (which is default) will help the

user navigate the option tree.

For setting temporary options, see the BLOCK structure.

427Gekko User Manual

T-T Analyse

4.3.61 PAUSE

PAUSE is for pausing the statement flow: the statement will wait for the user to press
[Enter]. See also ACCEPT.

Syntax

pause info;

info (Optional). Text string to be displayed when a statement flow is paused.
You can use '\n' inside the string to insert a new line.

Example

The statement may contain text inside single quotes:

pause 'This is the first part of the scenario';

Related statements

RETURN, STOP, EXIT, ACCEPT

428 Gekko 3.1.x help system

T-T Analyse

4.3.62 PIPE

Redirects output to a file (or back to the screen). Directing to a .html file is
supported.

If you are going to pipe only parts of your Gekko output to an external file, it is
recommended to start at pipe with PIPE [filename];, and then use pipe<pause>;

and pipe<continue>; to start and stop piping to the file (and pipe<stop>; at the

end of the session). If you instead use pipe<stop>; and pipe [filename]; to switch

piping to the same file off and on, the external file may become blocked (and the
program will run slower, too).

If you just want to suppress screen output, without directing it to an external file,
you may use option interface mute = yes; (if PIPE is used, the file writing is

suppressed).

Syntax

pipe < HTML APPEND PAUSE CONTINUE STOP > filename ;

HTML (Optional). If this option is used, Gekko will insert
the text into the <body> of an existing html file (if

appending), or create a html file from scratch to
write into. Note that Gekko appends text to the
.html file without any prior formatting. So for
instance to append a line to a .html file, you have
to include the html tags (for instance: tell

'<p>Hello</p>';). Html output is reasonably

simple to convert into pdf.

APPEND (Optional). If this option is used, the output will be
appended to an existing file, otherwise the file is
overwritten (if it exists to begin with).

PAUSE (Optional). Sets piping on pause

CONTINUE (Optional). Starts piping again

STOP (Optional). Stops piping altogether.

filename (Optional, not used with PAUSE, CONTINUE, STOP
options).
Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path

429Gekko User Manual

T-T Analyse

\gekko\bank.gbk. Filenames containing blanks and

special characters should be put inside quotes.
Regarding reading of files, files in libraries can be
referred to with colon (for instance
lib1:bank.gbk), and "zip paths" are allowed too

(for instance c:\projects\data.zip\bank.gbk).

See more on filenames here.

Any pre-existing file with the same name will be overwritten, unless option APPEND
is used. If PIPE<stop> is used, the output is re-directed to the screen.

Example

You may want to keep a print of some variables in an output file:

read adambank;
pipe ex.out;
prt fy ul;
pipe <stop>;

The file ex.out now contains the variable print. If you instead use pipe <append>

ex.out;, the existing ex.out file will be appended to.

The following illustrates piping to html:

pipe <html> out.html;
tell '<p>This is the first line</p>';
tell '<p>This is the second line</p>';
pipe <stop>;

Afterwards, you may open out.html in a web browser to see what it looks like. If you

need to pause and continue piping, you may use this:

pipe text.txt;
tell 'a';
pipe<pause>;
tell 'b';
pipe<continue>;
tell 'c';
pipe <stop>;

After this, the file text.txt only contains 'a' and 'c', but not 'b'. If you put TELL

statements between PIPE<continue> and PIPE<pause> statements, you will make
sure that only the TELL's end up in the file.

430 Gekko 3.1.x help system

T-T Analyse

Note

When piping, any error messages are also piped to the file. You may consult the
'traffic lights' in the lower right corner of the Gekko window, in order to see if an
error occurred and the program aborted (in that case, the light will be red - a running
program is shown as yellow).

Related options

OPTION folder pipe = [empty];
OPTION interface mute = no;

431Gekko User Manual

T-T Analyse

4.3.63 PLOT

You can create plots of timeseries variables with the PLOT statement. There are many
possibilities: for layout options, see the demo plots. Layout options can be stated in
the PLOT statement itself, or stored in a .gpt schema file (for reuse of styling). Note
that plotting of mixed frequencies is supported.

Guide: plotting
For an easier introductory guide on Gekko plotting, see this page.

The PLOT arguments have the same syntax as PRT/MULPRT, SHEET and CLIP. PLOT
uses the free open-source gnuplot 5.1 internally, and the options of the PLOT
statement and corresponding .gpt file are named to match gnuplot naming
conventions. PLOT can create an .emf, .svg, .png or .pdf file silently, if the FILE=
option is used. The .emf files are practical for MS Office applications, including Word.
The .svg format is practical for html pages, and should usually be preferred over .png
for such pages. Gnuplot supports many output file formats (so-called 'terminals'), so
more formats may be added if needed.

You may use <bank=... ref=...> to locally change the databanks used, instead of
using OPEN and CLOSE.

Note: You may use the in-built XML Notepad editor to edit the .gpt files, cf. the XEDIT
statement. You can use a global .gpt file via "OPTION plot using = ... ;".

Note that Gekko 3.0 supports plotting (and printing) series with mixed frequencies.

PLOT uses the same internal component as PRT, so regarding operators and other
details, also see the PRT help page.

Gekko uses gnuplot 5.1 internally for plotting. The gnuplot engine
may crash if fed with illegal syntax or nonsensical data.
Unfortunately, the gnuplot error messages seem hard to extract

http://www.t-t.dk/gekko/gallery/g.html
http://gnuplot.sourceforge.net/gnuplot_cvs.pdf
http://www.gnuplot.info/

432 Gekko 3.1.x help system

T-T Analyse

into Gekko, but you may use PLOT<dump> and feed the
gnuplot.gp file into gnuplot 5.1 to inspect the error messages.

Syntax

plot <period operator PLOTCODE=... DUMP NOMAX mainOptions BANK=...
REF=... MISSING=...> elements USING=... FILE=... ;

 elements: element1, element2, ...

 element: expression label <elementOptions>

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

The more general options shown above are the following (cf. the 'Main options' table
below for all the plot-related options):

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

operator (Optional). 'Long': abs, dif, pch, gdif, or 'short': n, d, p, dp, m, q,

mp, r, rd, rp, rdp

variables Name of the variable(s) printed. Several variables can be printed
at once using var1, var2, var3, You may also use lists or
expressions. Labels may be provided, like plot x 'Production'; ,

or plot x x.fromseries('label'); to use label metadata.

PLOTCODE
=

(Optional). The contents of this string must be gnuplot code (for
instance 'set' statements separated by semicolon), and the
contents is sent to gnuplot and inserted just before the gnuplot
'plot' statement. If plotcode is also stated in the .gpt schema file,
both plotcodes are transferred to gnuplot (first the .gpt plotcode,
and then the local option plotcode).

DUMP (Optional). With option <dump>, Gekko will put two gnuplot files in

the working folder: gnuplot.gp (the gnuplot script), and

gnuplot.data (the gnuplot data). The gnuplot script can be run

inside gnuplot 5.1 with the following statement: load

'gnuplot.gp' (note the quotes).

433Gekko User Manual

T-T Analyse

NOMAX (Optional). Do not restrict the number of curves, cf. option plot

elements max.

BANK (Optional). A bankname where variables are looked up. For
instance plot <bank = b1> x; is equivalent to PLOTb1:x;. See

also <REF = ...>. These options can be convenient instead of

opening and closing banks.

REF (Optional). A bankname where reference variables are looked up.
For instance plot <bank = b1 ref = b2 m> x; uses banks b1 and

b2 for the multiplier. See also <BANK = ...>. These options can be

convenient instead of opening and closing banks

MISSING= (Optional). With <missing = ignore>, PLOT will deal with missing

array sub-series and missing data values like GAMS, treating them
as zero for sums and mathematical expressions, or skipping the
printing of a sub-series if it does not exist. The following options
are set locally and reverted afterwards: option series array
print missing = skip; option series array calc missing =

zero; option series data missing = zero. See also the

appendix page on missings.

USING= (Optional). Indicates a .gpt file (xml template) to style your plot.
You may use '*' as filename to select from .gpt files in the working
folder. If no extension is provided, .gpt is added automatically. See
also option plot using =

Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip

paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

FILE= (Optional). Use extension emf (default), png, svg or pdf.

The resulting file is in .emf format as default. Such a file can be
imported into many Windows programs such as Word and others.
You may use a filename with explicit extension .png/.svg/.pdf
instead, and PLOT will produce the file in that format. The .svg files
are very useful for insertion into html document.
Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip

paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

434 Gekko 3.1.x help system

T-T Analyse

You may use an operator to indicate which kind of data transformation you would like
on your variables, for instance plot<d>, plot<q>, plot<pch>. As in the PRT

statement, you may also use element-specific operators (for instance plot unemp,

gdp<p>;). See the PRT statement regarding the use of operators.

In addition to the above options, you may put graph-options inside either the main
option field (plot <...>), or inside the element option fields (plot x1<...>,

x2<...>). These options can alternatively be stored in an external xml-based .gpt

file, for instance plot x1, x2 using=p; will use the file p.gpt to style the graph.

The structure of the .gpt file corresponds to the distinction between PLOT main
options and element options. Cf. the example section below.

Main options

Located inside the plot<...> option field, or in .gpt files directly inside the

<gekkoplot> tag. The first column of the table is before the '=', and the second

column of the table is after, for instance plot <type = linespoints>;. Some of the

right-hand side expressions may require quotes around them, for instance plot<font

= 'Verdana'>;, not plot;. If in doubt, try using quotes.

type The most used of the following are the line-types linespoints

and lines, together with boxes (column chart).

· linespoints, lines: Normal lines, with or without point

markers.
· boxes: bar chart/histogram. If several timeseries are boxes,

these will be clustered, unless the stacked option is set.
· filledcurves: lines where the area below each line is an

area. If the stacked option is set, the areas are stacked instead
of overlayed.

· steps: Step-wise lines, a bit box-like.

· points: Just the point markers, no lines.

· dots: Just tiny dots.

· impulses: vertical lines instead of boxes.

Quotes may be omitted.

dashtype '1':normal, '2':dashed, '3':dotted, ... (default: '1'). More. Quotes
should be used.

linewidth A number. Default: 3.

linecolor You may use named colors (for instance 'red') or color codes
known from html (for instance '#0000FF'). Default: color is
taken from the palette setting. Quotes should be used.

http://gnuplot.sourceforge.net/demo_canvas/dashtypes.html

435Gekko User Manual

T-T Analyse

pointtype An integer. These points are shown for each period, if the
linetype is linespoints or points.

· 1:'+'
· 2:'x'
· 3:'*'
· 4:box
· ... etc.

Default: 7 (circle). More.

pointsize A number. The size of the points. Default: 0.5.

fillstyle String. Only relevant for linetype boxes. You may use many

combinations, for instance 'empty', 'solid', 'solid 0.5' (50%
transparent), 'solid border', 'pattern 0', 'pattern 1', etc. To
provide a black border around the boxes, use for instance 'solid
1.0 border linetype -1'. Default: 'solid'. More. Quotes should be
used.

title The title of the entire plot. Quotes should be used.

subtitle A subtitle underneath the title. Quotes should be used.

font Set for instance 'Verdana', 'Arial', 'Times', 'Courier New'
Default is 'Verdana'. Quotes should be used.

fontsize Default is 12.

bold Use this option to indicate bold font type for different elements.
Choose from 'title', 'ytitle', 'xtics', 'ytics', 'key', or indicate several
of these separated with commas, for instance 'title, ytitle, key'.
Quotes should be used.

italic Use this option to indicate italic font type for different elements.
Choose from 'title', 'ytitle', 'xtics', 'ytics', 'key', or indicate several
of these separated with commas, for instance 'title, ytitle, key'.
Quotes should be used.

tics You may choose between 'in' or 'out'. Default: 'out'. Quotes
should be used. Regarding number formatting, see option plot

decimalseparator =

http://cheron.nico.free.fr/Gnuplot.html
http://gnuplot.sourceforge.net/docs_4.2/node234.html

436 Gekko 3.1.x help system

T-T Analyse

grid Choose between yes|no|xline|yline. If yes, both vertical and

horizontal lines are shown. If xline, only vertical lines are

shown. If yline, only horizontal lines are shown. Default: yes.

Quotes can be omitted.

gridstyle This sets how gridlines are formatted, stated in gnuplot syntax.
Quotes should be used.

· Default is the following, which are light grey dashed lines:
'linecolor rgb "#d3d3d3" dashtype 3 linewidth 1.5'.

· The gridstyle 'linecolor black dashtype 2 linewidth 2.0'

will provide black dashed lines which look ok in Word.
· To emulate the solid grey style of Gekko 2.2.4 and earlier, use
 'linecolor rgb "#f0f0f0" linetype 1 linewidth 1'.

In general, the same dashed lines can look quite different in
different "environments". So there may be differences in the
Gekko window versus inside Word versus pdf (exported from
Word) versus html (via svg) versus pdf (exported from html)
versus printed from Word or a browser. In general, there will be
small differences between the .emf, .svg, .png and .pdf files. For
html pages, please use .svg instead of .png for better quality.

key In gnuplot, the legend is called 'key'. This sets how the legend is
to be displayed, stated in gnuplot syntax. Default is the
following, which is outside of the plot area, at the bottom center:
'out horiz bot center Left reverse'. Quotes should be

used.

To remove the key completely, you can use gnuplot-code 'set

key off': plot<plotcode='set key off'>;.

palette You may use a comma-separated list of named colors (for
instance: "red, blue, green", or rgb color codes (like "#0000FF,
#FFFF00, #00FFFF"). Default is this: "red, web-green, web-blue,
orange, dark-blue, magenta, brown4, dark-violet, grey50, black"
(these are gnuplot internal color names). More. Quotes should
be used.

stack If the element is set active (<stack>), boxes are stacked instead

of clustered, and filledcurves are stacked instead of overlayed.

Default: no.

boxwidth The width of the boxes. Set to 1 for max width. Default: 0.75.

boxgap The gap between clusters of boxes (only relevant if you are
using two or more boxes at the same time). Default: 2, that is, a

http://ayapin-film.sakura.ne.jp/Gnuplot/Primer/Misc/colornames.html

437Gekko User Manual

T-T Analyse

gap of what two boxes would fill.

separate With the separate option, lines and boxes are separated, so that

all lines (non-boxes) are shown at the top of the plot (with labels
on the left y axis), whereas all boxes are shown at the bottom of
the plot (with labels on the right y2 axis). For instance, this is
practical for residual plots, so that the residuals do not interfere
with observed/fitted lines. The option will override any y2

options regarding the lines. This functionality is Gekko-specific
and does not yet work for stacked boxes (option boxstack),

where the scaling will not be precise (this will be fixed in a
future version). Default: no.

xline Vertical line at the given period. Several lines may be given. For
instance: <xline>2020q2</xline>.

xlinebefore Vertical line between the given period and the period before.
Several lines may be given. For instance:
<xlinebefore>2020q2</xlinebefore>.

xlineafter Vertical line between the given period and the period after.
Several lines may be given. <xlineafter>2020q2</xlineafter>

xzeroaxis
x2zeroaxis

The xzeroaxis is the horiontal axis corresponding to y=0, and

the x2zeroaxis is the axis corresponding to y2=0 (the right-

hand side y-axis). These xzeroaxes will only be shown if the y or

y2 values change sign. Default for xzeroaxis is yes, and default

for x2zeroaxis is no.

ymirror Mirror the left y axis on the right side. You may choose between
'0':none, '1':only tics, '2':tics with labels, and '3': tics with labels
+ axis label. If the y2 axis is used, the ymirror setting is

ignored.

ytitle
y2title

A title for the y or y2 axis. Quotes should be used. If the title
should break, you may use a '\n', for instance
plot<ytitle='Balance\nof payments'>;.

yline
y2line

Horizontal line at the given y- or y2-value. Several lines may be
given. For instance: <yline>150</yline>. The lines are not

shown if the lines are outside of the y values of the variables
shown in the graph (you may combined with
ymaxsoft/yminsoft).

You may alternatively do horizontal lines manually, for instance:
plot 150 '' <type=lines dashtype='3' linecolor='gray'>,

x1, x2, x3;. The quotes '' after 150 indicated that the label is

438 Gekko 3.1.x help system

T-T Analyse

skipped. Putting the line first means that it will appear in the
background (looks better for type=boxes).

ymax
y2max

Fixed max for the y or y2 values. Will overrule any maxhard or
maxsoft values. Can cut off data points.

ymaxhard
y2maxhard

All values > maxhard are filtered out, but all values < maxhard
are shown. This setting is practical for filtering out outliers.
Think of 'hard' as being capable of cutting off data points.

ymaxsoft
y2maxsoft

All values are shown, but the axis will not scale down below
ymaxsoft. This keeps a sensible scale, even if the y or y2 values
are very small. Think of 'soft' as being incapable of cutting off
any data points.

ymin
y2min

Fixed min for the y or y2 values. Will overrule any minhard or
minsoft values. Can cut off data points.

yminhard
y2minhard

All values < minhard are filtered out, but all values > minhard
are shown.This setting is practical for filtering out outliers. Think
of 'hard' as being capable of cutting off data points.

yminsoft
y2minsoft

All values are shown, but the axis will not scale up above
yminsoft. This keeps a sensible scale, even if the y or y2 values
are very small. Think of 'soft' as being incapable of cutting off
any data points.

label A free-floating label is inserted at the given position. Several
labels may be given. Quotes should be used. [Not available yet]

plotcode The contents of this <plotcode> tag must be gnuplot code (for

instance 'set' statements separated by semicolon), and the
contents is sent to gnuplot and inserted just before the gnuplot
'plot' statement. If plotcode is also stated as a local option to the
PLOT statement, both plotcodes are transferred to gnuplot (first
the .gpt plotcode, and then the local option plotcode).

arrow An arrow is inserted between the given positions. Several arrows
may be given. [Not available yet]

Element options

Located in the element options, for instance plot x1<...>, x2<...>, or in .gpt files

inside the <lines> tag (which contains <line> tags).

439Gekko User Manual

T-T Analyse

type See under the main options.

dashtype See under the main options.

linewidth See under the main options.

linecolor See under the main options.

pointtype See under the main options.

pointsize See under the main options.

fillstyle See under the main options.

y2 Set y2 to indicate the you want the series shown at the
y2 axis (right-hand y axis).

Example using PLOT options versus gpt file

For instance, you may produce a graph with dashed lines using this:

plot <type=lines linecolor='blue'> rfy<dashtype='1'>,
rfcp<dashtype='2'>, rfm<dashtype='3'>, rfe<dashtype='4'>;

Here, in the main option field, the linetype is stated (type=lines), including the

linecolor (color='blue'). These can also be stated individually in the elements

options, if needed. In the element options, four dashtypes are given, for instance
dashtype = '1'.

Instead of the above PLOT statement, you may use:

plot rfy, rfcp, rfm, rfe using=p;

together with the following .gpt file (xml):

<gekkoplot>
 <type>lines</type>
 <linecolor>blue</linecolor>
 <lines>
 <line>

440 Gekko 3.1.x help system

T-T Analyse

 <dashtype>1</dashtype>
 </line>
 <line>
 <dashtype>2</dashtype>
 </line>
 <line>
 <dashtype>3</dashtype>
 </line>
 <line>
 <dashtype>4</dashtype>
 </line>
 </lines>
</gekkoplot>

As you can see, the structure in the first PLOT statement corresponds to the structure
of the .gpt file. You may also combine PLOT options and gpt files: in that case, the
PLOT options will override the gpt options. So for instance, plot rfy, rfcp,

rfm<color='red'>, rfe using=p; would make the third line red instead of blue.

Other examples

The statement

plot <p> x1, x2;

plots percentage growth of the timeseries x1 and x2 from the first-position databank.

for %i = fY, fX, fE;
 plot {%i} file=graph_{%i};
end;

This creates three graphs that are put into three different .emf files.

You may 'piggyback' gnuplot code along with the PLOT statement, for instance:

plot <plotcode = 'set xtics rotate by 90'> fy, fe, fcp;

This rotates the x-tic labels. If you need to state several gnuplot statements, you can
separate them with ';'.

Age profiles

A special kind of plot shows the population of part of the population in age groups. If
the annual array-series p!a is defined for different age-groups, for instance p[30] for

441Gekko User Manual

T-T Analyse

30-year olds, this array-series can be transformed via the rotate() function into

another array-series p!u defined over the special 'undated' (u) frequency (now

defined for different years like p!u[2020]).

p = series(1); //definition of p!a
time 2010 2010;
p[1]=30763;p[2]=30245;p[3]=30815;p[4]=30148;p[5]=30128;p[6]
=30025;p[7]=29782;p[8]=30081;p[9]=30949;p[10]=30662;
p[11]=31110;p[12]=31687;p[13]=32047;p[14]=33354;p[15]=33328;p[16]
=32485;p[17]=32721;p[18]=31099;
p[19]=31014;p[20]=29813;p[21]=28828;p[22]=27482;p[23]=27095;p[24]
=26161;p[25]=25148;p[26]=24692;
p[27]=25552;p[28]=25396;p[29]=27388;p[30]=28247;p[31]=29575;p[32]
=29460;p[33]=31299;p[34]=33925;
p[35]=33371;p[36]=33795;p[37]=35484;p[38]=35658;p[39]=33441;p[40]
=33635;p[41]=35034;p[42]=37751;
p[43]=40948;p[44]=39479;p[45]=38715;p[46]=37808;p[47]=35552;p[48]
=34724;p[49]=34556;p[50]=33315;
p[51]=33557;p[52]=33536;p[53]=33749;p[54]=33433;p[55]=32546;p[56]
=33232;p[57]=32415;p[58]=32114;
p[59]=32524;p[60]=32391;p[61]=34024;p[62]=36128;p[63]=37357;p[64]
=35715;p[65]=33192;p[66]=29981;
p[67]=27998;p[68]=24250;p[69]=23210;p[70]=21832;p[71]=21054;p[72]
=19568;p[73]=18497;p[74]=17021;
p[75]=15906;p[76]=14517;p[77]=13512;p[78]=12562;p[79]=11708;p[80]
=10933;p[81]=10325;p[82]=8973;
p[83]=8333;p[84]=7341;p[85]=6515;p[86]=5397;p[87]=4546;p[88]
=4041;p[89]=3310;p[90]=2351;p[91]=1872;
p[92]=1333;p[93]=1050;p[94]=720;p[95]=571;p[96]=367;p[97]=254;p[98]
=160;p[99]=117;
time 2020 2020;
p[1]=27264;p[2]=26908;p[3]=27469;p[4]=26166;p[5]=25795;p[6]
=25508;p[7]=26932;p[8]=27216;p[9]=29669;
p[10]=29818;p[11]=31033;p[12]=30449;p[13]=30993;p[14]=30335;p[15]
=30378;p[16]=30302;p[17]=30028;
p[18]=30318;p[19]=31164;p[20]=30731;p[21]=31201;p[22]=31704;p[23]
=31914;p[24]=33129;p[25]=32977;
p[26]=31932;p[27]=32133;p[28]=30374;p[29]=30287;p[30]=29122;p[31]
=28110;p[32]=26856;p[33]=26424;
p[34]=25606;p[35]=24717;p[36]=24215;p[37]=25122;p[38]=25045;p[39]
=26969;p[40]=27926;p[41]=29178;
p[42]=29110;p[43]=30941;p[44]=33585;p[45]=33056;p[46]=33317;p[47]
=35020;p[48]=35098;p[49]=32844;p[50]=33005;
p[51]=34311;p[52]=36833;p[53]=39870;p[54]=38345;p[55]=37392;p[56]
=36442;p[57]=33988;p[58]=33062;
p[59]=32753;p[60]=31330;p[61]=31473;p[62]=31238;p[63]=31115;p[64]
=30537;p[65]=29512;p[66]=29949;
p[67]=28929;p[68]=28386;p[69]=28458;p[70]=27964;p[71]=29209;p[72]
=30604;p[73]=31225;p[74]=29191;
p[75]=26370;p[76]=23418;p[77]=21426;p[78]=18105;p[79]=16738;p[80]
=15133;p[81]=14107;p[82]=12447;
p[83]=10997;p[84]=9411;p[85]=8152;p[86]=6914;p[87]=5836;p[88]
=4815;p[89]=3976;p[90]=3233;p[91]=2625;
p[92]=1976;p[93]=1552;p[94]=1110;p[95]=751;p[96]=483;p[97]
=317;p[98]=220;p[99]=132;
time 2010 2020;

442 Gekko 3.1.x help system

T-T Analyse

prt <n> p;
option freq u; //undated
time 1u 99u;
p = rotate(p!a, 1); //definition of p!u
#t = 2010, 2020; #t = #t.strings();
plot p[#t];

This produces the following plot, with the age dimension on the x-axis.

Plot file editor

At the moment, Gekko uses xml files to store the plot settings. In the longer run,
another format might be chosen, and an graphical interface to change these settings
might be provided.

Until then, it is recommended that you use the in-built XML Notepad editor to edit the
XML files, cf. the XEDIT statement (if used, choose 'View' --> 'Expand All' to unfold all
XML nodes). You may also use Notepad (cf. the EDIT statement), but it is
recommended to use a specific XML editor for editing the tables. Using a simple text
editor like Notepad entails some potential problems; there will be no check that the
XML syntax is correct. Also, the XML syntax represents some characters in a special
way: notably the '<' , '>', and '&' characters (these should be written '<', '>',
and '&').

If the file is not in valid XML syntax, Gekko will complain that the file is invalid and
abort.

Note

443Gekko User Manual

T-T Analyse

You may close the PLOT graph window by pressing the 'Esc' button. Besides, to
quickly close all PLOT windows, you may alternatively use the CUT statement or the
"Close all PLOT and DECOMP windows" button.

PLOT produces a graph by means of the open-source program gnuplot as an
underlying engine. You do not need to install anything in order to use PLOT (the
Gekko installation files contain gnuplot).

In the graph window, you may change the so-called operators by clicking on the radio
buttons (or multiplier checkbox). This way, you can quickly change to for instance
percentage growth rate etc. You may copy-paste the graph to e.g. a word-processor
like Word by clicking the ‘Copy’ button. There are also options to save the graph as a
emf/svg/png/pdf files.

Per default, PLOT will place annual and undated data at the x-tics, and quarterly and
monthly data between x-tics. See option plot xlabels ... options, also if you

prefer to use 15, 16, 17 etc., instead of 2015, 2016, 2017, etc.

Please note that the same graph may look different in different "environments". The
Gekko graph window shows an .emf file, and the same .emf file may look a bit
different when imported into Word (or converted to pdf or printed from Word). Also, a
.svg version of the graph may look different in html. The differences apply to, for
instance, dashed lines and fonts. Both .emf, .svg and .pdf are vector formats,
whereas .png is a raster format (bitmap).

See the rotate() function if you need to plot for instance age profiles of array-series
that are defined in the age dimension.

Planned enhancements:

· Stacked curves and histograms shown as shares (summing to 1 or 100), perhaps
using operator <s> for shares.

· Indexed data, for instance showing all lines as index 2015=1, perhaps using
operator <i> for index.

· Options <a>, <ad>, and <ap> For instance, "PLOT<a>x1, x2;" would be the same
as "PLOT x1, @x1, x2, @x2;", showing values from the Reference databank.

· Multi-plots.
· 3D-plots.
· Scatterplots.
· Free-floating labels and arrows.
· Outputting in more file formats like latex, etc.
· It is the intention to make it possible to use R (using its plot function) as the

graphing engine, too. Outputting R code instead of gnuplot code would not be too
difficult. But gnuplot works ok, and is a small program that can be easily bundled
with the Gekko package.

Related options

OPTION plot decimalseparator = period; [comma|period]

http://www.gnuplot.info/

444 Gekko 3.1.x help system

T-T Analyse

OPTION plot lines points = yes; [yes|no]
OPTION plot new = yes; [yes|no]
OPTION plot using = [filename];
OPTION plot xlabels annual = at; [at|between]
OPTION plot xlabels nonannual = between; [at|between]
OPTION plot xlabels digits = 4; [2|4]

Related statements

PRT, SHEET, CLIP, TABLE, XEDIT, EDIT, CUT

445Gekko User Manual

T-T Analyse

4.3.64 PROCEDURE

PROCEDURE is used to define user-defined procedures. Such procedures do not
return variables like a user-defined FUNCTION, but are instead used in a similar way
to in-built Gekko statements. A procedure without arguments is similar to running a
program file, cf. RUN. See the LOCAL keyword if you need variables defined inside
the procedure to be inaccessible/nonexistent outside the procedure.

Libraries
Beginning with Gekko 3.1.12, it is possible to organize user-defined functions and
procedures in libraries. These are basically just .zip-files that are loaded with the
LIBRARY statement.

Beware: arguments with negative numbers
Procedures are basically simplified user functions, omitting parentheses and
commas for convenience. A procedure call like f 1 2 3;, could always be

'translated' into a completely equivalent function call f(1, 2, 3); instead. But

how to interpret a procedure call like for instance f 1 -2 3;? In Gekko, this is

not equivalent to f(1, -2, 3);, but instead to f(1-2, 3);, because blanks are

ignored in interpretation of mathematical expressions. If you need to use negative
arguments in a procedure, you are advised to either:

· Put a parenthesis around the negative number when calling the procedure, for
instance f 1 (-2) 3;.

· Transform the procedure into an equivalent stand-alone user function f(1, -2,

3), cf. FUNCTION.

You may decorate a procedure with a <>-option field containing an optional time
period. Procedures allow optional parameters with default values, and the procedure
may prompt (ask) the user about these parameters, if f? is used instead of f, where

f is the name of the procedure.

Syntax

procedure procname <date t1, date t2>, type1 var1 label1 = default1,
type2 var2 label2 = default2, ...;
 body ;
end;

t1, t2 (Optional). You may state optional time period parameters inside <>-
brackets, for instance procedure f <date %t1, date %t2>, series

x; after which %t1 and %t2 are assigned to for instance 2020 and 2030

in the call f <2020 2030 z;. If the procedure is called without <>-

brackets, for instance f z; , the parameters %t1 and %t2 are assigned

446 Gekko 3.1.x help system

T-T Analyse

to the local/global time period instead. Using <>-brackets in a
procedure call does not in itself change the local time period inside the
procedure: use for instance the BLOCK structure to do that. See
examples.

type1,
...

Types of variables: series, val, date, string, list, map, matrix. You

may also use the special name type for parameters, which behaves

100% as a string inside the procedure, but where the single quotes

are omitted when calling the procedure from outside (the shorter call f

y is used instead of f 'y').

var1, .
..

The parameters/variables/expressions

label1,
...

(Optional). A label for the parameter, used if the procedure is promting
(called with f?). See more about prompting below.

default
1, ...

(Optional). A default value for the parameter. If the parameter is
omitted, the default value is used. If the procedure is asked to prompt
(called with f?) and the parameter is omitted, the default value is

shown in the dialog box. In the dialog box, Enter or Escape will return

the default value, and fire up the next dialog box (for the next optional
parameter). If a ; is entered in the dialog box, all the remaining

parameters attain their default values, and no more dialog boxes are
shown. For string input, the use of quotes (') in the input box is

optional. At the moment, only val, date and string types can be used

for prompting input boxes.

procna
me

The procedure name. The name cannot be the same as an existing
Gekko statement name.

body The procedure body, that is, the statements to be performed. If the
body contains a RETURN statement, the procedure will abort at that
point (just like a normal program file, cf. RUN).

Tip: if you need to stop execution at a specific point/line to inspect variables etc., try
inserting a STOP statement. This will abort from all called program
files/procedures/functions, without executing anything more after the STOP (this is
not the case regarding RETURN). Therefore, STOP can be practical for debugging, etc.

When calling the procedure, the arguments are separated with blanks, not commas
(this makes procedures syntactically more similar to Gekko statements than Gekko
functions).

Examples

447Gekko User Manual

T-T Analyse

The following examples illustrate the use of PROCEDURE. This procedure has no
arguments, and functions rather like a .gcm file (cf. RUN):

procedure now;
 tell currentTime();
end;
//----------------
now;

The following procedure multiplies two values, and prints out the result:

procedure mulval val %x, val %y;
 tell '';
 tell string(%x*%y);
end;
//----------------
mulval 3 4; //12

Note that the mulval arguments are separated with blanks, not commas. The
following procedure adds three periods to the date 2000, printing out 2003:

procedure add3 date %x;
 tell '';
 tell string(%x+3);
end;
//----------------
add3 2000a1;

The following procedure prints out 'sunshine':

procedure shine string %x;
 tell '';
 tell %x + 'shine';
end;
//----------------
shine 'sun';

If you prefer to call the procedure with shine sun; instead of shine 'sun';, you

may use the name type:

procedure shine name %x;
 tell '';
 tell %x + 'shine'; //%x behaves completely as a string
end;
//----------------
shine sun; //the name type only has to do with how the procedure
is called

448 Gekko 3.1.x help system

T-T Analyse

The following procedure adds 'a' to a list, printing the elements 'x1', 'x2', 'a':

procedure adda list #x;
 #add = #x + 'a';
 print #add;
end;
//----------------
#xx = x1, x2; //or: #xx = ('x1', 'x2');
adda #xx;

Dividing pairs of series:

procedure div list #x, list #y;
 for val %i = 1 to #x.len();
 prt {#x[%i]}/{#y[%i]};
 end;
end;
//----------------
create a1, a2, b1, b2;
series a1 = 10; series a2 = 20;
series b1 = 15; series b2 = 25;
div ('a1', 'a2') ('b1', 'b2'); //you cannot use "div a1, a2 b1,
b2;" here.

The following multiplies two matrices:

procedure mulmatrix matrix #x, matrix #y;
 print #x * #y;
end;
//----------------
#a = [1, 2; 3, 4];
#b = [9, 8; 7, 6];
#z = [1, 1; 1, 1];
mulmatrix #a #b+#z;

This following procedure divides two series and prints the result:

procedure divser series x, series y;
 prt x/y;
end;
//----------------
time 2000 2001;
create xx, yy;
xx = 2;
yy = 3;
divser xx yy;

Alternatively, the same kind of procedure can be made with name types:

449Gekko User Manual

T-T Analyse

procedure divser name %x, name %y;
 prt {%x}/{%y};
end;
//----------------
time 2000 2001;
create xx, yy;
xx = 2;
yy = 3;
divser xx yy;

Using name instead of series type has some advantages if, for instance, you wanted

to pick out the second series from the Ref databank instead. In that case, you could
just use prt {%x}/@{%y}; instead of prt {%x}/{%y}; inside the procedure body.

Local period example

procedure f <date %t1, date %t2>;
 block time %t1 %t2;
 y = 100;
 end;
end;

time 2001 2001;
f; //y will be set to 100 in 2001
f <2003 2003>; //y will be set to 100 in 2003
prt <2001 2003 n> y;

//Result:
// y
//2001 100.0000
//2002 M
//2003 100.0000

When calling f;, the global time period is used for %t1 and %t2, whereas when calling

f <2003 2003>;, we get %t1 = %t2 = 2003 inside the procedure. See also the similar

example regarding user-defined functions.

Prompt and default values example

Gekko procedures allow default values, and prompting regarding these.

procedure f val %x1, val %x2 'parameter 2' = 1, val %x3 'parameter
3' = 2;
 tell string(10000 * %x1 + 100 * %x2 + %x3);
end;
f 9 3 4; //--> 90304
f 9 3; //--> 90302
f 9; //--> 90102
f? 9 3; //enter 5 into the dialog box --> 90305

450 Gekko 3.1.x help system

T-T Analyse

f? 9; //enter 6 and 7 into the dialog boxes --> 90607
f? 9; //enter 6 and ';' into the dialog box --> 90602

Beware that f or f? will fail with an error, since the first parameter is required. As

shown regarding the last procedure call, you may terminate a sequence of input
boxes with ;, which means the default values are used for the current and following

parameters. Pressing Enter or Escape returns the default value, and opens up the

next input box. For prompt input, only the variable types val, date, string and name

are supported at the moment (for name type, use for instance ... , name %x2
'parameter 2' = 'x', ...).

Note

Procedures and user functions do not live in databanks, and are hence not affected by
CLEAR, CLOSE, READ, etc., but are removed with RESTART or RESET. See also
FUNCTION if you need to use return variables.

If a procedure is defined without <>-brackets to indicate time, it may still be called
with <>-brackets. In that case, the time period inside the brackets is just ignored.

If you need to run the same piece of code many times (for instance inside a loop),
defining and calling a procedure is efficient. Running a .gcm file entails some fixed
loading, parsing and compiling costs each time it is called. These costs are not
present when calling a procedure.

You can at most use 14 arguments, else use maps to bundle incoming arguments. Per
default, all arguments are passed by value, not by reference (cf. option system

clone). This means that procedures cannot have so-called side-effects on the

incoming arguments.

It is planned to introduce the type namelist in addition to the name type, so that an

argument like (a, b, c) can mean ('a', 'b', 'c') internally.

Related statements

FUNCTION, LIBRARY, LOCAL, RUN

451Gekko User Manual

T-T Analyse

4.3.65 PRT

The PRT statement prints variables or expressions (you may use P, PRI or PRINT as
synonyms for PRT). Note that printing mixed frequency timeseries is supported.

Guide: printing
For an easier introductory guide on Gekko printing, see this page.

Regarding series printing, the output can be transformed and formatted in different
ways: transformations are done with so-called operators (for instance p or pch for

percent change). Formatting includes transposing the result ('rows' option), setting
width, decimals etc. The MULPRT statement is very similar to PRT, but compares data
in the first-position and reference databanks. You may use the more detailed DISP
statement, if you need more specific information regarding a series (data period,
label, etc.: DISP also allows for equation browsing, if a model is loaded).

For variables taken from other banks than the first-position databank, you may use
colon (':') to indicate the bankname, and for series you may use '!' to indicate a
frequency different from the current frequency (for instance b2:x!q will print the

quarterly series x!q, taken from the bank b2). You may use @x to indicate variables

taken from the Ref (reference) databank (alternatively, you can use ref:x), and you

may use <bank=... ref=...> to locally change the databanks used, instead of first

using OPEN and then CLOSE. An array-series y can be printed with prt y;, where

Gekko will print out all the elements in all dimensions. Otherwise prt y[#i]; may be

used to print all #i (a list of strings) elements in a dimension, or y['a'] or the

shorter y[a] can be used to print single elements.

PRT can also print out other variable types than series, for instance prt b2:#m; will

print out #m, where #m could for instance be a list) from bank b2. Scalars can be

printed with for instance prt %v;, where %v could for instance be a value. To

show/count the number of variables of a particular type, you may use val ?, date ?

, string ?, series ?, list ?, map ?, matrix ?, or MEM (for scalars).

Please note that after any PRT, you may click the Copy-button in the main window to
copy-paste the print to Excel or other spreadsheets (CLIP will do the same thing, else
see SHEET). Note that Gekko 3.0 supports printing (and plotting) series with mixed
frequencies.

Syntax

prt < period operators decimals width ROWS FILTER=... TITLE=...
 COLLAPSE=... NOMAX BANK=... REF=... SPLIT MISSING=... VIEW >
 elements FILE=filename;

452 Gekko 3.1.x help system

T-T Analyse

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

where:

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

operator
s

operator operator ...

operator 'Long': abs, dif, pch, gdif, or 'short': n, d, p, dp, m, q, mp, l, dl, r,

rd, rp, rdp, rl, rdl

decimals DEC=number | NDEC=number | PDEC=number

width WIDTH=number | NWIDTH=number | PWIDTH=number

elements element element ...

element variable label < operators decimals width >

details:

operator
s

(See tables in examples section). Long operators: abs, dif, pch or

gdif. These can be switched off by means of prefix no (for instance

nopch), or added to existing default operators by means of underscore

(for instance _dif). Default operators are abs and pch (absolute level

and percentage growth is printed). Short operators: d, p and dp for

time-transformations, and m, q and mp for multiplier-transformations.

Prefix the time-transformations with r for reference values. See

option print prt

element The variable can be a variable name, a list (for instance {#m}), or an

expression. A label can be provided after the variable (must be a
string, and will be ignored for lists). Operators here will override
other operators (globals ones, or those set on the PRT statement), so

453Gekko User Manual

T-T Analyse

element-operators are local to the particular element. You may use
for instance prt x x.fromseries('label'); to use label metadata.

DEC Sets number of decimals, will apply to all kinds of numbers.

NDEC Sets number of decimals for non-percentage numbers. See also
option print fields ndec....

PDEC Sets number of decimals for percentage numbers. See also "option

print fields pdec...

WIDTH Sets width, will apply to all kinds of numbers.

NWIDTH Sets width for non-percentage numbers. See also option print

fields nwidth....

PWIDTH Sets width for percentage numbers. See also option print fields

pwidth....

ROWS If set, the result will be transposed, i.e., with variables running
downwards. Corresponds to TRANSPOSE=yes for SHEET and CLIP.

FILTER A timefilter can be activated or deactivated (see TIMEFILTER
statement). With <FILTER> or <FILTER=yes>, the current timefilter is

used. With <NOFILTER> or <FILTER=no>, any filtering is deactivated.

The filter type can also be changed locally, for instance
<FILTER=hide> hides the out-filtered periods, whereas <FILTER=avg>

averages the out-filtered periods. See option timefilter....

TITLE A title in quotes. You can use HEADING as alias.

COLLAPS
E

(Optional). This option will collapse quarterly or monthly data into
annual averages or totals. Use prt<collapse>, prt<collapse=avg>

or prt<collapse=total>. You may set the collapse globally, cf.

option print collapse = [avg|total|none];. Only applies for

option print freq = pretty; (which is default).

NOMAX (Optional). Do not restrict the number of variables, cf. option print

elements max.

BANK (Optional). A bankname where variables are looked up. For instance
prt <bank = b1> x; is equivalent to prt b1:x;. See also <REF =

...>. These options can be convenient instead of opening and closing

banks.

454 Gekko 3.1.x help system

T-T Analyse

REF (Optional). A bankname where reference variables are looked up. For
instance prt <bank = b1 ref = b2 m> x; uses banks b1 and b2 for

the multiplier. See also <BANK = ...>. These options can be

convenient instead of opening and closing banks.

SPLIT (Optional). If set, the variables or expressions delimited by comma
are shown separately. In this way, prt x, y; is shown as if it had

been prt x; prt y;. This may be practical for comparisons of data

with similar columns, for instance prt <split> x[#i], @x[#i];. In

that case, you may prefer to use for instance the <missing = m>

option, so that all columns (#i) are shown (and are hence aligned),

regardless of whether the sub-series exist or not.

MISSING
=

(Optional). With <missing = ignore>, PRT will deal with missing

array sub-series and missing data values like GAMS, treating them as
zero for sums and mathematical expressions, or skipping the printing
of a sub-series if it does not exist. The following options are set locally
and reverted afterwards: option series array print missing =
skip; option series array calc missing = zero; option

series data missing = zero. See also the appendix page on

missings.

VIEW (Optional). Used for nested lists. With this option, Gekko starts up a
graphical viewer, which is primarily (at the moment) intended for
viewing nested lists. For instance, a list like #m = (('a', 'b'),

('c', 'd')); would look like the following with prt <view> #m;:

In the longer run, views of series/array-series etc. may be
implemented, too. The viewer handles convenient scrolling of large
lists, and supports sorting etc.

FILE (Optional). A filename that the print is put into.
Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip paths"

are allowed too (for instance c:\projects\data.zip\bank.gbk). See

more on filenames here.

Operators

455Gekko User Manual

T-T Analyse

There are two kinds of operators available. The easiest to remember are the 'long'
ones: namely abs, dif, pch and gdif:

'Long' operators for PRT

abs Absolute level: x

dif Absolute time change: x-x[-1]

pch Growth rate: (x/x[-1] -1)*100

gdif Change in growth rate: (x/x[-1] -1)*100 - (x[-1]/x[-2] -1)*100

As default, PRT always prints out corresponding to prt<abs pch>, i.e., printing out

the absolute level and the growth rate. These default options can be altered in
option print prt ... (see 'Related options' below). For instance, to only print the

level of a variable, use prt<abs>, to only print the growth rate, use prt<pch>, and to

print absolute time change, use prt<dif>. You can alternatively switch off options

with prefix no, for instance prt<nopch> (same as prt<abs>) etc. In addition, you can

use the 'glue' prefix '_' to add options to existing options. For instance, prt<_dif>

corresponds to prt<abs dif pch>, because dif is added to the default operators

(abs and pch). You may put the codes after individual elements, for instance prt

var1<pch> var2<dif>, to have var1 displayed as pch and var2 displayed as dif.

Codes put on an element override more general codes put directly after PRT, so
prt<pch> var1 var2<dif> yields the same result.

As a supplement to these 'long' operators, there are some more advanced (and
shorter) operators of type d, p, m, q etc. These are perhaps less mnemotechnic, but

more concise (the @ below indicates values taken from the reference databank):

'Short' operators for PRT

n Absolute level: x. Equivalent to no use of operators.

d Absolute time change: x-x[-1]

p Growth rate: (x/x[-1] -1)*100

dp Change in growth rate: (x/x[-1] -1)*100 - (x[-1]/x[-2] -1)*100

m Absolute multiplier: x-@x

q Relative multiplier: (x/@x-1)*100

mp Multiplier in growth rate: (x/x[-1] -1)*100 - (@x/@x[-1] -1)*100

456 Gekko 3.1.x help system

T-T Analyse

l Log: log(x). [New in 3.0.3].

dl Log-difference: log(x)-log(x[-1]). [New in 3.0.3].

r Absolute level in reference databank: @x. Code 'rn' is equivalent.

rd Absolute time change in the reference databank: x-x[-1]

rp Growth rate in reference databank: (@x/@x[-1] -1)*100

rdp Change in growth rate in reference databank: (@x/@x[-1] -1)*100 -
(@x[-1]/@x[-2] -1)*100

rl Log: log(@x)

rdl Log-difference: log(@x)-log(@x[-1])

There is the following logic to the above codes. The important codes to remember are
d for absolute time change, p for percent time change, m for absolute multiplier, and q

for relative multiplier. Then the combination dp is easily read as time change in

growth rate, and mp as multiplier difference in growth rate. Log-transformations are

done with l or dl operators. This covers the first and second sections of the above

table. The third section is just the first section with prefix r (for reference databank),

and shows that same transformations as in the first section, just for the reference
databank values instead of the first-position databank values. Of course, you can
always write prt <p> @gdp; instead of prt <rp> gdp;, but for longer expressions

and lists, the prefix r comes in handy.

Formatting, filters etc.

In addition to the above transformations, the print can be formatted regarding the
width of each data column, and the number of decimals. Width and decimals can be
set in the PRT option field, or in element option fields. In the PRT option field, you
may indicate the width and number of decimals like this: prt<width=10 dec=3>, or

you may set absolute and percentage fields individually: prt<nwidth=10 ndec=0

pwidth=6 pdec=1>. This will yield absolute fields 10 characters wide with no

decimals, and percentage fields 6 characters wide with 1 decimal. The width and
decimals formatting can also be applied individually on each element, for instance
prt gdp<n dec=0> pgdp<p dec=1>, printing gdp in levels with no decimals, and pgdp

as growth rate with 1 decimal.

The output can be transposed by means of the rows keyword, for instance

prt<rows>gdp pgdp;. This is handy for printing a long list of timeseries, or for copy-

pasting the cells to a spreadsheet by means of the copy-button in the Gekko
interface.

457Gekko User Manual

T-T Analyse

Finally, you can use a timefilter (see TIMEFILTER) in the PRT option field. This is
convenient for suppressing individual observations when printing long time periods.
First, you need to select the filtered periods, and then you can use for instanceprt

<filter> or prt<nofilter>. More advanced use is prt<filter=avg> in which case

the out-filtered periods are aggregated into the shown periods (rather than simply
skipped). See examples below.

Mixed frequencies

PRT can print out series of mixed frequencies in the same 'table' (frequencies a, q, m

mixed, or frequencies m, d mixed), for example:

time 2001 2002;
xx1 = 10, 20;
option freq q;
xx2 = 1, 2, 3, 4, 5, 6, 7, 8;
option freq a;
prt xx1, xx2!q; //or: xx1!a, xx2!q

The following is printed:

 xx1 % xx2!q %
 2001
 q1 1.0000 M
 q2 2.0000 100.00
 q3 3.0000 50.00
 q4 4.0000 33.33
 a 10.0000 M

 2002
 q1 5.0000 25.00
 q2 6.0000 20.00
 q3 7.0000 16.67
 q4 8.0000 14.29
 a 20.0000 100.00

You may mix frequencies !a, !q and !m or !m and !d as you like, and mixed

frequencies work for PLOT, too. Note that Gekko supports auto-collapse when
printing, for instance prt <collapse=total> xx2!q; (this will print yearly totals).

Examples

A simple example:

458 Gekko 3.1.x help system

T-T Analyse

time 2009 2012;
x = 100, 110, 120, 110;
p = 1.00, 1.02, 1.04, 1.06;
prt <2010 2012> x, x/p 'real';

This gives the following result, with both absolute levels and percentage growth:

 x % real %
 2010 110.0000 10.00 107.8431 7.84
 2011 120.0000 9.09 115.3846 6.99
 2012 110.0000 -8.33 103.7736 -10.06

The label for x/p is given as a string after the expression. Please use a space to

delimit variable and label. If a model is loaded, and x is a model variable, the first '%'

would become '(E)%', because (E) or (X) are used to indicate endogenous or
exogenous variables. Using operator p inside the option brackets would provide you

with the growth rates alone (the long operator pch has the same effect):

prt <p> x, x/p;

The print can alternatively be transposed with the <rows> option like this:

prt <2010 2012 p rows> x, x/p;

gives:

 2010 2011 2012
 x 10.00 9.09 -8.33
 x/p 7.84 6.99 -10.06

You may mix variables, lists, expressions and operators as you wish (just separate
the elements with commas):

time 2009 2012;
xa = 10, 12, 11, 14;
xb = 6, 5, 7, 6;
time 2010 2012;
#m = xa, xb; //or: #m = ('xa', 'xb');
prt <n> xa, xa[-1]*xb/xb[-1], xa/xa[2009], {#m};

Please note that the list #m is inside {}-curlies, because we are referring to the

variables corresponding to the strings in the list. This prints out absolute time-
differences in these variables/lists/expressions:

459Gekko User Manual

T-T Analyse

 xa[

 xa -1]*xb/xb[-1] xa/xa[2009] xa
 xb
 2010 12.0000 8.3333 1.2000 12.0000
 5.0000
 2011 11.0000 16.8000 1.1000 11.0000
 7.0000
 2012 14.0000 9.4286 1.4000 14.0000
 6.0000

If xa and xb are understood as, for instance, sectors a and b, you may instead use a

list of these sector names, and then use x{#m} to auto-unfold into the variable names

xa and xb.

time 2009 2012; xa = (10, 12, 11, 14); xb = (6, 5, 7, 6); time 2010
2012;
%i = 'a';
#m = a, b; //or: ('a', 'b')
prt <n> x{%i}; //prints xa
prt <n> x{#m}; //prints xa, xb

Multiple operators can be used in one option field, as this example shows:

prt <n p r rp m q> fy;

This corresponds to a hand-made version of the MULPRT<v> statement, printing
levels/growth in the first-position and reference databanks in addition to the
multiplier differences (absolute and relative). As you see, this PRT statement contains
multiplier differences (codes m and q), so by means of using short operators you are

free to mix multiplier values into the print.

Formatting can be applied in the following way:

prt <nwidth=10 ndec=0 pwidth=6 pdec=1> fy;

This prints out the absolute levels and percentage growth rates (this way of printing
is default, see option print prt...), with width 10 and no decimals for the levels,

and width 6 and 1 decimal for the growth rates. You may use formatting on each
element, for instance:

prt fy, fx, fm<ndec=0 pdec=1>;

In that case, only the last variable (fm) has a different number of decimals. Fixed

periods can be indicated in brackets (for instance [2005] means that 2005-values are

taken). Different databanks may be indicated:

460 Gekko 3.1.x help system

T-T Analyse

prt fy, @fy, old:fy, old:{#m};

This prints out the variable fy from the first-position databank, fy from the Ref

(reference) databank (@-indicator), fy from a databank with the name old, and

variables corresponding to the list of strings #m, all taken from the old databank. The

latter is opened by means of the OPEN statement (note that you can use F2 to see
the list of open databanks).

Wild-card lists (inside braces {...}) may be used instead of regular lists:

prt {'fx*2'};

This will print out all variables starting with fX and ending with 2 in the first-position

databank (use '?' as a single-character wild-card). In come statements, you may use
for instance fx*2 directly instead of {'fx*2'}, but in PRT this would be ambiguous (is

fx*2 a wildcard, or is it fx multiplied by 2?).

You may insert labels or a heading into the PRT statement, the former only for non-
list items.

prt fy 'GDP', ul 'Unemployment' heading = 'Scenario A';

To filter out periods, first define a TIMEFILTER. For instance:

timefilter 2003, 2005..2008, 2010..2015 by 2;

This way, the periods 2004, 2009, 2011 and 2013 will be hidden, whereas all other
periods are shown. Note that TIMEFILTER defines the periods positively, i.e. the
periods that are to be included when printing. If you print now, these four periods will
just be skipped. To temporarily disable the filter in the print, use prt<nofilter>. To

have the skipped periods aggregated into the shown periods, use prt<filter=avg>.

For instance:

prt<2003 2015 filter=avg>fY;

gives the following:

 fY [%]
 2003 1314180.0000 0.38
 2004-2005 1360794.5000 2.37
 2006 1423985.0000 3.39
 2007 1446530.0000 1.58
 2008 1430309.0000 -1.12
 2009-2010 1367633.0000 -1.79

461Gekko User Manual

T-T Analyse

 2011-2012 1447238.5625 2.99
 2013-2014 1501831.8125 1.67
 2015 1534174.6250 1.45

For e.g. 2004-2005, the average for these two periods is shown. For the absolute
level (the 'fY' column), a simple average is used, whereas for the percentage column
('[%]'), a more complicated averaging of growth rates is performed, in order to yield
a consistent average growth rate for these two periods.

Looping over lists in combination with PRT is pretty straightforward. You may write:

for string %i = yf, x;
 for string %j = nf, nz;
 prt f{%i}{%j};
 end;
end;

This will print the series fyfnf, fyfnz, fxnf, fxnz. If you are using Gekko

interactively, you can obtain non-executing linebreaks by means of Ctrl+Enter, and
you execute the block of statements by means of marking the block before pressing
[Enter]. Alternatively, and better, RUN the statements from a program file.

The example above can be done more easily (and will print them in one print):

#i = yf, x;
#j = nf, nz;
prt f{#i}{#j};

Note

If a model is loaded (see MODEL), the PRT statement indicates '(E)' for endogenous,
and '(X)' for exogenous variables. Missing values are shown with a 'M' instead of
numbers. If some variable is missing in the databank (or the databank does not
exist), an error message will be issued.

Note that prt <m> mybank:x; prints out the difference mybank:x - @x (and prt <r>

mybank:x; prints out @x), where @x is x in the Ref (reference) databank. So when

printing a multiplier involving a named (OPEN) databank, Gekko will look for the
same variable in the reference databank, in order to compute the multiplier.

You may change what is printed as default via the option print prt ... options

(see 'Related options' below). For instance you may want to switch off printing of
percentage growth permanently: option print prt pch = no.

462 Gekko 3.1.x help system

T-T Analyse

You may use P, PRI or PRINT instead of PRT. You may use diff instead of the dif

operator.

Related options

Relevant options regarding the PRT statement:

OPTION freq a; [a|q|m|d|u]
OPTION print collapse = none; [avg|total|none]; //show aggregates for
quarters and months
OPTION print freq = pretty; [pretty|simple]; //for quarters and
months
OPTION print width = 100;
OPTION print fields ndec = 4;
OPTION print fields nwidth = 13;
OPTION print fields pdec = 2;
OPTION print fields pwidth = 8;
OPTION print prt abs = yes;
OPTION print prt dif = no;
OPTION print prt pch = yes;
OPTION print prt gdif = no;
OPTION series array print missing = error; [error|m|zero|skip]
OPTION series data print missing = error; [error|m|zero|skip]
OPTION series normal print missing = error; [error|m|zero|skip]
OPTION timefilter type = hide;
OPTION timefilter = no;

Related statements

MULPRT, PLOT, SHEET, CLIP, DISP, DECOMP

463Gekko User Manual

T-T Analyse

4.3.66 PREDICT

The PREDICT statement is used to predict an equation, calculating the right-hand side
and assigning the result to the left-hand side variable. At the moment PREDICT is
only used to predict model equations. In that case, predicting an equation can be
thought of as performing a simulation of a model consisting of only one equation.

Consider the following model equation:

FRML _i y = c + i + g;

Here, the statement predict <2020 2030> y; will calculate c + i + g over the

given period, and assign the result to y.

Note the following about PREDICT:

· You may use PREDICT on any equation in a Gekko model, including equations of p-
type (that is, equations that are part of the model file, but are not used in the
simulation).

· PREDICT will calculate the left-hand side dyncamically if the left-hand side appears
with lags on the right-hand side (corresponding to series<dyn> or block series

dyn = yes;). Therefore, if the equation is FRML _i y = y[-1] + 1;, using

predict y; will accumulate y with 1 for each period.

· PREDICT is similar to sim<res>, with only one equation being predicted. But note

(1) that lags may accumulate in PREDICT (cf. the above point), and (2) that
predicted equations may influence each other if several PREDICTs are issued (or if
PREDICT is issued on a list of names).

Syntax

predict < period > equations;

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

where:

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

equation
s

List of equations, designated by names of left-hand side variables

464 Gekko 3.1.x help system

T-T Analyse

Examples

Consider the following model:

FRML _s dlog(y) = 0.52 * dlog(yw) + 0.28 * log(yw[-1] - y[-1]);
FRML _s log(yw) = log(x) - 0.3 * log(p) + 12.34;

Here, we are defining an intermediate variable yw in the second equation that in

principle could be merged into the first equation. But yw may defined an equilibrium

value of particular interest, but when new data for x and p arrives, the databank

value of yw should reflect this. By means of PREDICT we may avoid making copies of

equations for use in data preparation. Consider these two cases:

open <edit> newdata;
yw <2020 2020> = exp(log(x) - 0.3 * log(p) + 12.34);
close newdata;

Instead, we may use PREDICT, where the equation is fetched from mymodel.frm:

model mymodel;
open <edit> newdata;
predict <2020 2020> yw;
close newdata;

Note that in the latter example, the equation is not written explicitly, but is fetched
from the model. If you were going to PREDICT several equations, the names of these
can be stated as a list of equation names #equnames, with syntax predict

{#equnames};.

Note

See the examples in the MODEL section regarding other uses of PREDICT (for
instance, in the RUNAFTER$ section of a model).

Related statements

MODEL, SIM, RES

465Gekko User Manual

T-T Analyse

4.3.67 R_RUN

The R_RUN statement is used as an interface to R. The interface allows easy transfer
of matrices from Gekko to R, execution of a R program, and easy returning of
matrices from R to Gekko. Instead of matrices, you may alternatively use Apache
Arrow files to communicate with R, cf. the example at the end of this page.

Compatibility note regarding syntax:
Starting with Gekko 3.1.8, the R interface syntax is simplified, and the former
statements R_FILE, R_EXPORT are no longer needed. If you are using the
deprecated syntax, you may easily upgrade to the new syntax. For instance, you
may translate R_FILE ols.r; R_EXPORT <target = 'data1'> #x, #y; r_run;

into simply r_run <target = 'data1'> #x, #y file = ols.r;, merging the

three statements. The old syntax will work for a while, but please consider
converting to the new syntax.

When executing R_RUN, you need R on your system, and Gekko will attempt to auto-
detect the location of R. If this fails, you may indicate the location via option r exe

folder = ... ; (Gekko will automatically add R.exe or \R.exe, unless the path

ends with .exe, .bat or .cmd). If you just need to export matrices for use in R
(without returning to Gekko), try the EXPORT<r> statement. Regarding an
equivalent interface to Python, see PYTHON_RUN.

Syntax

r_run <MUTE TARGET=...> matrix1, matrix2, ... FILE = filename ;
r_run <MUTE TARGET=...> filename ;

MUTE (Optional). With this option set, R is run silently in Gekko.
Alternatively, R output is shown in the Gekko main window. Do not
used <mute> when debugging your R program, since it shows potential
R error messages.

TARGE
T =

(Optional string). If for instance <target = 'data1' >, the matrices

are inserted at the exact location in the R file, where there is a line
starting with gekkoimport data1. If the option is not given, the

matrices are inserted at the top of the R file (this is often sufficient, the
target logic is intended for larger R programs)

FILE = Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put inside
quotes. Regarding reading of files, files in libraries can be referred to
with colon (for instance lib1:bank.gbk), and "zip paths" are allowed

too (for instance c:\projects\data.zip\bank.gbk). See more on

https://www.r-project.org/
https://arrow.apache.org/
https://arrow.apache.org/

466 Gekko 3.1.x help system

T-T Analyse

filenames here.

Example syntax:

r_run <target = 'data1'> #x, #y file = ols.r;

Example

The example below estimates (in R) a linear least squares model with five
parameters. You may consult the OLS section to see the same parameters calculated
via the OLS solver, or the MATRIX section to see the same parameters calculated via
linear algebra. See also the Python interface.

First, put the following R file ols.r into your working folder:

gekkoimport data1 # Gekko data (matrices x and y) is
inserted here
fit <- lm(y ~ x) # ols estimation
summary(fit) # prints output
beta <- fit$coefficients # estimated parameters
yfit <- fit$fitted.values # predicted values for y
gekkoexport(beta) # writes beta vector back to Gekko
gekkoexport(yfit) # writes fitted values back to Gekko

---------- example of plotting via R ----------
somewhat convoluted because Rscript.exe is used as the R engine,
therefore showing a plot
window is a bit more difficult than using for instance RStudio.
library(tcltk)
windows()
t = seq(2000, 2010)
plot(t, y, type="l", col="red", ann=FALSE)
lines(t, yfit, col="green")
title(main="Example R plot")
legend(2008, 0.042, legend=c("s0", "s0fit"), col=c("red", "green"),
lty=1:1, cex=0.8)
capture <- tk_messageBox(message = "")

Next, you can run the following program in Gekko:

reset; cls;
lna1 <1998 2010> = data('166.223000 173.221000 179.571000
187.343000 194.888000 202.959000
 209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
pcp <1998 2010> = data('0.9502030 0.9699920 1.0000000

467Gekko User Manual

T-T Analyse

1.0235000 1.0401100 1.0605400
 1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
bul1 <1998 2010> = data('0.0684791 0.0591698 0.0560344
0.0535439 0.0535003 0.0631703
 0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
%t1 = 2000;
%t2 = 2010;
time %t1 %t2;
s0 = dlog(lna1);
s1 = dlog(pcp);
s2 = dlog(pcp.1);
s3 = bul1;
s4 = bul1.1;
#x = pack(%t1, %t2, s1, s2, s3, s4); //matrix
#y = pack(%t1, %t2, s0); //matrix
r_run <target = 'data1'> #x, #y file = ols.r; //returns matrices
#beta and #yfit from R
prt #beta;
s0fit = #yfit[.., 1].unpack(%t1, %t2);
plot s0, s0fit;

The program prints R output on the screen, and plots actual and predicted values.
Plotting is done using both R's plot function, and Gekko's own PLOT (the R plot is
shown below).

The #beta vector looks like this:

#beta
 1
 1 0.0298

468 Gekko 3.1.x help system

T-T Analyse

 2 0.1445
 3 0.6139
 4 0.1867
 5 -0.3509

Some of the output from R shown in Gekko is the following (cf. the same example in
the OLS section):

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 0.029804 0.008942 3.333 0.0157 *
 x1 0.144517 0.227011 0.637 0.5479
 x2 0.613875 0.236473 2.596 0.0409 *
 x3 0.186740 0.202534 0.922 0.3921
 x4 -0.350908 0.203182 -1.727 0.1349

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 0.003462 on 6 degrees of freedom
 Multiple R-squared: 0.625, Adjusted R-squared: 0.3751
 F-statistic: 2.5 on 4 and 6 DF, p-value: 0.1516

Note that in this example, the <target= 'data1'> option and the corresponding

gekkoimport data1 in the ols.r file are not really necessary, since the data could

just be put at the top of the R file anyway. The code that is injected into the R file
before it is executed looks like the following:

x = c(0.0304674549413991, 0.0232281261192072,
0.0160983506716728,)
dim(x) = c(11, 4)
y = c(0.0360024370055795, 0.0423704884205201,
0.0394838732643257,)
dim(y) = c(11, 1)

And the file that R produces for Gekko to consume looks like the following (this is
actually what the gekkoexport() function in R does):

R2Gekko version 1.0

name = beta
rows = 5
cols = 1
0.02980389
0.1445173
0.6138751
0.1867401
-0.3509083

...

469Gekko User Manual

T-T Analyse

This text-based way of interchanging data back and forth works fine, as long as the
datasets are not too voluminous (otherwise see the following section). The interface
is more stable than COM-based automation, and interchange of values, text, etc.
could also be provided if needed.

Apache Arrow files

As an alternative to matrix-based communication with R, Gekko also supports the so-
called Apache Arrow format. This is a dataframe-like format that can be understood
by R, Python, Julia, Matlab and many others. In the longer run, Gekko will provide
dataframes, too, but for the moment it is possible to write/export all timeseries from
a Gekko databank (or subset of a databank) to an arrow file for consumption in, say,
R or Python. At the moment, only series can be exported as arrow files, metadata is
not included, and IMPORT<arrow> does not work yet (will soon). The Arrow interface
may change, so please do not yet use the interface in "serious" production code.
There is a tremendous potential in the Arrow project regarding easy, fast and reliable
transfer of data between software packages. (See the equivalent Python example
under PYTHON_RUN).

The following is a simple demo, highlighting some of the capabilities.

First, store the following test1.r file in your working folder:

library(arrow) # may need: install.packages("arrow")
library(dplyr) # may need: install.packages("dplyr")
df1 <- read_feather("test1.arrow")
print(df1)
df2 <- select(filter(df1, dims == 0), c(name, freq, per1, value))
print(df2)

Next, run the following Gekko statements:

reset; time 2021 2023;
x = 1, 2, 3;
series x1 = series(1); //1-dim array-series
x1[i] = 2, 3, 4;
x1[j] = 3, 4, 5;
series x2 = series(2); //2-dim array-series
x2[x, y] = 4, 5, 6;
x2[x, z] = 5, 6, 7;
export <arrow> test1.arrow;
r_run test1.r;

The data consists of a normal series x, a 1-dimensional array-series x1, and a 2-

dimensional array-series x2. The following R-output is shown in Gekko, after the

test1.arrow file is read by R:

470 Gekko 3.1.x help system

T-T Analyse

 # A tibble: 15 x 7
 name freq dims dim1 dim2 per1 value
 <chr> <chr> <int> <chr> <chr> <int> <dbl>
 1 x a 0 <NA> <NA> 2021 1
 2 x a 0 <NA> <NA> 2022 2
 3 x a 0 <NA> <NA> 2023 3
 4 x1 a 1 i <NA> 2021 2
 5 x1 a 1 i <NA> 2022 3
 6 x1 a 1 i <NA> 2023 4
 7 x1 a 1 j <NA> 2021 3
 8 x1 a 1 j <NA> 2022 4
 9 x1 a 1 j <NA> 2023 5
 10 x2 a 2 x y 2021 4
 11 x2 a 2 x y 2022 5
 12 x2 a 2 x y 2023 6
 13 x2 a 2 x z 2021 5
 14 x2 a 2 x z 2022 6
 15 x2 a 2 x z 2023 7

 # A tibble: 3 x 4
 name freq per1 value
 <chr> <chr> <int> <dbl>
 1 x a 2021 1
 2 x a 2022 2
 3 x a 2023 3

The first dataframe (df1) consists of all the data. The columns have the names name,

freq, dims, dim1, dim2, per1, and value. These are either strings (chr), integers

(int) or double precison numbers (dbl). In the dataframe <NA> represents missing

data. The name and freq represent the Gekko name (for instance x!a), and dims

represents the number of dimensions. Columns dim1 and dim2 are the two potential

dimensions, per1 is the year (for daily frequency there will be a per2 representing

month, and per3 representing day), and value is the observation.

In the second dataframe (df2), dims == 0 is selected (that is, selecting only normal

timeseries), and only columns name, freq, per1, value are shown. This resembles a

more Gekko-like print of the x timeseries. EXPORT<arrow> supports all Gekko

frequencies, but the particular dataframe layout may change.

Note

Note that with r_run<mute>, you will not see any potential R errors on the screen. So

please do not use <mute> when you are still debugging the R program.

Note that at the moment, the gekkoexport() function only takes one
argument/matrix at the time.

You need to have R installed on your computer. Gekko will try to auto-detect the
location of the R files on your system. Gekko uses Rscript.exe, not R.exe, in order

471Gekko User Manual

T-T Analyse

for R to return output dynamically line by line. Typical R location is something like
this: c:\Program Files\R\R-3.6.2\bin\x64\Rscript.exe. You may manually

indicate the path via this option: option r exe folder = ... ;.

You can also use EXPORT<r> to export matrices to a file suitable for R.

Related options

OPTION r exe folder = ... ; //you may use this, if the auto-detection of the location
of R fails

Related statements

PYTHON_RUN, OLS, MATRIX, EXPORT<r>, EXPORT<arrow>

472 Gekko 3.1.x help system

T-T Analyse

4.3.68 PYTHON_RUN

The PYTHON_RUN statement is used as an interface to Python. The interface allows
easy transfer of matrices from Gekko to Python, execution of a Python program, and
easy returning of matrices from Python to Gekko. Instead of matrices, you may
alternatively use Apache Arrow files to communicate with Python, cf. the example at
the end of this page.

When executing PYTHON_RUN, you need Python on your system, and Gekko will
attempt to auto-detect the location of Python (trying to locate it from the Windows
PATH). If this fails, you may indicate the location via option python exe folder =

... ;. If you just need to export matrices for use in Python (without returning to

Gekko), try the EXPORT<python> statement. Regarding an equivalent interface to R,
see R_RUN.

Syntax

python_run <MUTE TARGET=...> matrix1, matrix2, ... FILE = filename ;
python_run <MUTE TARGET=...> filename ;

MUTE (Optional). With this option set, Python is run silently in Gekko.
Alternatively, Python output is shown in the Gekko main window. Do
not used <mute> when debugging your Python program, since it shows
potential Python error messages.

TARGE
T =

(Optional string). If for instance <target = 'data1' >, the matrices

are inserted at the exact location in the Python file, where there is a
line starting with gekkoimport data1. If the option is not given, the

matrices are inserted at the top of the Python file (this is often
sufficient, the target logic is intended for larger Python programs)

filena
me

Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put inside
quotes. Regarding reading of files, files in libraries can be referred to
with colon (for instance lib1:bank.gbk), and "zip paths" are allowed

too (for instance c:\projects\data.zip\bank.gbk). See more on

filenames here.

Example syntax:

python_run <target = 'data1'> #x, #y file = ols.py;

https://www.python.org/
https://arrow.apache.org/
https://en.wikipedia.org/wiki/PATH_(variable)

473Gekko User Manual

T-T Analyse

Example

The example below estimates (in Python) a linear least squares model with five
parameters. You may consult the OLS section to see the same parameters calculated
via the OLS solver, or the MATRIX section to see the same parameters calculated via
linear algebra. See also the R interface.

First, put the following Python file ols.py into your working folder:

gekkoimport data1 # Gekko data is inserted here
import statsmodels.api as sm # OLS functionality
x = sm.add_constant(x) # constant term (ones column)
model = sm.OLS(y, x) # define the model
results = model.fit() # fit the model
print(results.summary()) # print results
beta = results.params # estimated parameters
yfit = results.predict() # predicted values for y
gekkoexport(beta) # writes beta vector back to Gekko
gekkoexport(yfit) # writes fitted values back to
Gekko

---------- example of plotting via Python ----------
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(2000, 2011, 1)
fig, ax = plt.subplots()
ax.plot(t, y, label='s0')
ax.plot(t, yfit, label='s0fit')
ax.set(title='Python plot')
ax.grid()
plt.legend()
plt.show()

Next, you can run the following program in Gekko:

reset; cls;
lna1 <1998 2010> = data('166.223000 173.221000 179.571000
187.343000 194.888000 202.959000
 209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
pcp <1998 2010> = data('0.9502030 0.9699920 1.0000000
1.0235000 1.0401100 1.0605400
 1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
bul1 <1998 2010> = data('0.0684791 0.0591698 0.0560344
0.0535439 0.0535003 0.0631703
 0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
%t1 = 2000;
%t2 = 2010;
time %t1 %t2;
s0 = dlog(lna1);

474 Gekko 3.1.x help system

T-T Analyse

s1 = dlog(pcp);
s2 = dlog(pcp.1);
s3 = bul1;
s4 = bul1.1;
#x = pack(%t1, %t2, s1, s2, s3, s4); //matrix
#y = pack(%t1, %t2, s0); //matrix
python_run <target = 'data1'> #x, #y file = ols.py; //returns
matrices #beta and #yfit from Python
prt #beta;
s0fit = #yfit[.., 1].unpack(%t1, %t2);
plot s0, s0fit;

The program prints Python output on the screen, and plots actual and predicted
values. Plotting is done using both Python's Matplotlib, and Gekko's own PLOT (the
Python plot is shown below).

The #beta vector looks like this:

#beta
 1
 1 0.0298
 2 0.1445
 3 0.6139
 4 0.1867
 5 -0.3509

Some of the output from Python shown in Gekko is the following (cf. the same
example in the OLS section):

 ==
============
 coef std err t P>|t| [0.025
 0.975]
 --

475Gekko User Manual

T-T Analyse

 const 0.0298 0.009 3.333 0.016 0.008
 0.052
 x1 0.1445 0.227 0.637 0.548 -0.411
 0.700
 x2 0.6139 0.236 2.596 0.041 0.035
 1.193
 x3 0.1867 0.203 0.922 0.392 -0.309
 0.682
 x4 -0.3509 0.203 -1.727 0.135 -0.848
 0.146
 ==
============
 Omnibus: 1.122 Durbin-Watson:
 1.865
 Prob(Omnibus): 0.571 Jarque-Bera (JB):
 0.895
 Skew: 0.544 Prob(JB):
 0.639
 Kurtosis: 2.122 Cond. No.
 253.
 ==
============

Note that in this example, the <target= 'data1'> option and the corresponding

gekkoimport data1 in the ols.py file are not really necessary, since the data could

just be put at the top of the Python file anyway. The code that is injected into the
Python file before it is executed looks like the following:

x =
numpy.array([[0.0304674549413991,0.0206121780628441, ...], ...])
y = numpy.array([[0.0360024370055795],[0.0423704884205201], ...])

And the file that Python produces for Gekko to consume looks like the following (this
is actually what the gekkoexport() function in Python does):

Python2Gekko version 1.0

name = beta
rows = 5
cols = 1
0.0298038917827622
0.1445172984105897
0.6138751350035226
0.18674011629660836
-0.35090825010498294

...

This text-based way of interchanging data back and forth works fine, as long as the
datasets are not too voluminous (otherwise see the following section). The interface

476 Gekko 3.1.x help system

T-T Analyse

is more stable than COM-based automation, and interchange of values, text, etc.
could also be provided if needed.

Apache Arrow files

As an alternative to matrix-based communication with Python, Gekko also supports
the so-called Apache Arrow format. This is a dataframe-like format that can be
understood by R, Python, Julia, Matlab and many others. In the longer run, Gekko
will provide dataframes, too, but for the moment it is possible to write/export all
timeseries from a Gekko databank (or subset of a databank) to an arrow file for
consumption in, say, R or Python. At the moment, only series can be exported as
arrow files, metadata is not included, and IMPORT<arrow> does not work yet (will
soon). The Arrow interface may change, so please do not yet use the interface in
"serious" production code. There is a tremendous potential in the Arrow project
regarding easy, fast and reliable transfer of data between software packages. (See
the equivalent R example under R_RUN).

The following is a simple demo, highlighting some of the capabilities.

First, store the following test1.py file in your working folder:

first time use, first install the Apache Arrow package:
"pip install pyarrow" or "conda install -c conda-forge pyarrow"
import pandas as pd
df1 = pd.read_feather('test1.arrow')
print(df1)
df2 = df1.loc[df1['dims'] == 0][['name', 'freq', 'per1', 'value']]
print(df2)

Next, run the following Gekko statements:

reset; time 2021 2023;
x = 1, 2, 3;
series x1 = series(1); //1-dim array-series
x1[i] = 2, 3, 4;
x1[j] = 3, 4, 5;
series x2 = series(2); //2-dim array-series
x2[x, y] = 4, 5, 6;
x2[x, z] = 5, 6, 7;
export <arrow> test1.arrow;
python_run test1.py;

The data consists of a normal series x, a 1-dimensional array-series x1, and a 2-

dimensional array-series x2. The following Python-output is shown in Gekko, after

the test1.arrow file is read by Python:

 name freq dims dim1 dim2 per1 value

477Gekko User Manual

T-T Analyse

 0 x a 0 None None 2021 1.0
 1 x a 0 None None 2022 2.0
 2 x a 0 None None 2023 3.0
 3 x1 a 1 i None 2021 2.0
 4 x1 a 1 i None 2022 3.0
 5 x1 a 1 i None 2023 4.0
 6 x1 a 1 j None 2021 3.0
 7 x1 a 1 j None 2022 4.0
 8 x1 a 1 j None 2023 5.0
 9 x2 a 2 x y 2021 4.0
 10 x2 a 2 x y 2022 5.0
 11 x2 a 2 x y 2023 6.0
 12 x2 a 2 x z 2021 5.0
 13 x2 a 2 x z 2022 6.0
 14 x2 a 2 x z 2023 7.0

 name freq per1 value
 0 x a 2021 1.0
 1 x a 2022 2.0
 2 x a 2023 3.0

The first dataframe (df1) consists of all the data. The columns have the names name,

freq, dims, dim1, dim2, per1, and value. These are either strings, integers or double

precison numbers. In the dataframe None represents missing data. The name and freq

represent the Gekko name (for instance x!a), and dims represents the number of

dimensions. Columns dim1 and dim2 are the two potential dimensions, per1 is the

year (for daily frequency there will be a per2 representing month, and per3

representing day), and value is the observation.

In the second dataframe (df2), dims == 0 is selected (that is, selecting only normal

timeseries), and only columns name, freq, per1, value are shown. This resembles a

more Gekko-like print of the x timeseries. EXPORT<arrow> supports all Gekko

frequencies, but the particular dataframe layout may change.

Note

Note that with python_run<mute>, you will not see any potential Python errors on

the screen. So please do not use <mute> when you are still debugging the Python

program.

Note that at the moment, the gekkoexport() function only takes one

argument/matrix at the time. The gekkoexport() function will work with simple

names, else you must indicate the name as a string, for instance
gekkoexport(results.params, 'beta').

You need to have Python installed on your computer. Gekko will try to auto-detect
the location of Python from the Windows PATH, otherwise you may indicate the path
via this option: option python exe folder = ... ; (Gekko will automatically add

python.exe or \python.exe, unless the path ends with .exe, .bat or .cmd). To locate

https://en.wikipedia.org/wiki/PATH_(variable)

478 Gekko 3.1.x help system

T-T Analyse

your python.exe file location, you may try this in Python: import sys;

print(sys.executable) (this works for Python 3, for Python 2 you must omit the

parentheses).

You can also use EXPORT<python> to export matrices to a file suitable for Python.

Related options

OPTION python exe folder = ... ; //you may use this, if the auto-detection of the
location of Python fails

Related statements

R_RUN, OLS, MATRIX, EXPORT<python>, EXPORT<arrow>

479Gekko User Manual

T-T Analyse

4.3.69 REBASE

REBASE calculates an index series by dividing every observation of an existing series
by a single observation or an average of several observations of the same timeseries.
A bank name and/or prefix can be indicated, and the index value can be stated
(default: 100). The statement ignores the global time period, and a local time period
cannot be set.

Instead of the REBASE statement, you may alternatively use the similar rebase()

function, for instance PLOT x.rebase(2020); (see under functions).

Syntax

rebase < FROMBANK=... TOBANK=... PREFIX=... INDEX=... > variables
date1 date2 ;

variables A list of variable names (may include bank names)

date1 Rebase date (where the timeseries value attains 100, or the
value stated with <index = ...>.

date2 (Optional). Rebase ending date. If this is active, instead of using
only date1, the average of values over the period date1-date2 is
adjusted so that it (the average) attains the specified value.

BANK Deprecated, use FROMBANK.

FROMBANK= (Optional). A databank name where input timeseries are to be
found, if databank names are not provided in the list of variables.

TOBANK= (Optional). A databank name where all resulting timeseries end
up. This databank has to be editable. [New in 3.1.9]

PREFIX= (Optional). A prefix name regarding the resulting timeseries.

INDEX= (Optional). The value of the index in the index period(s). Default
= 100.

· If a databank name is not provided, the variable is not searched for in other
databanks than the first-position databank.

· Looping: with a list like for instance #m = a, b;, you may use rebase <prefix=i>

x{#m} 2020; to rebase xa into ixa, and xb into ixb.

Note: If the timeseries is quarterly or monthly, date1 is annual (a year), and date2 is
not stated, Gekko will use the first period of the year as start date, and the last

480 Gekko 3.1.x help system

T-T Analyse

period of the year as end date. If the timeseries y is quarterly, rebase y 2010; is the

same as rebase y 2010q1 2010q4;.

If you are using TOBANK or PREFIX (or both), new timeseries objects are created.
Otherwise, it is the existing timeseries objects that are altered.

Example

reset;
mode data;
time 2010 2012;
y = 2, 3, 4;
rebase <prefix=i1> y 2011;
rebase <prefix=i2> y 2011 2012;
prt <n> y, i1y, i2y;

The result is the following:

 y i1y i2y
 2010 2.0000 66.6667 57.1429
 2011 3.0000 100.0000 85.7143
 2012 4.0000 133.3333 114.2857

In the first one (i1y), the index series has the value 100 in 2011. In the second one

(i2y), the index series has an average of 100 in 2011 and 2012 (the average of

85.7143 and 114.2857 = 100).

The following example illustrates the use of FROMBANK, TOBANK, PREFIX and INDEX.

reset; time 2010 2012;
y1 = 2, 3, 4;
open <edit> temp;
 y2 = 3, 4, 5;
close temp;
open temp;
open <edit> temp2;
clear temp2;
rebase <frombank=temp tobank=temp2 prefix=re index=100> work:y1, y2
2011;
prt temp2:rey1, temp2:rey2;

When the REBASE statement is issued, the databank temp2 is in first position, Work is

in second position, and temp is in third position. Of these, only temp2 and Work are

editable. The first series, work:y1 has a databank indicated, and therefore y1 is taken

from Work. The second series has no databank indicated and is therefore taken from

temp (because of the FROMBANK option). Both the rebased series are put into the

481Gekko User Manual

T-T Analyse

temp2 databank (because of the TOBANK option), and both are prefixed with re

(because of the PREFIX option).

Note

The former BANK option is now called FROMBANK. The old option will still work for a
while.

Related statements

SERIES, SPLICE

482 Gekko 3.1.x help system

T-T Analyse

4.3.70 READ

The READ statement puts variables from a .gbk file (or other formats) into the first-
position databank. A .gbk file is a Gekko-specific binary databank format that stores
series, values, dates, strings, lists, maps, and matrices.

Before reading, the first-position databank is cleared, so after reading, the first-
position databank will correspond to the file (this behavior may be altered with the
<merge> option). After reading (optionally merging) data from the file into the first-

position databank, the reference databank is always constructed as an exact copy of
the first-position databank (a 'clone').

Because READ clears the first-position databank, it may often be practical to store
variables in the Global databank. It can be practical to put general settings etc. in
that bank, for instance default periods, often-used lists, etc. Variables in the Global
databank will survive READ and CLEAR statements, and are in that sense long-lived.

When modelling using Gekko program files, it is advised to put a MODEL statement
and an option freq = ... ; statement before the READ statement, so that READ

knows the model and its frequency. When doing this, READ will auto-create technical
model variables like add-factors etc. (D-, J-, and Z-type variables), and will also
indicate if the lists of variables in the model and the databank are not matching
(note: such auto-creation is not done for data mode).

READ is intended for .gbk files, and can be thought of as a strong version of IMPORT.
In contrast to IMPORT, READ clears the first-position databank, reads all data
regardless of the global time period (unless a time period or <respect> is used), and
finally makes Ref a clone of the first-position databank. There are the following
equivalences: READ = CLEAR<first> + IMPORT<all> + CLONE, and the inverse:
IMPORT = READ<first merge respect>.

Syntax

read < period ALL FIRST REF MERGE > filename TO bankname;

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip paths"

are allowed too (for instance c:\projects\data.zip\bank.gbk). See

more on filenames here.
If the filename is set to '*', you will be asked to choose the file in
Windows Explorer. The extension .gbk is automatically added, if it is
missing.

483Gekko User Manual

T-T Analyse

period (Optional). Without a time period indicated, Gekko will read all the
data for all observations in the file. When a period is indicated, the
read data(bank) is truncated.

FIRST Reads the file into the first-position databank (#1 on the F2 window
list).

REF Reads the file into the reference databank (shown as REF on the F2
window list).

MERGE (Optional). If MERGE is set, the data is merged into the existing first-
position databank.

RESPECT (Optional). With this option, if no period is given, the global period is
used.

TO (Optional). If TO bankname is indicated, Gekko will put the data into a

seperate 'named' databank alongside the Work and Ref databanks.
For instance, after read adambk TO a;, you may refer to the

variables by means of colon, for instance prt a:var1;. If you use

read adambk TO *;, the bankname will be the same as the file name.

It should be noted that the databank will be read-only (protected)
when opened like this (read ... TO ... is essentially the same as

an OPEN statement)

TRACE= (Optional). Default is yes. Set no to omit reading of data traces. The

databank will load faster and use less RAM (if traces are present).
Only relevant for Gekko databanks (.gbk files).

Examples

Reading a .gbk file called adambk.gbk is done with

read adambk;

or by writing

read *;

and then selecting the databank. Note that after such a READ of data into the first-
position databank, the reference databank will always be created as an excact copy of

484 Gekko 3.1.x help system

T-T Analyse

the first-position databank. This behavior is practical for modeling purposes. You can
merge with existing data in the first-position databank like this:

read <merge> adambk;

This merges adam.gbk with any pre-existing data in the first-position databank. Full

or relative path names are possible:

read otherbanks\adam3;

This will look for adam3.gbk in the subfolder otherbanks, relative the the Gekko

working folder.

Use the TO keyword like this:

read forecst2 TO f2;

This reads forecst2.gbk into the named databank f2. After this, you may use for

instance prt f2:gdp; to print out the timeseries gdp from this databank. This

databank will be read-only. You may use read forecst2 TO *; if you wish to use the

filename as databank name. It is possible to use read * TO *;. Using read ... TO

... is essentially the same as an OPEN statement.

Note

When reading, extension .gbk is automatically added if it is missing. Global time
settings do not affect the READ statement, so all the data in the .gbk file is read into
the first-position databank regardless of how the timeperiod is set in Gekko.
(Useread <respect> to restrict the read data to the global time period).

Annual, quarterly, monthly, weekly, daily and undated data may co-exist as series in
the same .gbk file, together with other variables types.

The gbk format is currently 1.2 (corresponding to Gekko 3.0/3.1.x) and comes in the
following versions:

gbk file format versions

1.0 (July 2011). The file extension is .tsdx. Inside this zip-file there is a .tsd
file, and a xml file with meta-information (does not state the databank
format number, which is implicitly "1.0"). Only supports timeseries. Can
be read by Gekko 1.3.1 and later.

485Gekko User Manual

T-T Analyse

1.1 (November 2012). The file extension is .tsdx or .gbk. Inside there is a
binary protobuffer file (either with extension .bin (older) or .data
(newer)), and a xml file with meta-information, where databankVersion =
"1.1". Only supports timeseries. Can be read by Gekko 1.5.8 and later.

1.2 (November 2018). The file extension is .gbk. Inside there is a binary
protobuffer file (databank.data) and a xml file with meta-information
(DatabankInfo.xml), where databankVersion = "1.2". It supports seven
variable types: timeseries (including array-series), val, date, string, list,
map, matrix. Can be read by Gekko 3.0 and later. The two older Gekko
versions 2.5.1 and 2.5.2 can also read the 1.2 format.

If you need an old Gekko version (for instance Gekko 1.8, 2.2 or 2.4) to read a
Gekko 3.x.x gbk databank, you can use Gekko 2.5.2 as a bridge. Write the databank
in Gekko 3.x.x, read the databank in Gekko 2.5.2, write the databank in Gekko
2.5.2, and finally read the databank in the old Gekko version.

The option copylocal below copies the targeted file to a temporary file on the user's

local hard disk before reading. This copying is typically very fast, and afterwards
reading the temporary file is faster and more reliable, if the targeted file is located on
a network drive. In general, this is a recommended option that alleviates some
potential network problems.

The cache = nongbk option is set to skip gbk files. This is because the speed gains

would be limited, because the internals of a .gbk file are essentially already a
(protobuf) cache file. If the option is set to all, you may see a speed gain, because it

is faster to calculate a MD5 hash code for a file than unzipping it.

The .gbk file may contain information regarding its corresponding model, last

simulation period etc. If so, when READing the databank, a link to this model info is
provided. This can be practical when in doubt about when the variables in a given
databank were simulated, the simulation period, the model name and signature, etc.

To convert .tsd (or other formats) into a .gbk file, just read it with import<tsd>;, and

WRITE it. Please note that a .tsd file operates with 8 significant digits (or less), so
there will typically be a loss of precision compared to a .gbk file (which is in double-
precision).

See the Gekko menu 'Options' --> 'Program dependency tracking' or use option

global dependency tracking = ...; to activate dependency tracking, so that the

use of external files (for instance program files, read/written databanks etc.) are
shown as a list at the end of a Gekko session.

Related options

OPTION databank create auto = no; [yes|no]
OPTION databank create message = yes; [yes|no]
OPTION databank file cache = nongbk; [all|nongbk|none]

486 Gekko 3.1.x help system

T-T Analyse

OPTION databank file copylocal = yes;
OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];
OPTION solve data create auto = yes; [yes|no]

Related statements

IMPORT, EXPORT, WRITE, OPEN, CLONE, DOWNLOAD

487Gekko User Manual

T-T Analyse

4.3.71 RENAME

RENAME changes names of variables inside a databank. If the rename operation
involves two different databanks, the variable is moved between the banks (and
possibly also renamed, as in for instance rename bank1:x as bank2:y;).

Note that 'naked' wildcards are allowed in this statement, so you may for instance
use a*b?c as wildcard instead of the more cumbersome {'a*b?c'}.

Syntax

rename < BANK=... > variables1 AS variables2;

BANK= (Optional). A databank name indicating where the
timeseries are located.

variables1 Variable name(s) or list(s)

variables2 Variable name(s) or list(s)

· If a databank name is not provided, the variable is not searched for in other
databanks than the first-position databank.

· Looping: with a list like for instance #m = a, b;, you may use rename x{#m} to

y{#m}; to rename xa to ya, and xb to yb.

Example

Consider the two series a1 and a2 residing in the first-position databank. If we want

to rename those into b1 and b2, we could use:

rename a1, a2 AS b1, b2;

Lists can be used instead:

#a = a1, a2; //or: ('a1', 'a2')
#b = b1, b2;
rename {#a} AS {#b}; //without the {}-curlies, the #a list itself
is renamed to #b!

Rename works across banks, too, in reality moving the variable:

488 Gekko 3.1.x help system

T-T Analyse

rename b1:x AS b2:x; //moving between banks

Wildcards are used like this:

rename x*2 AS y_*;

All variables starting with x and ending with 2 will obtain prefix y_.

See the similar COPY statement for more examples. RENAME is in reality similar to a
COPY where the original object is deleted after copying. Also see the INDEX
statement and the wildcard page regarding the syntax rules of wildcards.

Note

When using two lists of names, the lists must have corresponding (equal) length.

If preferred, you may use rename ... TO ... instead of rename ... AS

Related statements

COPY, DELETE

489Gekko User Manual

T-T Analyse

4.3.72 RESET

The RESET statement is used to reset the workspace, similar to closing and reopening
the Gekko application. With RESET, Gekko will not try to run any gekko.ini files to
reload models, databanks, options, etc. (use RESTART to do that).

Among other things, RESET closes all opened databanks, clears the Work, Ref, Local
and Global databanks, and in addition options, models, libraries etc. are cleared.
Please note that when resetting, the frequency is always set to annual, and the time
period is set from t-10 to t, where t is the current year. See the RESTART or

CLOSEALL statement, if you need frequency or time settings and other things like
mode to persist after resetting.

Examples (clearing workspace)

Use this syntax to reset the workspace:

reset;

Clears the workspace (i.e. all Gekko RAM objects, including user functions and
procedures). It does not run gekko.ini from the program and/or working folders, even
if these files exist.

Note

The INI statement can be used to run Gekko.ini files after a RESET (RESET followed
by INI is equivalent to RESTART).

Related statements

RESTART, INI, DELETE, CLOSE, CLOSEALL, CLEAR, CLS, CUT

490 Gekko 3.1.x help system

T-T Analyse

4.3.73 RESTART

The RESTART statement is used to restart the workspace, similar to closing and
reopening the Gekko application, and running any gekko.ini files present in the
program folder (where gekko.exe is located) or working folder.

Among other things, RESTART closes all opened databanks, clears the Work, Ref,
Local and Global databanks, and in addition options, models, libraries etc. are
cleared. The gekko.ini files may reload options, models, databanks, libraries, etc. (use
RESET to avoid such reloading). Beware that when restarting, the frequency is
always set to annual, and the timeperiod is set from t-10 to t, where t is the current

year. If you need frequency or time settings to persist after a restart, you may put
these into a gekko.ini file.

If you need persistent variables (settings) that survive CLEAR, READ, etc., you may
put these in the Global databank. Beware the RESTART and RESET also clear the
Global and Local databanks (you may use CLOSEALL to avoid that).
.

NOTE: RESTART is equivalent to RESET; INI;, and can be convenient in interactive

sessions, where a RESTART statement may reload a given model/bank, etc. Note
however, that RESTART will not fail, if a gekko.ini file is not found. This can have
unintended consequences if the gekko.ini file is inadvertently deleted, so as a safer
alternative to RESTART in program files, the user may put RESET; RUN gekko.ini;

as the first line in the user's main Gekko program file. In that case, Gekko will abort
with an error, if the gekko.ini file is not found.

Syntax

restart;

Examples

Use this syntax to restart the workspace:

restart;

Clears the workspace (i.e. all Gekko RAM objects, including user functions and
procedures), and runs gekko.ini from the program and/or working folder if these files
exist.

You might put the following statements into gekko.ini (this file would typically be
located in your working folder):

491Gekko User Manual

T-T Analyse

//gekko.ini file for sim-mode
//---------------------------------
cls;
mode sim;
option folder model \models;
option folder bank \databanks;
option solve method = newton;
option freq = q; //a (annual) is default
time 2012q1 2020q4;
model mymodel;
read mydatabank;
//---------------------------------

So in the gekko.ini file, put an (optional) a CLS statement first, set the mode, and
then OPTION statements including time settings. Finally MODEL and READ
statements (best in that order).

If you need to start up in data-mode, you could use the following file, also typically
put inside the working folder:

//gekko.ini file for data-mode
//---------------------------------
cls;
mode data;
global:%path = 'm:\common\databanks';
option folder bank {global:%path};
option freq = q; //a (annual) is default
time 1990q1 2015q4;
RUN lib.gcm; //library of procedures/functions
//---------------------------------

//lib.gcm
//---------------------------------
procedure openbank name %bank;
 open {global:%path}\{%bank};
end;
//---------------------------------

In this example, a string %path is put into the Global databank, so that it can be

accessed during the entire session. With option folder bank pointing to some

central databank repository, existing databanks can be easily opened with OPEN,
without indicating the full file path.

You may, alongside gekko.ini in the working folder, also put a lib.gcm program file

with user-defined functions and procedures. If you RUN that file from the gekko.ini
file, you will always have your user-defined functions/procedures at hand after a
RESTART. In this example, after a RESTART, you may use the procedure openbank

bk2;, which will open up m:\common\databanks\bk2.gbk.

492 Gekko 3.1.x help system

T-T Analyse

As mentioned, you may put a gekko.ini file in the program folder (where gekko.exe

is located, cf. Help --> About... in the Gekko main window). This file is always run
before any other statements (including any gekko.ini in the working folder), so a

gekko.ini in the program folder could contain general settings that change

seldomly, like mode, frequency, time period, paths, etc..

Note

The RESET statement clears up in the same way as RESTART, but will skip any
existing gekko.ini file.

The INI statement can be used to run the gekko.ini file separately (RESTART is the

same as RESET followed by INI).

Note: With option interface remote = yes, Gekko may be remote-controlled from

a special remote.gcm program file in the working folder (cf. OPTION).

Related statements

RESET, INI, DELETE, CLOSE, CLOSEALL, CLEAR, CLS, CUT

493Gekko User Manual

T-T Analyse

4.3.74 RETURN

The RETURN statement returns from a program file or procedure/function (i.e., does
not execute the remainder of the file). It will return to any 'parent' program
file/procedure/function calling that particular 'child' program file/procedure/function.
If you need to return from the whole 'call stack' of program files/procedures/functions
at once, you may alternatively use the STOP statement. (To stop/abort a program
while it is running, you may use the red stop button in the user interface).

Syntax

return ; //return from program file

If RETURN is used to return from a FUNCTION (that is, if the function returns one or
more variables), the following syntax is used:

return expression ; //return from function

Example (program files)

To see how RETURN works in program files, try creating the two program files
file1.gcm and file2.gcm as shown below. Then call the first one of these from the

statement prompt with RUN file1;. Next, if you issue a prt %i;, the value will be

1101, because the third line file2.gcm is never executed. With a STOP instead of

RETURN in file2.gcm, the value of %i would be 1001, because the third line of

file1.gcm (the 'parent' program file) would not have been have been executed.

------------- file1.gcm --------------
%i = 1000;
RUN file2;
%i = %i + 100;

------------- file2.gcm --------------
%i = %i + 1;
return;
%i = %i + 10;

RUN file1;
prt %i;

Note

494 Gekko 3.1.x help system

T-T Analyse

· The similar STOP statement returns from all program files/procedures/functions at
once.

· The EXIT statement effectively issues a STOP, and then afterwards closes the
Gekko application.

· In function definitions, at least one RETURN statement is mandatory.

Note

If you wish to comment out a section of the program file, you may use // to comment

out a single line, or /* followed by */ to comment out an arbitrary section (for

instance spanning multiple lines).

Related statements

STOP, EXIT

495Gekko User Manual

T-T Analyse

4.3.75 RUN

The RUN statement runs a file containing Gekko statements (also called a program
file). The default extension for program files is .gcm. With a statement like run

test;, Gekko will look for test.gcm in the working folder. If not found, it will

additionally look in the folders designated with option folder command = ...,

option folder command1 = ..., and option folder command2 =

You may also run statements from outside Gekko, either via gekko.exe or via remote

control (cf. below).

See also PROCEDURE, which can be thought of as a program file that also accepts
arguments. If you need to call a program file many times, for instance from inside of
a loop, calling a procedure instead will often run much faster because re-parsing and
re-compiling can be skipped.

Syntax

RUN filename;

filenam
e

Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip

paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

The extension .gcm is automatically added, if it is missing. If the
filename is set to '*', you will be asked to choose the file in
Windows Explorer.

Tip: if you need to stop execution at a specific point/line to inspect variables etc., try
inserting a STOP statement. This will abort from all called program
files/procedures/functions, without executing anything more after the STOP (this is
not the case regarding RETURN). Therefore, STOP can be practical for debugging, etc.

Example

You may run the program file scenario.gcm like this:

RUN scenario;

Or, if located in the sub-folder \scenarios:

496 Gekko 3.1.x help system

T-T Analyse

RUN scenarios\scenario1;

This will run scenario1.gcm in the subfolder \scenarios (relative to the working

folder). You may also use a wildcard * to open a dialog box for choosing the .gcm file:

RUN *;

The extension .gcm is added automatically if not provided. Other extensions may be
used, just use them:

RUN gekko.ini;

will run the gekko.ini file (same as the INI statement).

gekko.exe parameters (batch job)

This is for more advanced users, but you may call gekko.exe with parameters, if you

need to run Gekko sessions as batch jobs. The location of gekko.exe can be found via

the Gekko menu: Help --> About... under "Program folder". Use this gekko.exe

location, and indicate a working folder, like the following:

call "c:\Program Files\Gekko\gekko.exe" "-folder:c:\Gekkotest" "-
noini" "run r1.gcm; exit;"

This code can be issued from for instance a Windows CMD window. Here, Gekko is
located in the folder c:\Program Files\Gekko, and the working folder is c:

\Gekkotest. Any gekko.ini file in that working folder is skipped (-noini), and

finally the two statements in the last quoted block are executed (run r1.gcm;

exit;). In this case, the program file r1.gcm is run, and after this, Gekko is closed

with the EXIT statement (if this is omitted, the Gekko window will persist, and you

will have to close it manually). You may inser any Gekko statements, separated by
semicolons (;). In the absence of a -noini parameter, Gekko will first run a possible

gekko.ini file from the working folder, and then run any Gekko statements. To make

Gekko run completely behind the scences ("stealth") without opening the graphical
user interface at all, you may use the -hide parameter. Gekko will generally produce

a gekkooutput.txt file for the user to inspect afterwards (for instance to inspect

error messages). This file will not be generated if the -nolog parameter is used.

You may put code like the above in a batch file (.bat) that can be started simply by

double-clicking it. If the CMD window is located at the gekko.exe folder, you may

alternatively use the following simpler code:

497Gekko User Manual

T-T Analyse

gekko.exe -folder:c:\User\Gekkotest -noini run r1.gcm; exit;

But calling gekko.exe in this way is prone to problems with blank spaces in for

instance folder or filenames. Therefore, using call with quotes (") is recommended.

Calling gekko.exe from for instance a R or Python session is possible, but note that

the inverse is also possible, calling R or Python from Gekko (cf. R_RUN and
PYTHON_RUN). If you need to call Gekko from Excel, see the Gekcel project.

Remote control

With option interface remote = yes;, Gekko may be remote-controlled from a

special remote.gcm program file in the working folder (cf. the description under

OPTION). This is handy if you need to remote-control an existing Gekko instance
from some other program, for instance a text editor. The above-mentioned
gekko.exe parameters starts up a new Gekko instance, so you can use remote

control to avoid that. You may try the following:

1. Start up Gekko normally
2. Type option interface remote = yes;

3. With an external text editor create a file named remote.gcm, containing the line

tell 'Hello from remote control';. Put this file in the Gekko working folder.

4. Try changing the TELL line in remote.gcm to something else: Gekko will respond

to that change.

Note that if you start with (3) above, and then fire up Gekko, Gekko will not run the
remote.gcm file. Gekko only reacts when it detects changes in such a file.

Note

If you need to run the same piece of code many times (for instance inside a loop),
consider using a PROCEDURE instead of calling RUN on a file. Running a .gcm file
entails some fixed loading, parsing and compiling costs each time it is called. These
costs are not present when using a procedure (only when it is loaded, not when
called).

Instead of EDIT, most people use a "real" external text editor like for instance VS
Code or Sublime Text to edit Gekko program files (.gcm). For VS Code, see its
integrated Gekko extension (developed by the Gekko editor). For Sublime Text, see
these open-source modules for Sublime and Gekko integration (including remote
control).

https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.sublimetext.com/
https://github.com/MartinBonde/gekko_sublime

498 Gekko 3.1.x help system

T-T Analyse

Related options

OPTION folder command = [empty];
OPTION folder command1 = [empty];
OPTION folder command2 = [empty];
OPTION folder working = [empty];
OPTION interface debug = dialog; [dialog|none]
OPTION interface errors = normal; [old|normal]
OPTION interface remote = no; [yes|no]
OPTION interface sound = no; [yes|no]
OPTION interface sound type = bowl; [bowl|ding|notify|ring]
OPTION interface sound wait = 60;

Related statements

RETURN, STOP, PROCEDURE, FUNCTION, EDIT

499Gekko User Manual

T-T Analyse

4.3.76 SERIES

The SERIES (or SER) statement alters timeseries variables (often just called 'series').
Series variables have no starting symbol like % (scalars) or # (collections), but they

may include a frequency indicator !, for instance x!q for x in a quarterly version.

When Gekko starts up, the default frequency is annual, so x will be understood as

x!a. A Gekko series can have annual (a), quarterly (q), monthly (m), weekly (w),

daily (d) or undated (u) frequency.

Guide: timeseries
For an easier introductory guide on Gekko timeseries, see this page. For an
introductory guide on array-timeseries, see this page.

Data tracing
Gekko timeseries statements support data tracing, making it possible to trace a
series values backwards in time to its origins, see this page.

Compatibility note regarding lags:
Since series statements are calculated in a vector-like fashion in Gekko 3.0/3.1.x
(in contrast to the Gekko 2.x versions), lags no longer automatically accumulate
period-for-period, if the left-hand side variable is present with lags on the right-
hand side (lagged dependent/endogenous variable). See more on the help page
on dynamic statements. In Gekko versions >= 3.1.7, a statement like for instance
x = x[-1] + 1 will need to be decorated with an indication regarding whether it

should accumulate (<dyn>) or not (<dyn = no>), cf. examples on the linked help

page. Note that for absolute accumulations like x <dyn> = x[-1] + 1, you may

use x <d>= 1, x ^= 1 or dif(x) = 1 instead (and there are also variants

regarding relative accumulations, see below). Note that setting <dyn> (or block

series dyn = yes) unnecessarily entails a speed penalty and should therefore

not be used unless needed.

Gekko has to kinds of timeseries: normal series and array-series. Array-series
allow the use of multidimensional indexes, for instance x['a', 'b'], picking out a

sub-series with 'a' in the first dimension and 'b' in the second dimension. This

could be for instance input-output cells, indicating the providing ('a') and receiving

('b') sector of intermediate goods. Array-series are quite similar to the map

collection, but with special capabilities convenient for series data. The sub-series
x['a', 'b'], or the shorter notation x[a, b], is internally a normal series.

Therefore, an array-series can be thought of as a container that contains a collection
of normal series that can be accessed via the indexes.

Normal series (including array-subseries) will use the global time setting regarding
the time period they are calculated over (cf. TIME), unless a local time period is
indicated in the <>-option field.

If []-brackets are used to the right of a series variable, for a normal series it may
either indicate a date (x[2025] or x[2020q3]) or a lag/lead (x[-2] or x[+1]). For an

500 Gekko 3.1.x help system

T-T Analyse

array-series, the []-index is used to pick out elements, for instance x[a, b]. These

may be combined, like x[a, b][2025]. Beware that lags and leads must start with

the symbol - or +, respectively, otherwise they are not interpreted as leads (so if %i

= 1, you must use x[+%i], not just x[%i]). For integer lags like x[-1] or x[-2], you

may use the shorter form x.1 and x.2, too.

To put values into a series, you can use a list of values on the right-hand side, for
instance x = 1, -2, 3; (the list of values could also be put inside a parenthesis). If

you need to use blank-separated numbers, you can use the data() function, for
instance x = data('1 -2 3');.

If you need to use alias names for series, you can use an #alias list to assign one

name to another. Cf. the last part of this help page.

Note that a bank-less variable like for instance x on the right-hand side of a SERIES

expression may be searched for in other databanks than the first-position databank,
cf. the databank search page. Beware that the keys [Tab] or [Ctrl+Space] offer

autocompletion on timeseries names (cf. here).

Syntax

variable <period operator KEEP=... LABEL=... SOURCE=... UNITS=...
STAMP=... DYN MISSING=...> = expression;
variable[date] = expression; //updating for one period
variable[indexes] = expression; //array-series
f(variable) = expression; //left-side function: dif(), pch(),
dlog(), log()
series ?; //show an overview series count from
all open databanks

Note: The series keyword known from versions prior to Gekko 3.0/3.1.x is now

superfluous. If you prefer to use it, you can still use series <2010 2020> x = ... ;

instead of x <2010 2020> = ... ;.

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

operator The operator can be d, p, m, q, mp, l or dl. See the 'Operators'

section below.

KEEP= If <keep=p> is used, Gekko will keep the growth rate of the left-

hand series intact after the period over which the series is updated.
For instance, x <2020 2025 m keep=p> = 100; will add 100 to x

over the period 2020-25. The keep=p setting makes sure that the

growth rate of x regarding 2026 and later already existing

501Gekko User Manual

T-T Analyse

observations in x is the same as before the update. Other keep

operators than p are not working yet.

LABEL= (Optional). Label (string) for the series, cf. DOC.

SOURCE= (Optional). Source (string) for the series, cf. DOC.

UNITS= (Optional). Units (string) for the series, cf. DOC.

STAMP= (Optional). Stamp (string) for the series, cf. DOC.

DYN (Optional). With this option, lagged dependent/endogenous
variables like x[-1] in the expression x = x[-1] + 1; accumulate

over time. Using <dyn> entails a speed penalty, so please do not

use if not needed (in this particular case, x ^= 1;, x <d>= 1; or

dif(x) = 1; could be used instead). Using the <dyn> local option,

or equivalently putting the expression inside a block series dyn

= yes; ... ; end; basically means that the expression is run n

times successively, for each observation in the time period.
Therefore, the following two are equivalent:

Using <dyn>
x <2021 2023 dyn> = x[-1] + 1; //the <dyn> option
implicitly runs the expression three times

Explicit
x <2021 2021> = x[-1] + 1; //these three lines are
equivalent to the use of <dyn> above
x <2022 2022> = x[-1] + 1;
x <2023 2023> = x[-1] + 1;

Starting from Gekko 3.1.7, statements like x = x[-1] + 1; must

have an indication of whether they are to be run dynamically or
not, cf. the page on dynamic statements for much more
information on such 'dynamics errors' and how to handle them.

If the endogenous variable does not appear lagged on the right-
hand side (like x[-1] or some other lag or lag function), running

the expression in one go over 2021-23 yields the same result as
running it in three tempi. Therefore, <dyn> is a waste of effort in

such cases. It is not disallowed to combine <dyn> with time-

operators like for instance ^ or <d>, or left-hand side functions like

dif(), but such combinations can be rather hard to understand.

MISSING= (Optional). With <missing = ignore>, SERIES will deal with

missing array sub-series and missing data values like GAMS,
treating them as zero for sums and mathematical expressions. The
following options are set locally and reverted afterwards: option

502 Gekko 3.1.x help system

T-T Analyse

series array calc missing = zero; option series data

missing = zero. See also the appendix page on missings.

variable Left-side name

expression Any expression

In addition to = (assignment), the following variants can also be used (see the

'Operators' section below):

· += add to existing

· -= subtract from existing

· *= multiply to existing

· /= divide from existing

· ^= set absolute time change

· %= set percent time change

· #= add to percent time change

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).
· Looping: with a list like for instance #m = a, b;, you may use y{#m} = 1/(1 +

x{#m}); to calculate ya from xa, and yb from xb.

Types of series

Normal series

Normal series look like the following example:

x = 100;

In that case, 100 is assigned to each observation in the global time period (cf. TIME).
Different values for each observation can be assigned like this:

time 2021 2023;
x = 100, 110, 90;
y = (10*10, 113-3, 88+2); //list with expressions must use
parentheses

The right-hand side of the x series in this example is a comma-separated sequence of

simple numbers. Beware that if you want to use a sequence of expressions, you must
use a list definition (and lists are enclosed in parentheses, cf. the y series above).

503Gekko User Manual

T-T Analyse

You may indicate a local time period in the <>-option field:

time 2020 2030;
x <2021 2023 label='Gekko-variable'> = 100, 110, 90;
series <2021 2023 label='Gekko-variable'> x = 100, 110, 90; //the
same: old syntax

The local time period overrules the global period. If the three values corresponded to
quarters for a quarterly series x, the statement x!q = 100, 110, 90; could be used.

Alternatively, one could change the global frequency first like this: option freq q;

x = 100, 110, 90;. In that case, you do not need to use the frequency indicator x!q

explicitly, since !q is added implicitly to x in all places where the frequency is not

stated. Note that the example above sets the label of x to 'Gekko-variable' (cf. also

DOC).

The right-hand side of a series variable can be any legal Gekko expression that
evaluates to a series, or anything that evaluates to a list of values of a suitable
length. For list values, you may repeat them using rep, for instance y = 1, 2 rep

2, 3; is equal to y = 1, 2, 2, 3;. The last value in a list may be indicated with rep

* which will repeat the item a suitable number of times, if the left-hand side is a

series. For instance: y <2021 2025> = 1, 2, 3 rep *;, where the series will get

values 1, 2, 3, 3, 3 over the period 2021-25.

Series names may be composed with {}-curlies, representing characters. For
instance:

time 2010 2012;
a = 100; b = 200; xa = 1; xb = 2;
%i = 'b';
#i = ('a', 'b'); //or: #i = a, b;
prt <n> {%i}, {#i}, x{%i}, x{#i}; //the elements of #i have 'x'
prepended

Result (the four PRT arguments are shown in different colors):

 b a b xb
 xa xb
 2010 200.0000 100.0000 200.0000 2.0000
 1.0000 2.0000
 2011 200.0000 100.0000 200.0000 2.0000
 1.0000 2.0000
 2012 200.0000 100.0000 200.0000 2.0000
 1.0000 2.0000

Array-series

504 Gekko 3.1.x help system

T-T Analyse

For an easier introductory guide on array-timeseries, see this page. The dimensions
of an array-series need to be stated when it is constructed. Afterwards, indexes are
used to refer to its elements:

x = series(2); //two dimensions
x[a, b] = 100; //or: x['a', 'b'] = 100;
x[a, o] = 200; //or: x['a', 'o'] = 200;

As seen, you may use the shorter x[a, b] instead of the more strict x['a', 'b'],

when the elements are simple names, for instance not containing blanks or special
symbols.

When dealing with timeseries given in some logical structure apart from time (for
instance input-output cells), name composition is often used, for instance using the
name convention xab and xao instead of x[a, b] and x[a, o]. Using array-series,

there are convenient summing functions like sum(#j, x[a, #j]), summing up the

second dimension of the array-series x (for instance, with #j = ('b', 'o'), the

index x[a, #j] will correspond to x[a, b], x[a, o]). The same kind of logic can

also be implemented with name-conventions, for instance sum(#i, xa{#j}), where

xa{#j} will correspond to xab, xao. Still, array-series can be very practical in order

to organize timeseries in some non-time structure/dimensions, and an array-
subseries like for instance x[a, b] can be used in the same way as a normal

timeseries xab. Also, with array-series there is no risk of name-collisions. For

instance, x[ab, c] is clearly different from x[a, bc], whereas a simple naming

convention will produce the same name, xabc. This can be remedied with, for

instance, underscores (x_ab_c vs. x_a_bc), but in that case why not just use array-

series?

Elements that are simple numbers represented as strings may have values added or
subtracted, for instance x[#a+1], where #a could be a list of strings representing

ages, like ('18', '19', ..., '80').

You may perform simple mathematical operations on array-series without indexes,
for instance p * x in the above example, being equivalent to p[#i, #j] * x[#i,

#j]. Such possibilities (array-series algebra) will be augmented.

Operators and left-side functions

The following tables presents the different operators:

Type Operat
or

Example Result Note

Absolute ^= x ^= 1200; x = x[-1] + 1200 Same as <d> or dif(x)

= 1200;. See also the

<dyn> option.

505Gekko User Manual

T-T Analyse

Relative %= x %= 3.5; x = x[-1]
*(1+3.5/100)

Same as <p> or pch(x)

= 3.5;. See also the

<dyn> option.

Absolute += x += 1200; x = x + 1200 Same as <m>. You can

also use -= to subtract

values.

Relative *= x *= 1.03; x = x*1.03 Similar to <q>. You can

also use /= to divide

with values.

Change
in
relative

#= x #= 2.1; x = x[-1]*(x0/x0[-
1] + 2.1/100)

Same as <mp>. See also

the <dyn> option.

In the formula regarding the # operator, x0 is the original timeseries, and x is the

new one. Alternatively, the so-called 'short' operators may be used:

Type Option Example Result Note

Absolute <d> x <d>= 1200; x <dyn> = x[-1] +
1200

Same as ^=. or dif(x) =

1200;. See also the

<dyn> option.

Relative <p> x <p>= 3.5; x <dyn> = x[-1]
*(1+3.5/100)

Same as %= or pch(x) =

3.5;. See also the

<dyn> option.

Absolute <m> x <m>= 1200; x = x + 1200 Same as +=. You can

also use -= to subtract

values.

Relative <q> x <q>= 3; x = x*(1+3/100) Similar to *=. You can

also use /= to divide

with values.

Change
in
relative

<mp> x <mp>= 2.1; x <dyn> = x[-1]
*(x0/x0[-1] +
2.1/100)

Same as #=. See also

the <dyn> option.

Log <l> x <l>= 5; x = exp(5) Same as log(x) = 5;.

Relative <dl> x <dl>= 0.035; x <dyn> = x[-1]
*exp(0.035)

Same as dlog(x) =

0.035;.

Left-side functions:

Type Option Example Result Note

Absolute dif()
diff()

dif(x) = 1200; x <dyn> = x[-1] +
1200

Same as ^= or <d>=. See

also the <dyn> option.

506 Gekko 3.1.x help system

T-T Analyse

You may use diff() as
synonym.

Relative pch() pch(x) = 3.5; x <dyn> = x[-1]
*(1+3.5/100)

Same as %= or <p>=. See

also the <dyn> option.

Log log() log(x) = 5; x = exp(5) Same as <l>=.

Relative dlog() dlog(x) =
0.035;

x <dyn> = x[-1]
*exp(0.035)

Same as <dl>=.

Examples, normal series

Create a deflated price index (not an existing variable):

time 2010 2013;
create p1, p, rp1; //only necessary in sim-mode
p1 = 1.00, 1.12, 1.15, 1.14;
p = 1.00, 1.02, 1.04, 1.06;
rp1 = p1/p;
prt rp1;

Create a series with a given growth rate:

create x; //only necessary in sim-mode
time 2011 2013;
x <2010 2010> = 1; //uses a local time period
x %= 2.5; //uses x is set to grow with 2.5 percent
annually
x <p>= 2.5; //same as above, alternative syntax
pch(x) = 2.5; //same as above, alternative syntax
prt x; //grows with 2.5% p.a.

Change compared to the reference bank:

create x; //only necessary in sim-mode
time 2011 2013;
x = 1, 2, 3;
clone; //Ref bank made as copy of Work
bank
x <q> = 10; //or: x *= 1.10;
prt <n r m q> x; //level, ref-value, difference,
%difference
prt <n> x, @x, x-@x, 100*(x-@x)/@x; //same info, done manually

In the last PRT, @x is short for ref:x, that is, x from the Ref databank.

507Gekko User Manual

T-T Analyse

To set for instance a growth rate equal to another growth rate, you can use the <p>
operator:

y <p> = pch(x); //or: y %= pch(x), or: pch(y) = pch(x), or: y =
y[-1] * x/x[-1]

To change only one period, you may use:

tg[2020] = %v; //%v is a scalar value

This will only set the 2020-value, and will work regardless of what the global sample
might be. Used like this, at the same time stating a local period inside the <>-option
field is not legal (or meaningful). Note that when using SERIES with []-brackets like
this, a scalar value (or expression) is expected on the right-hand side of the
equation. The above statement is functionally equivalent to the following:

tg <2020 2020> = %v

The $-operator can be used to "control" expressions, like an implicit IF-statement.
For instance:

reset;
#m = a, b; %v = 10;
y1 = 3 $ ('b' in #m and %v == 10);
y2 $ ('b' in #m and %v == 10) = 3;

In the y1-statement, y will be 3 if the condition is true (if 'b' is a member of #m and

%v has the value 10), and else y will obtain the value 0. In the y2-statement, the

whole statement is skipped if the condition is false, and in that case y will not exist at

all. Note this conceptual difference regarding $-condition to the left of or to the right
of =.

The $-operator can be used to switch between values inside a period, for instance:

reset;
time 2001 2005;
x = 10, 10, 11, 12, 10;
y1 = 110 $ (x == 10) + 111 $ (x <> 10);
y2 = iif(x, '==', 10, 110, 111);

The y1-statement illustrates the use of the $-operator for switching, and y1 will

contain the numbers 110, 110, 111, 111, 110 (the 10's are replaced with 110, and
all other values are replaced with 111). The last y2-statement illustrates how to

perform the same operation using the iif() function. The operation could alternatively
be performed with FOR and IF statements, looping explicitly over each period, but
using the $-operator or the iif() function is much more convenient here.

508 Gekko 3.1.x help system

T-T Analyse

Adding 1000 to a series jx can be done with the + operator, or the <m> option:

jx <2010 2010> += 1000;
jx <2010 2010 m> = 1000; //same result

Instead of updating with raw numbers, you may use scalar variables instead (in this
case, you have to use parentheses to indicate the list, because the elements are not
simple numbers):

%f1 = 0.02;
tg <2010 2012> += (%f1, 2*%f1, 0.01);

Using a list #m:

time 2010 2012;
#m = x1, x2; //or: ('x1', 'x2')
{#m} = 100, 80, 110;
{#m} <2010 2012> *= 1.02; //x1 and x2 become 2% larger, could also
use <q> option
prt {#m};

Note that 1.02 is implicitly used for all three periods (you do not need to write
(1.02, 1.02, 1.02)). Note also the {}-curlies in {#m} = (100, 80, 110);. Without

the curlies, #m would become a list of the three values 100, 80, 110, which is not
the intention. In <2010 2012> {#m} *= 1.02;, without the curlies, the expression

would fail, since a list does not implement the *= operator. Finally, in prt {#m};,

without the curlies, Gekko would print the strings 'x1' and 'x2', not the series x1 and

x2.

If you use <keep=p>, Gekko will keep the same growth rate in the data, after the

time period where the variable is changed.

y <2007 2007 m keep=p> = 0.01;

This way, y has 0.01 added in 2007 (because of the <m> operator), and in all the

subsequent years of data, the old growth rate in y is preserved (which is what the
keep option does). Note that keep=p updates the series outside of the indicated

period.

In sim-mode, you must first create a non-existing variable, but if the variable name
starts with 'xx', it is automatically created:

xxvar = 27; //works in sim-mode without prior create

509Gekko User Manual

T-T Analyse

If convenient, you may also use wildcard lists:

{'j*'} <2010 2010> = 0;

This sets all variables in the Work databank beginning with j to 0, for the given

period.

You may set timeseries in other databanks than Work, for instance:

bank1:x = 100;

This will set the variable x to 100 in the bank bank1 (cf. the OPEN statement),

provided that the bank is unlocked. If you need to change timeseries in the reference
databank, you may use the @-indicator for convenience:

@fy *= 1.03;
<q> @fy = 3; //same

This will increase the variable fy in the Ref databank with 3% over the global sample

period.

Examples, array-series

Array-timeseries comply rather tightly with GAMS syntax, to interface more naturally
with GAMS files (gdx). But array-timeseries have many other uses, for instance when
downloading multi-dimensional data, or reading data from px-files (PC-Axis), cf. the
IMPORT statement.

An array-series can be thought of as a super-series, containing sub-series in one or
more dimensions, where these sub-series are accessed with (lists of) simple names.
For instance, x may be a one-dimensional array-series, containing the sub-series

x[a] and x[b]. These sub-series are like any other normal timeseries, just stored

inside the array-series. In this sense, x can be thought of as a kind of special map,

allowing multiple dimensions, and designed for series access. In older versions of
Gekko (prior to 2.3.1), such dimensions would typically be handled by means of
naming conventions, for instance using normal series x_a, and x_b instead of x[a]

and x[b].

You may use single quotes for element access, so x[a] = x['a'], x[b] = x['b'], etc.

Using quotes is the strict form, and using quotes, the element names may include
any characters, for instance x['ab ? x22'].

https://www.gams.com/
https://www.scb.se/en/services/statistical-programs-for-px-files/

510 Gekko 3.1.x help system

T-T Analyse

The following is an example of the use of array-series. In the example, #i and #j are

lists of strings containing the sets of names spanning the dimensions, in this case a 3
x 3 structure [#i, #j] like this:

[a, a] [a, b] [a, o]
[b, a] [b, b] [b, o]
[o, a] [o, b] [o, o]

The last part of the example below illustrates how to use default sets (via the map
#default). In order for default sets to work, the array-series must contain domain

information.

#i = a, b, o; //or: ('a', 'b', 'o')
#j = a, b, o;
#j0 = a, o;
x = series(2); //two dimension
p = series(2); //two dimensions
x[#i, #j] = 100; //all elements = 100
p[#i, #j] = 2; //all elements = 2
prt <n> x; //prints all elements of
the array-series x, the <n> avoids printing percentage growth
prt <n> p * x; //same as p[#i, #j] *
x[#i, #j], simple array-series algebra is possible
prt <n> x[a, #j]; //or: x['a', #j], prints
the elements with 'a' in the first dimension
prt <n> x[#i, #j]; //prints all elements,
similar to prt x;
y = sum((#i, #j), x[#i, #j]); //the sum of all
elements, y = 900
z = sum(#j, x[a, #j] $ (#j in #j0)); //the sum of those #j
that are in #j0 (that is, middle column 'b' is skipped), z = 200
x.setdomains(('#i', '#j')); //domains set, necessary
for #default logic
p.setdomains(('#i', '#j')); //domains set, necessary
for #default logic
#default = map(); //#default is a map type
#default.#j = #j0; //chose elements of #j to
print
prt x; //will omit printing
middle column 'b' in set #j
prt <split> x; //splits the output
prt x.getelements(); //elements belonging to
each of the 2 dimensions
prt x.subseries('elements'); //element combinations
for each of the 9 sub-series

The summing up with sum() is sometimes called a 'roll-up operation', aggregating
rows/columns, whereas for instance x[a, #j] would be a so-called 'slice operation'.

The in-built functions getelements() and subseries() can be practical if you need

to know more about the elements of the sub-series of a given array-series x (for

instance, the sub-series x[a, b] has element a in the first dimension, and element b

in the second dimension).

511Gekko User Manual

T-T Analyse

You may $-condition on a variable that reflects sparsity in two or more dimensions,
too (you may for instance have 193 countries, where only a subset of all
combinations trade with each other). The following example illustrates two-
dimensional sparsity:

x = series(2);
x[a, 10] = 100; x[a, 11] = 101; x[b, 10] = 102; x[b, 11] = 103;
e = series(2);
e[a, 10] = 0; e[a, 11] = 1; e[b, 10] = 1; e[b, 11] = 0; //sparsity
#e = (('a', '11'), ('b', '10')); //sparsity
#i = ('a', 'b');
#j = ('10', '11');
y1 = sum((#i, #j) $ (e[#i, #j]), x[#i, #j]); //203
y2 = sum((#i, #j) $ (#e[#i, #j]), x[#i, #j]); //203

In y1, the condition is on the array-series e, whereas in y2 it is on the nested list #e

(in GAMS, a nested list would correspond to a multidimensional set). You may
alternatively move the dollar condition to the right, for instance y1 = sum((#i, #j),

x[#i, #j] $ (e[#i, #j]));. Note that array-series are a bit more lenient regarding

the user of integers, which are automatically interpreted as their corresponding
strings. Also beware regarding the array-series example that there are settings that
makes it possible to omit stating the 0 combinations for e, if these are numerous

(option series array calc missing = zero), cf. this page.

Regarding domains, it is easy to remove a single element from a list of strings with
for instance #i.remove(%s), where %s is a string. To remove several elements from a

list of strings, you may use #i - #j. Hence these $-conditionals can be used for easy

removal/skipping of elements:

z = sum(#j, x['a', #j] $ (#j in #j.remove('b')));
z = sum(#j, x['a', #j] $ (#j in #j - ('b', 'o')));

To print an array-series x1, use either:

disp x1; //shows info
regarding dimensions, elements, etc.
disp x1[a, b]; //shows info for
the the sub-series
prt x1; //will print out
all elements
prt x1[#i, #j]; //prints out the
elements in lists #i and #j (combined)

If you need non-existing array-timeseries elements to be implicitly understood as
having value 0, you can use option series array calc missing = zero;. In that

case, you may use for instance sum(#j, x1[#i, #j]), even if some of the

combinations (sub-series) of #i and #j do not exist in x1.

512 Gekko 3.1.x help system

T-T Analyse

In general, you may print or plot an array-series without indicating the dimensions.
You can assign lists to array-series dimensions and afterwards control which elements
are printed/plotted via a special map with the name #default. This can be practical if

you typically only want to see some of the elements of an array-series, but not all.

#s = ('e1', 'e2');
a = series(1); //array-series with 1 dimension
a[#s] = 100; //sets a[e1] = a[e2] = 100
a.setdomains(('#s',)); //assigns #s to dimension 1 of the
array-series
p <n> a; //prints a[e1] and a[e2]
#default = map(); //defines map #default and puts it
in the global databank
#default.#s = ('e1',); //or in one line: #default = (#s =
('e1',))
p <n> a; //now, because of #default, only
a[e1] is printed

It can often be practical to put the #default map into the Global databank (that is:

global:#default = ...), so that it is generally available irrespective of potential

OPEN or READ statements. The #default map shown above will restrict all

printing/plotting of array-series that have #s assigned to a dimension as its domain.

If you need to put "normal" timeseries into an array-series or vice versa (or if you
are interfacing with multidimensional GAMS/gdx data), you can use the following
example:

reset;
x1 = 1; x2 = 2; //create some data here
index * to #m; //put all series names into the list #m
x = series(1); //define an array-series with 1 dimension
x[#m] = {#m}; //put the normal series into the array-
series
prt x; //print the 2 elements of x, try also
"disp x;"
delete x1, x2, #m; //delete everything except x
#m = x.getelements()[1]; //get the elements of dimension #1 of x
{#m} = x[#m]; //recreate the normal series from the
array-series
prt x1, x2; //print the normal series

Alias names

It is possible to assign one variable name to another via a special list with the name
#alias. This can be practical if, for instance, the users are used to one kind of

variable names, but are for instance using a model with another kind of variable
names.

513Gekko User Manual

T-T Analyse

option interface alias = yes; //this option must be set
global:#alias = #(listfile alias); //reads alias.lst from
file
c = series(1); c[a] = 100; c[b] = 200;
y = 300;
prt x1, x2, x3;

The #alias list could look like the following file:

--------------- alias.lst --------------------
x1; c[a]
x2; c[b]
x3; y
--

This file is read as a list of lists, equivalent to #alias = (('x1', 'c[s]'), ('x2',

'c[b]'), ('x3', 'y'));. The print prints out x1, x2, and x3 as 100, 200, and 300,

respectively, even though the 'real' values are stored inside c[a], c[b], and y.

Details, x = x[-1] + ... type, and <dyn> option

In Gekko 3.0, series operations are handled more vector-like than in Gekko 2.x. This
affects the use of lags in expressions with lagged dependent/endogenous variable:

time 2021 2024;
x = 100;
time 2022 2024;
x = x[-1] + 1; //ERROR: will fail with a dynamics error
x <dyn = no> = x[-1] + 1; //result: 101, 101, 101
x <dyn> = x[-1] + 1; //result: 101, 102, 103

The last statement is probably easy enough to understand, but the second-last may
seem strange. See much more on this, including illustrations, on the dynamic
statements page. There are three easy ways of getting accumulations to work without
using the <dyn> tag:

time 2021 2024;
x = 100;
time 2022 2024;
x ^= 1; //result: 101, 102, 103
x <d>= 1; //result: 101, 102, 103
dif(x) = 1; //result: 101, 102, 103

Still, in some cases it my be practical to be able to use the formulation x = x[-1] +

1 and have it accumulate, for instance if the equation originates from a model

514 Gekko 3.1.x help system

T-T Analyse

equation. For such cases, either use the local option <dyn>, or alternatively use a

BLOCK like block series dyn = yes; ... ; end;. Example:

time 2021 2024;
x = 100;
time 2022 2024;
x <dyn> = x[-1] + 1; //result: 101, 102, 103
block series dyn = yes;
 x = x[-1] + 1; //result: 101, 102, 103
end;

To guard against errors of this type where the user forgets to use <dyn> or a block

series dyn on an expression like x = x[-1] + 1, from version 3.1.7 and onwards,

Gekko will check this for the presence of lagged dependent/endogenous variables on
the right-hand side and issue a 'dynamics error' if an expression like x = x[-1] + 1

or similar is used without considering the dynamics question. As stated above, there
is much more info on this on the dynamic statements page.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

In addition to operators += and *=, you can also use their inverse counterparts: -=

and /=. So x -= 2; is the same as x = x - 2;, and x /= 2; is the same as x = x /

2;. This is standard in most computer languages. But please note that x ^= 2; is not

the same as x = x ^ 2;, that is, x in the second power.

If any of the right-hand side variables are not found (searching depends upon mode),
the statement will exit with an error, unless you set option series array calc

missing = ...; or option series normal calc missing = ...;. If some of the

variables have missing values (shown as 'M' when printing), the left-hand side will
become missing as well (for the periods affected).

You may use m() to indicate a missing value, for instance y = m();.

Regarding $-conditions to the right of =, these always evaluate to 0 if the condition is

false. On the other hand, regarding a $-condition to the left of =, the whole

statement is skipped if the condition is false. Note however that such skipping does
not apply intra-series regarding $ to the left of =. So in a statement like y $ (x >

100) = 2 * x; the y series will attain the value 0 in the periods where x <= 100,

and the value 2 * x otherwise. If you need y to remain untouched when x <= 100,

you may instead use y = iif(x, '>', 100, 2 * x, y);, cf. the iif() function.

515Gekko User Manual

T-T Analyse

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko array-series can be though of as a nested dictionary/map, cf. this:

· Gekko: m = series(2); m[a, x] = 1; m[a, y] = 2; m[b, x] = 3; m[b, y] =
4; prt m[a, x];

· R: nested named list, m <- list(a = list(x = 1, y = 2), b = list(x = 3, y

= 4)); print(max); print(m[['a']][['x']]);. The elements here are

numbers and not sub-series, but the idea is similar.
· Python: nested dict.

Related options

OPTION freq = a; [a|q|m|d|u]
OPTION databank create auto = no; [yes|no]
OPTION series array calc missing = error; [error|m|zero]
BLOCK series dyn = no; [yes|no]. This option can only be set using a block
OPTION series dyn check = yes; [yes|no]
OPTION series normal calc missing = error; [error|m|zero]

Related functions

For array-series: getdomains(), subseries().

Related statements

CREATE, DOC, PRT, VAL, EXPORT<gcm>, EXPORT<flat>

516 Gekko 3.1.x help system

T-T Analyse

4.3.77 SHEET

You can transfer variables to Excel by means of the SHEET statement. SHEET has the
same syntax as the PRT, PLOT and CLIP statements, including the use of operators.

Guide: Excel printing
For an easier introductory guide on Excel printing, see this page.

You may also use SHEET to import data from individual cells via SHEET<import>. The
sheet cells can be converted to timeseries, but can alternatively be loaded as a list,
map or matrix for further processing (see examples).

Per default, SHEET uses an internal 'engine' to read and write Excel files. This engine
does not depend upon Excel being installed. In order to read the older .xls format,
you may use OPTION sheet engine = excel (cf. OPTION).

Excel note: if you encounter "dates" with integer numbers larger than 20000, this
may be because Excel shows the dates as numbers rather than dates. You may try
to change the format of the date cells: right-click, "Format cells", "Date".

For export of timeseries, SHEET uses the same internal component as PRT, so
regarding operators and other details, also see the PRT help page.

Syntax

sheet < period IMPORT operator TITLE=... STAMP=... SHEET=...
 CELL=... DATES=... NAMES=... COLORS=... ROWS COLS APPEND=...
 LIST MAP MATRIX MISSING COLLAPSE=... DATEFORMAT=... DATETYPE=...
BANK=... REF=... MISSING=... > variables FILE=... ;

period (Optional). Local period, for instance 2010 2020,

2010q1 2020q4 or %per1 %per2+1.

IMPORT (Optional). Use sheet<import> to import matrix-like

data from xlsx, csv or prn files, cf. example at the

end of this help topic (if you need to import data that
is arranged as timeseries in labelled rows/columns,
see IMPORT). You may indicate the file type like for
instance sheet<import matrix csv> (default is

xlsx). The prn type is essentially a file with blank-

separated numbers.

SERIES (default): in this case, the variables must
be a comma-separated list (or a list like {#m}). With

517Gekko User Manual

T-T Analyse

this option, you may use SHEET= (select the

sheet), CELL= (point to the starting cell),

ROWS/COLS (select the orientation of the

data/timeseries), and FILE (the filename). After this,

Gekko will read the data into the variables. If the
orientation is row-wise (which is default), Gekko will
use the n x k cells starting at the CELL location,
where n is the number of variables, and k is the
number of time periods. See example under
'Examples' below.

LIST, MAP or MATRIX: You can state one collection
name like for instance #m. Additionally, you may use

SHEET=..., CELL=..., ROWS/COLS (select the

orientation of the data, COLS is transposed), and

FILE (the filename). After this, Gekko will read the

data into the given collection:
· List: The data is loaded as a list of rows, where

each row is a sub-list of elements representing the
columns. The cells can be of any type, including
null (empty). For instance, #m[2][3] will represent

row 2, column 3 of the sheet (that is, the cell C2).

See example under 'Examples' below.
· Map: The data is loaded as a map, where the keys

represent the cells. The cells can be of any type,
including null (empty). For instance, #m['%c2'] or

#m.%c2 will represent the cell C2 (stored as the

scalar %c2).

· Matrix: The data is loaded as a matrix, where all
the cells must be of value type. If you use the
MISSING option, any empty cells will be filled with

missing values (M), otherwise they are filled with
0's. See example under 'Examples' below.

· List and map: note that string cells will be stripped
(that is, blanks at beginning and end are
removed).

· List and map are [New in 3.0.6].

operator (Optional). 'Long': abs, dif, pch, gdif, or 'short': n,

d, p, dp, m, q, mp, r, rd, rp, rdp

TITLE (Optional). A title for the sheet. You can use
HEADING as alias.

STAMP (Optional). If 'yes', a time stamp is inserted at the
top.

518 Gekko 3.1.x help system

T-T Analyse

variables Name of the variable(s) printed. Several variables
can be printed at once using, var1, var2 You may
also use lists or expressions.

FILE (Optional). SHEET will optionally create an Excel file
silently without opening Excel (the filename will be
[filename].xls or [filename]xlsx, and is put into the
Gekko working folder)
Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path

\gekko\bank.gbk. Filenames containing blanks and

special characters should be put inside quotes.
Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk),

and "zip paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on

filenames here.

SHEET The name of the sheet for your data, for instance
'Data1'. Gekcel: not supported, instead select the

sheet with VBA code like this:
Worksheets("Data1").Activate.

CELL The cell where data starts, for instance 'C4', default

is 'A1'. Gekcel: not supported, instead use VBA to

offset cells.

DATES [yes|no]: If yes, dates are shown (is yes per default)

NAMES [yes|no]: If yes, names are shown (is yes per

default)

COLORS [yes|no]: If yes, colors are shown (is yes per

default). Gekcel: not supported.

ROWS [yes|no]: If yes, the timeseries are printed in rows

(default), use the COLS option to transpose.

COLS [yes|no]: If yes, the timeseries are printed in

columns (transposed).

APPEND [yes|no|ifexist]: If yes, the table is appended to an

existing Excel workbook. If no, a new workbook is

always created (default). If ifexist, the table is

appended to an existing Excel Workbook if the file

519Gekko User Manual

T-T Analyse

exists, otherwise a new workbook is created. Gekcel:
not supported. [ifexist is new in Gekko 3.1.9].

MATRIX [yes|no]: Used with SHEET<import> to import a
matrix, see example below. Gekcel: not supported.

MISSING [yes|no]: Used with SHEET<import matrix>. Cells
with no content are set to missing instead of 0.

COLLAPSE= (Optional). This option will collapse quarterly or
monthly data into annual averages or totals. Use
sheet<collapse>, sheet<collapse=avg> or

sheet<collapse=total>. You may set the collapse

globally, cf. option sheet collapse = [avg|total|

none];. Beware: this only applies for option sheet

freq = pretty; (which is not default).

DATEFORMAT=
DATETYPE=

(Optional). These options control the date format for
.xlsx and .csv files, and for the use of SHEET in
Gekcel. DATEFORMAT can be either 'gekko' (default,

for instance 2020q3 or 2020m11) or a format string

like 'yyyy-mm-dd', and the latter may contain a

first or last indicator, for instance 'yyyy-mm-dd

last', which indicates for quarterly, monthly or

weekly data that the last day of the
quarter/month/week is used. DATETYPE can be either

'text' or 'excel'. In the former case, the dates are

understood as text strings (for instance '2020q3' or

'2020-09-30' for a quarterly date), and in the latter

case (not relevant for .csv files), the date is
understood as an Excel date, which basically counts
the days since January 1, 1900. This number would
correspond to 44104 for the date 2020-09-31, and
can be shown in Excel in different ways depending
upon date format settings, language settings, etc.,
but the internal number itself is unambiguous. When
using SHEET in Gekcel, using DATETYPE='excel' is

advised for consistency. [New in 3.0.5].

BANK (Optional). A bankname where variables are looked
up. For instance sheet <bank = b1> x; is

equivalent to sheet b1:x;. See also <REF = ...>.

These options can be convenient instead of opening
and closing banks.

REF (Optional). A bankname where reference variables
are looked up. For instance prt <bank = b1 ref =

520 Gekko 3.1.x help system

T-T Analyse

b2 m> x;" uses banks b1 and b2 for the multiplier.

See also <BANK = ...>. These options can be

convenient instead of opening and losing banks.

MISSING= (Optional). With <missing = ignore>, SHEET will

deal with missing array sub-series and missing data
values like GAMS, treating them as zero for sums
and mathematical expressions, or skipping the
printing of a sub-series if it does not exist. The
following options are set locally and reverted
afterwards: option series array print missing =
skip; option series array calc missing =

zero; option series data missing = zero. See

also the appendix page on missings.

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

You may use a 'operator' to indicate which kind of data transformation you would like
on your variables, for instance sheet<d>, sheet<q>, sheet<pch>. As in the PRT

statement, you may also use element-specific operators (for instance sheet unemp,

gdp<p>;). See the PRT statement regarding the use of operators.

Examples

An example could be:

sheet x1, x2;

Shows the two variables in Excel (if Excel is installed). Or more advanced:

sheet x1 'GDP', x2 'Unemployment' FILE = scenarioA;

This produces the file scenarioA.xlsx silently. SHEET produces a table in Excel, with

variables running downwards and periods running rightwards. Missing values are
converted to missing values in Excel (#N/A). SHEET should work regardless of Excel

macro settings, decimal separator etc., on Excel 2003 and upwards.

To illustrate the options, consider this example:

521Gekko User Manual

T-T Analyse

sheet <m SHEET='Raw' CELL='d1' DATES=no NAMES=no COLORS=no
COLS=yes APPEND=yes> fm/fy 'Imports', fe/fy 'Exports'
FILE=adam.xlsx ;

This will print an absolute multiplier (operator m) of the two expressions (with labels),

to the Excel workbook adam.xlsx (appending to the pre-existing file). The data will

be put into the sheet Raw, in cell D1, without dates, labels and colors, and with the

data running downwards in columns.

To illustrate how to transfer raw cell data in an out of Excel, consider this example:

reset; time 2001 2002;
xx1 = 1001, 1002;
xx3 = 3001, 3002;
sheet <2001 2002 sheet='test' cell='C5' dates=no names=no
colors=no> xx1, xx3 file=testing;
reset; time 2001 2002;
sheet <2001 2002 import sheet='test' cell='C5'> xx1, xx3
file=testing.xlsx;
prt xx1, xx3;

The first SHEET statement will produce the file testing.xlsx, with the sheet test

inside, where the data is starting at the cell C5. Note that you need DATES=no and

NAMES=no to only get the raw data. The data looks like this (starting at cell C5):

1001 1002
3001 3002

The last SHEET statement imports data from the sheet test from testing.xlsx, and

puts the cells back into the variables (timeseries) xx1 and xx3. To import the Excel

data from the previous example into a matrix instead, you may use this:

sheet <import matrix sheet='test' cell='C5'> #m file=testing.xlsx;
prt #m;

You may use EXPORT to export a matrix to Excel, export <xlsx> #m file =

m.xlsx;.

If you need to perform custom transformations of an Excel spreadsheet, you may load
the cells as a list or map, for further processing. Consider this spreadsheet
(data.xlsx, download here).

Name Share jan-20 feb-20 mar-20

Total 100 100.4 100.4 100.4

Total imports 45 104.2 103.1 101.4

011 Meat 10 100.6 99.9 101.7

022 Milk 5 97.4 100.1 98.9

http://www.t-t.dk/gekko/examples/data.xlsx

522 Gekko 3.1.x help system

T-T Analyse

112 Beverages 20 100.2 100.1 100.3

121 Tobacco 10 101.0 97.6 97.2

Total exports 55 99.6 99.6 99.5

011 Meat 20 99.7 98.6 94.6

022 Milk 10 100.0 98.9 99.2

112 Beverages 15 101.0 101.1 101.1

121 Tobacco 10 100.4 101.5 101.3

The dates shown are Excel dates, representing January, February, and March 2020,
respectively (Excel stores these internally as the numbers 43831, 43862, and 43891
= days since January 1, 1900). If the frequency is set to monthly, Gekko will convert
these Excel dates to the Gekko dates 2020m1, 2020m2, and 2020m3. We wish to

extract the rows with three-digit codes as timeseries with suitable names, for
instance "011 Meat" should becomes pm011 if found under imports, else pe011, and in

addition we with to extract the fixed shares as for instance s_pm011.

In the above sheet, all rows have the same number of columns, but in contrast to a
matrix, this is not guaranteed. The following program loops through the rows and
extracts the data (including series labels):

option freq m; //so that Excel dates are read as months
time 2020 2020;
sheet<import list> #m file=data.xlsx;
%rows = #m.length(); //number of rows
%cols = #m[1].length(); //number of cols
%t1 = date(#m[1][3]); //start date
%t2 = date(#m[1][%cols]); //end date
%ie = 1; //imports or exports
for val %i = 1 to %rows; //loop the rows
 if(#m[%i][1].index('total exports') == 1); %ie = 2;
end; //exports type
 if(#m[%i][1].length() >= 3); //name with three chars or more
 %code = #m[%i][1][1..3]; //%code = first three characters
 if(%code.isnumeric() == 1); //if these chars are digits
 #numbers = #m[%i][3..]; //fetch the row cells into a list
 %namestart = 'pm';
 %label = 'Imports, ';
 if(%ie == 2);
 %namestart = 'pe';
 %label = 'Exports, ';
 end;
 %name = %namestart + %code; //name like 'pm011'
 {%name} <%t1 %t2 label = %label + #m[%i][1]> =
#numbers; //put the data into a series pm011 = ...
 s_{%name} = timeless(#m[%i][2]); //shares, using timeless
series
 end;
 end;
end;

disp pm011;

523Gekko User Manual

T-T Analyse

Instead of #m[%i][%j], you may alternatively use #m[%i, %j], but beware that a

range like #m[%i1..%i2, %j] is not the same as #m[%i1..%i2][%j], cf. the

explanations here. A map containing the cells could also have been used, but in this
case, a nested list is easier. Instead of timeless series like s_pm011, values like %

s_pm011 could have been used. Result:

 2020m1 2020m2 2020m3
pm011 100.5700 99.9485 101.7121
pm022 97.3908 100.1147 98.9306
pm112 100.2375 100.1348 100.2966
pm121 100.9756 97.6316 97.1969
pe011 99.7357 98.5820 94.6168
pe022 99.9656 98.8769 99.1864
pe112 100.9782 101.1213 101.1087
pe121 100.4187 101.4881 101.3085
s_pm011 10.0000 10.0000 10.0000
s_pm022 5.0000 5.0000 5.0000
s_pm112 20.0000 20.0000 20.0000
s_pm121 10.0000 10.0000 10.0000
s_pe011 20.0000 20.0000 20.0000
s_pe022 10.0000 10.0000 10.0000
s_pe112 15.0000 15.0000 15.0000
s_pe121 10.0000 10.0000 10.0000

Note

The EXPORT (or WRITE) statements can also output series as an Excel workbook, but
cannot append to an existing spreadsheet. SHEET, however, has more options to
control the workbook. Gekko will produce a macro/vba-enabled spreadsheet, if the
file extension is .xlsm.

In Excel 2007 and newer, you can click on a cell inside the table and select 'Insert'
and 'Line' from the 'Charts' ribbon, and a chart will be produced (with the correct
legend, labels etc.).

Related options

OPTION sheet collapse = none; [avg|total|none]; //show aggregates for quarters and
months
OPTION sheet cols = no;
OPTION sheet engine = internal; //use 'excel' for the older .xls format
OPTION sheet freq = simple; [pretty|simple]; //for quarters and months
OPTION sheet mulprt abs = yes;
OPTION sheet mulprt gdif = no;
OPTION sheet mulprt lev = no;
OPTION sheet mulprt pch = no;

524 Gekko 3.1.x help system

T-T Analyse

OPTION sheet mulprt v = no;
OPTION sheet prt abs = yes;
OPTION sheet prt dif = no;
OPTION sheet prt gdif = no;
OPTION sheet prt pch = no;
OPTION sheet rows = yes;
OPTION interface excel modernlook = yes; [yes|no]
OPTION interface excel language = danish; [danish|[empty]]

Related statements

 CLIP, PRT, PLOT, EXPORT

525Gekko User Manual

T-T Analyse

4.3.78 SIGN

This statement prints out information regarding the model signature in the model file
(.frm), and the 'true' hash code corresponding to the model file (and whether they
are identical). You can use the SIGN statement to obtain the hash code for signing a
new (or changed) model. (If the model is unsigned, click the link 'more' to obtain a
comment line with signature that can be copy-pasted into the .frm file.)

The hashcode is a kind of check-sum or fingerprint regarding .frm files. The
signatures are technically so-called MD5 hashes, and can be put into .frm file as
commentaries (for example: // Signature: fp88RzyZfJNaoTi3I4X3Ww). This string

of 22 characters and digits (note: the hash code is case-sensitive!) identifies a
specific model file, so altering the model file will result in a different hash code. The
motivation behind the signatures is two-fold: (a) To be able to make sure that an
official model version has not accidently been changed, and (b) The signatures are
used to identify models for caching (faster loading). When calculating the signature
(hash code), empty lines and comment lines are ignored (except for comments
containing model block identifiers ###), so you may insert empty lines or comments

any way you like in the .frm file and preserve the signature (any variable list after
the VARLIST; or VARLIST$ tag will be ignored in the hashcode, too). But changing the

equations (FRML) in any way will result in a new hash code. The hash code is
technically 128 bits, and this means that the probability of two different model files
having the same hash code is 2^(-128) = 2.9E-39 (that is, effectively zero).

Syntax

sign;

Examples

To obtain a signature for a (unsigned) model loaded with the MODEL statement, type:

sign;

You will get an output similar to this:

No signature was found in model file (more)
 - Signature in model file : [not found]
 - True model file hash code : fp88RzyZfJNaoTi3I4X3Ww

Try clicking the 'more' link to obtain a line similar to this:

 // Signature: fp88RzyZfJNaoTi3I4X3Ww

526 Gekko 3.1.x help system

T-T Analyse

This line can be copy-pasted into the .frm file (typically at the top), which signs the
mode. After this, you will be told that the model signature is OK when loading the
(unaltered) model with the MODEL statement.

Note

You may put other meta-information into the model file (.frm). As of now, Info,

Date, Freq and Signature fields are supported. For instance:

// Info: Model used for forecasting 2012-2030
// Date: 7-11-2012 15:37:00
// Freq: q
// Signature: fp88RzyZfJNaoTi3I4X3Ww

Gekko will complain if this format deviates, for instance the Info field is to be written

with capital 'I', with no blank before the colon, and one blank after the colon. This
rigorousness regarding form is to make it easy to spot the information in different
.frm files. The Info and Date fields will be displayed when loading the model (MODEL

statement).

Related statements

MODEL, SIM

527Gekko User Manual

T-T Analyse

4.3.79 SIM

SIM solves the model (cf. MODEL) dynamically, i.e. lagged endogenous variables use
simulated values. The simulated values are placed in the first-position bank, thereby
overwriting previous values of the endogenous variables. The default solving method
is Gauss-Seidel. If Gauss-Seidel poses problems, for instance because of bad values
in some of the variables, you may try setting option solve failsafe = yes;. This

will pinpoint the exact time period and variable that first produces an invalid value.
Failsafe has a small speed overhead. For harder problems, you may need to use the
Newton method.

You may solve goals/means by indicating these with the ENDO/EXO statements. The
Newton method is used in that case, but please note that you need to use sim<fix>

in order for such goals/means to bind. When goals are removed later on (UNFIX
statement), the solve method reverts to Gauss-Seidel.

SIM may also solve a model with leaded endogenous variables. The Fair-Taylor ('fair')
method is used in that case, or you may use the more powerful Newton-Fair-Taylor
(called 'nfair' in Gekko). See the option solve forward method =

Gekko will try to calculate some reasonable starting values for the endogenous
variables, by means of looking at lagged values regarding these. If you wish to use
the current (non-lagged) values as starting values, you should use option solve

data init = no;. For static models (for instance CGE models) that are simulated

over a single time period, init = no should be used.

Syntax

sim < period FIX STATIC RES AFTER >;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

AFTER sim<after> calculates three kinds of variables: (a) those designated

with a formula beginning with ‘Y’, (b) all auto-generated variables of J-
and Z-type, and (c) all table variables (variables defined after the
AFTER; or AFTER$ line in a model file).

Since Y-type variables are typically also J- and Z-variables, one can
think of sim<after> as a way to compute all reversed J- and Z-

variables independently of the SIM statement (the SIM statement
computes these after simulation), in addition to computing table
variables. See the MODEL statement for more on J- and Z-variables.

528 Gekko 3.1.x help system

T-T Analyse

On a well-specified model, reading a historical databank, and issuing a
sim<after> statement on the historical period should ideally make it

possible to simulate on the historical period and replicate the
endogenous variables.

FIX Tells Gekko to enforce any goals/means stated by the ENDO/EXO
statements. It is mandatory to use sim<fix> in such cases (if a normal

SIM is used, the goals/means are ignored).

STATIC Changes in endogenous variables are not transferred from period to
period via lags. See also the option solve static = yes.

RES The sim<res> statement (residual check) performs a one-step-ahead

static single-equation simulation of the entire model, i.e. the result of
one equation does not affect other equations, nor does results of
previous periods affect following periods.

For Gekko models, the left-hand side variables are computed. The
difference between actual historical values and a static single equation
solutions are the equation residuals. Residuals are used to measure
how well the model equations forecasts historically. sim<res> is widely

used for testing historical data against the model, or for testing a
model against a historical databank. Gekko offers functionality to print
results to files for subsequent inspection. See the menu item 'Utilities'
--> 'Check residuals…' (output is grouped according to formula codes
and/or model sections, and can be ordered).

For GAMS models, there is no strict sense of left-hand and right-hand
variables. Therefore, series/array-series are computed with names
corresponding to the equation names. You may add a prefix to these
names with <prefix = ...>.

PREFIX
=

(Optional). For a GAMS scalar model, when using for instance sim<res

prefix = 'res_'> will add res_ to the equation names when

calculating the residuals. So if an equation name is for instance
E_exports(agr, 2027), corresponding to the year 2027, the array-

series res_E_exports[agr] will contain that residual (in the year

2027).

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Examples

529Gekko User Manual

T-T Analyse

To increase all exogenous prices by 1% in 2011-2020, and inspect the effects on
private consumption (pcp) and wages (lna):

read lang11;
#pm = pm01, pm2, pm3r, pm59, pm7b, pm7y, pms, pmt;
#pe = pee2, pee59, peet, peesq;
time 2011 2020;
{#pm} *= 1.01;
{#pe} *= 1.01;
sim;
mulprt pcp, lna;

The result shows the difference between the values after simulation (first-position
bank) and values in the reference databank (lang11.gbk) for the variables pcp and

lna. Here, it is assumed that lang11 already is simulated over the period 2011-20.

If you need to solve goals/means, you can use the ENDO and EXO statements to
change status of exogenous and endogenous variables, and perform a SIM
afterwards. In that case, the solve method will be automatically changed to the
Newton algorithm (and changed back if the goals/means are removed).

There are many options regarding SIM: please see under OPTION (in the option

solve ... section). Or type option solve ?;. A single-equation static simulation

can be performed with the sim<res> statement (for instance to check historical

residuals).

If you want to change to the Newton algorithm manually, you can use option solve

method = newton;. It typically runs a bit slower, but is generally much more robust

(and precise). With option newton robust = yes, the Newton method activates a

remedy against illegal starting values, like the logarithm to a negative number etc.

Static simulation (one period does not affect the next period) can be obtained by
setting option static = yes.

Related options

See the OPTION help page for details.

OPTION solve data create auto = yes; [yes|no]
OPTION solve data ignoremissing = no; [yes|no]
OPTION solve data init = yes; [yes|no]
OPTION solve data init growth = yes; [yes|no]
OPTION solve data init growth min = -0.02;
OPTION solve data init growth max = 0.06;
OPTION solve failsafe = no; [yes|no]
OPTION solve forward dump = no; [yes|no]
OPTION solve forward fair conv = conv1; [conv1|conv2]

530 Gekko 3.1.x help system

T-T Analyse

OPTION solve forward fair conv1 rel = 0.0001;
OPTION solve forward fair conv1 abs = 0.0001;
OPTION solve forward fair conv2 trel = 0.0001;
OPTION solve forward fair conv2 tabs = 1.0;
OPTION solve forward fair damp = 0.0;
OPTION solve forward method = fair; [fair| nfair | none]
OPTION solve forward fair itermax = 200;
OPTION solve forward fair itermin = 10;
OPTION solve forward method = fair; [fair | nfair];
OPTION solve forward nfair conv = conv1; [conv1|conv2]
OPTION solve forward nfair conv1 rel = 0.001;
OPTION solve forward nfair conv1 abs = 0.001;
OPTION solve forward nfair conv2 trel = 0.001;
OPTION solve forward nfair conv2 tabs = 1.0;
OPTION solve forward nfair damp = 0.0;
OPTION solve forward nfair itermax = 200;
OPTION solve forward nfair itermin = 0;
OPTION solve forward nfair updatefreq = 200;
OPTION solve forward stacked horizon = 5;
OPTION solve forward terminal = const; [const|growth|none]
OPTION solve forward terminal feed = internal; [internal|external]
OPTION solve gauss conv = conv1;
OPTION solve gauss conv1 rel = 0.0001;
OPTION solve gauss conv1 abs = 0.0001;
OPTION solve gauss conv2 trel = 0.0001;
OPTION solve gauss conv2 tabs = 1.0;
OPTION solve gauss conv ignorevars = yes; [yes|no]
OPTION solve gauss damp = 0.5;
OPTION solve gauss dump = no; [yes|no]
OPTION solve gauss itermax = 200;
OPTION solve gauss itermin = 10;
OPTION solve gauss reorder = no; [yes|no]
OPTION solve method = gauss; [gauss|newton]
OPTION solve newton backtrack = yes; [yes|no]
OPTION solve newton conv abs = 0.0001;
OPTION solve newton invert = lu; [lu|iter]
OPTION solve newton itermax = 200;
OPTION solve newton robust = yes; [yes|no]
OPTION solve newton updatefreq = 15;
OPTION solve print details = no; [yes|no]
OPTION solve print iter = no; [yes|no]
OPTION solve static = no; [yes|no]

Related statements

MODEL, EXO, ENDO, READ, WRITE, CLONE, MULPRT

531Gekko User Manual

T-T Analyse

532 Gekko 3.1.x help system

T-T Analyse

4.3.80 SMOOTH

SMOOTH replaces missing values ("holes") inside a timeseries with values generated
by means of a particular (user-chosen) method. The statement ignores the global
time period, and a local time period cannot be set. Only holes between non-holes are
smoothed, so the statement only deals with holes that occur after the timeseries' first
non-missing value and before the timeseries' last non-missing value (use the
fromSeries() function with 'dataStart'/'dataEnd' arguments if you need to know

start/end dates of a timeseries).

Instead of the SMOOTH statement, you may alternatively use the similar smooth()

function, for instance plot x.smooth(); (see under functions).

Syntax

smooth var1 = var2 type;

var1 The new corrected variable

var2 The variable that contains missings/holes

type The type of smoothing, choose between:

· LINEAR. Linear interpolation (default).
· GEOMETRIC. Geometric interpolation.
· REPEAT. Repeats last known observation.
· SPLINE. Cubic splines.
· OVERLAY. Insert another series into the holes.

Note: default is LINEAR. You can alter the default with option smooth

method = ... ; (cf. OPTION). Note that in Gekko 2.x, SPLINE was

used as default.

The methods are as follows:

LINEAR Use linear interpolation (adds a fixed amount for each period in
the hole(s)).

GEOMETRIC Use geometric interpolation (multiplies with a fixed amount for
each period in the hole(s)).

REPEAT Set the values to the last known value before the hole(s).

533Gekko User Manual

T-T Analyse

SPLINE Uses cubic splines to fill the hole(s).

OVERLAY Uses another timeseries to fill the hole(s).

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).
· Looping: with a list like for instance #m = a, b;, you may use for string %i =

#m; smooth y{%i} = x{%i}; end; to smooth xa into ya, and xb into yb.

Example

For instance:

reset;
time 2002 2010;
ts <2002 2004> = 2, 3, 4;
ts <2008 2010> = 12, 11, 10;
tsb <2004 2008> = -1, -2, -3, -4, -5;
smooth ts1 = ts LINEAR;
smooth ts2 = ts GEOMETRIC;
smooth ts3 = ts REPEAT;
smooth ts4 = ts SPLINE;
smooth ts5 = ts OVERLAY tsb;
prt <n> ts1, ts2, ts3, ts4, ts5; //or use plot instead of prt

As you can see, the timeseries ts has a hole in the middle, namely the observations

2005-2007 (inclusive). Using the SMOOTH statement, these three observations are
filled out. Below, the four different interpolation methods are shown (interpolated
values in red):

 ts ts1 ts2 ts3
 ts4 ts5
 2002 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000
 2003 3.0000 3.0000 3.0000 3.0000
 3.0000 3.0000
 2004 4.0000 4.0000 4.0000 4.0000
 4.0000 4.0000
 2005 M 6.0000 5.2643 4.0000
 6.1349 -2.0000
 2006 M 8.0000 6.9282 4.0000
 8.8696 -3.0000
 2007 M 10.0000 9.1180 4.0000
 11.1694 -4.0000
 2008 12.0000 12.0000 12.0000 12.0000
 12.0000 12.0000

534 Gekko 3.1.x help system

T-T Analyse

 2009 11.0000 11.0000 11.0000 11.0000
 11.0000 11.0000
 2010 10.0000 10.0000 10.0000 10.0000
 10.0000 10.0000

Regarding the GEOMETRIC (green) method, note that the growth rate of ts2 is

constant (31.61%) in the three interpolated years. In this particular case, SPLINE
(yellow) perhaps provides the most realistic hole-filling, since it takes the curvature
of the ts timeseries into consideration.

Note

See the hpfilter() function regarding the smoothing of timeseries without holes.

Related options

OPTION smooth method = linear; [linear|geometric|repeat|spline|overlay]

Related statements

SPLICE

535Gekko User Manual

T-T Analyse

4.3.81 SPLICE

SPLICE is used to combine two or more timeseries into one. You may choose which
one of these timeseries is "primary" (keeps its values): default is the last timeseries
stated. The SPLICE statement splices all available observations, and hence is not
called with a time period. If you need to truncate the period of the resulting
timeseries, use a subsequent TRUNCATE, or alternatively use the in-built function
splice().

You may splice on a single period or a time interval. If no time period(s) is provided,
all overlapping observations are used for splicing.

Syntax

splice <FIRST N=... TYPE=...> ... ;
splice y = x1 x2 x3 ... ;
splice y = x1 t1 x2 t2 x3 ... ;
splice y = x1 t1 t2 x2 t3 t4 x3 ... ;

y The new timeseries made from the variables on the right-hand side
of =.

x1, x2, ... The timeseries that are to be spliced into the left-hand side
timeseries.

t1, t2, ... (Optional). Time periods. If on the right-hand side two timeseries are
separated by one date, this date is used as the splicing date. If there
are two dates, the indicated time interval is used for splicing. A
statement like splice y = x1 2010q2 x2; is essentially short-hand

for splice y = x1 2010q2 2010q2 x2;.

If no time period is stated between two of the right-hand side series,
Gekko tries to splice using as many common observations as
possible.

FIRST (Optional). Uses the first timeseries as "primary" (keeps its values).
Using <first> is equivalent to <n=1>. Using the last timeseries is

default.

LAST (Optional). Since <last> is already default, this option only has

cosmetic use.

536 Gekko 3.1.x help system

T-T Analyse

N= (Optional). Sets the timeseries number (1, 2, ... , n) to use as
"primary" (keeps its values). Using <n=1> is equivalent to using

<first>. Using the last timeseries is default.

TYPE= (Optional). Choose type of smoothing: rel1, rel2, rel2 or abs.

Below the types are described (example with three overlapping
observations):

· rel1: (Default). Ratio of averages used for a relative adjustment.
The formula used for the relative correction factor R = ((y1 + y2

+ y3)/3) / ((x1 + x2 + x3)/3).

· rel2: Average ratio used for a relative adjustment. The formula
used for the relative correction factor is R = (y1/x1 + y2/x2 +

y3/x3)/3.

· rel3: All values are first transformed with log(), then a SPLICE

with <type=abs> is computed, and finally all values are

transformed back with exp(). Because of the log(), negative

values will not work. The type is quite similar to rel2, except in

essence using geometric rather than arithmetic averages.
· abs: Average difference is used for an absolute adjustment. This is

advised for timeseries that can be 0 or negative, and where the
levels of the timeseries are comparable. The formula used for the
absolute correction factor is D = (y1 + y2 + y3)/3 - (x1 + x2

+ x3)/3.

Note: if you are using just one overlapping period, rel1, rel2 and

rel3 are equivalent.

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).
· Looping: with a list like for instance #m = a, b;, you may use for string %i =

#m; splice y{%i} = x1{%i} x2{%i}; end; to splice x1a and x2a into ya, and x1b

and x2b into yb.

Methodology

Consider five overlapping timeseries x1-x5, as shown below. If you use splice y =

x1 x2 x3 x4 x5;, Gekko will per default first use the levels of x5 (the last series) as

"primary" y values. It will then move to the left to x4 and "glue" these values on y

(using the overlapping observations to adjust). This is repeated left-wise for x3, x2,

and finally x1. The resulting y series is shown, too (note how the internal period

delimiters in y reflect start periods of x2-x5).

537Gekko User Manual

T-T Analyse

If, instead, splice <n=3> y = x1 x2 x3 x4 x5; is used, x3 is used as "primary" y

values. Then left-wise from x3, first x2 and then x1 are glued on. Finally, right-wise

from x3, first x4 and then x5 are glued on.

Note that the internal period delimiters in y are now different (and the levels will

usually be so, too). The delimiters now reflect x2 and x3 start periods on the left, and

x3 and x4 end periods on the right.

Example

Consider these three overlapping timeseries x1, x2 and x3.

These series are very dissimilar and not exactly obvious candidates for splicing, but
we will use them for illustrative purposes, cf. the following example:

reset;
time 2002 2012;
x1 <2002 2006> = 21, 22, 23, 24, 25;
x2 <2004 2010> = 41, 42, 43, 44, 45, 46, 47;
x3 <2008 2012> = 61, 62, 63, 64, 65;
splice y1 = x1 2006 x2;
splice y2 = x1 2005 2006 x2;

538 Gekko 3.1.x help system

T-T Analyse

splice y3 = x1 x2; //all common observations
splice y4 = x1 x2 x3; //multi-splice
splice <n=2> y5 = x1 x2 x3; //second series is
"primary"
splice <first> y6 = x1 x2 x3; //first series is "primary"
prt <n> y1, y2, y3, x1, x2;
prt <n> y4, y5, y6, x1, x2, x3;

For y1, the year 2006 is used as splice year, whereas for y2, the period 2005-2006 is

used. For y3, all common observations are used (2004-2006). Default is that the

levels of the last series are kept.

Levels:

 y1 y2 y3 x1
 x2
 2002 36.1200 36.4286 36.7500 21.0000
 M
 2003 37.8400 38.1633 38.5000 22.0000
 M
 2004 39.5600 39.8980 41.0000 23.0000
 41.0000
 2005 41.2800 42.0000 42.0000 24.0000
 42.0000
 2006 43.0000 43.0000 43.0000 25.0000
 43.0000
 2007 44.0000 44.0000 44.0000 M
 44.0000
 2008 45.0000 45.0000 45.0000 M
 45.0000
 2009 46.0000 46.0000 46.0000 M
 46.0000
 2010 47.0000 47.0000 47.0000 M
 47.0000

539Gekko User Manual

T-T Analyse

The above figure illustrates how the attachment is done (remember that y1 splices on

2006, y2 splices on 2005-2006, and y3 splices on 2004-2006). For y1, x1 attaches

cleanly to x2 in 2006. For y2 and y3, the attachement is done over a period range

(2005-2006 and 2004-2006, respectively). For instance, in 2002 and 2003, the blue
y3 series is lower than it would be if y3 was attached on the year 2004 only (and this

is because x1 is growing and x2 is decreasing).

The multi-spliced series y4, y5 and y6 look like this:

Again, there are some "funny" movements right before/after the attachment years,
which has to do with overlapping observations being used and the fact the the x1-x3

series are so dissimilar. Also note that relative splicing is used here, not absolute.

540 Gekko 3.1.x help system

T-T Analyse

Note

You may alternatively use the splice() function, for instance y1 = splice(x1,

2006, x2); But beware that this function respects the local/global time period when

putting values into y1, so the splice() values will not be put into y1 outside of the

local/global time period. But apart from this truncating of the function output values,
the function works just like SPLICE.

Related statements

SMOOTH

541Gekko User Manual

T-T Analyse

4.3.82 STOP

The STOP statement will abort from all called program files/procedures/functions,
without executing anything more after the STOP (this is not the case regarding
RETURN). Therefore, STOP can be practical for debugging, making it possible to
inspect variables at that particular point of execution. After a STOP, Gekko will show
the "call stack", showing where the STOP statement was encountered.

To stop/abort a program while it is running, you may use the red stop button in the
user interface.

Syntax

stop ;

Example

To see how STOP works, try creating the two program files file1.gcm and file2.gcm

as shown below. Then call the first one of these from the statement prompt with RUN

file1;. After this, Gekko will report that the program has been stopped in line 2 of

file2.gcm, and that file2.gcm is called from file1.gcm. Next, if you issue a prt %

i;, the value will be 1001, because the third lines of file1.gcm and file2.gcm are

never executed. With a RETURN instead of a STOP in file2.gcm, the value of %i

would be 1101, because the third line of file1.gcm would still have been executed.

------------- file1.gcm --------------
%i = 1000;
RUN file2;
%i = %i + 100;

------------- file2.gcm --------------
%i = %i + 1;
stop;
%i = %i + 10;

RUN file1;
prt %i;

Note

542 Gekko 3.1.x help system

T-T Analyse

· The similar RETURN statement does not return from all program
files/procedures/functions.

· The EXIT statement effectively issues a STOP, and then afterwards closes the
Gekko application.

Related statements

RETURN, EXIT

543Gekko User Manual

T-T Analyse

4.3.83 STRING

The STRING statement is used to assign a string to a scalar variable of string type.
String names always start with the symbol %, like the other scalar types val and date.

Using the STRING keyword is no longer mandatory in Gekko 3.0.

A string can be used to refer to a variable via the {}-curlies. For instance, if %s =

'b2:x!q', the expression {%s} will refer to the variable b2:x!q (a quarterly series

with name x, taken from the b2 bank). See also the syntax diagrams.

Strings are often used as list elements, for instance #m = ('a', 'b', 'c'). In that

case, prt #m; will print these three strings, whereas prt {#m}; will print the series

a, b, and c.

When inserting or concatenating strings, it is best practice to use so-called string
interpolation, using {}-curlies. If %a = 'cat' and %c = 'black', it is more readable

to use 'The {%a} is {%c}' than 'The ' + %a + ' is ' + %b. This also complies

with name-composition, and hence a composed name like a{%b}c is easy to transform

into a string, just add quotes: 'a{%b}c'.

Syntax

%s = expression;
string %s = expression;
string ?; //print string scalars

It is no longer legal to use for instance string s = 'abc';, omitting the '%'. Also,

using {i} as short for {%i} is no longer legal either.

Strings can be added together (concatenated) with the + operator.

A string (or list of strings) representing variable names may be manipulated by
means of Gekko's inbuilt functions to handle these. Variable names here include
bank, frequency, indexes, etc., and examples of such functions could be setBank(),
removeBank(), replaceBank(), setFreq(), removeFreq(), setNamePrefix(), etc. There
are many more of such functions, see the functions section, under
‘Bank/name/frequency/index manipulations’.

For instance, if you have a list #m = ('x', 'y');, you may use prt {#m}; to print

out x and y, prt {#m.setBank('b')}; to print out b:x and b:y, or prt

{#m.setFreq('q')}; to print out x!q and y!q (here, prt b:{#m}; and prt {#m}!q;

will work, too).

There are quite a few string functions, where strings can be combined in different
fashions.

String combining functions

544 Gekko 3.1.x help system

T-T Analyse

Function
name

Description Examples

[x]-index Index: returns the
character at position x.
Returns: string

%s = 'abcd';
prt %s[2]; //'b'

[x1..x2]-
index

Index: returns the range of
characters from position x1
to x2 (both inclusive). You
may omit x1 or x2.
Returns: string

%s = 'abcd';
prt %s[2..3]; //'bc'

concat(s1,
s2)

Appends the two strings:
same as s1 + s2.
Returns: string

%s = concat('He', 'llo');
Result: 'Hello'.

endswith(s1,
s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%v = endswith('abcde',
'cde');
Returns: 1

index(s1, s2) Searches for the first
occurrence of string s2 in
string s1 and returns the
position. It returns 0 if the
string is not found. The
search is case-insensitive
Returns: val

%v = index('onetwothreetwo',
'two');
Returns: 4.
%v = index('oneTWO', 'two');
Returns: 4.

isAlpha(s) Returns 1 if all the
characters are letters
(alphabet). [New in 3.0.5].

%v = isAlpha('aBc');
Returns: 1

isLower(s) Returns 1 if the string
contains no uppercase
characters. [New in 3.0.5].

%v = isLower('abc12');
Returns: 1

isNumeric(s) Returns 1 if all the
characters are of numeric
value. [New in 3.0.5].

%v = isNumeric('123');
Returns: 1

isUpper(s) Returns 1 if the string
contains no lowercase
characters. [New in 3.0.5].

%v = isUpper('ABC12');
Returns: 1

545Gekko User Manual

T-T Analyse

length(s) The length of the string
(number of characters).
You may use len() instead
of length().
Returns: val

%v = %s.length();

lower(s) The string in lower-case
letters.
Returns: string

%s = lower('aBcD');
Result: 'abcd'.

nl() A system
newline/linebreak.
Computerwise, nl() is

equal to the C# string
"\n", but beware that you

cannot use the Gekko
string '\n' instead of nl(),

because the former is equal
to the C# string "\\n".

Returns: string

%s = 'a' + nl() +
'b'; //string with newline
tell %s;
#m = %s.split(nl()); //list
with 2 elements
p #m;

prefix(s1,
s2)

If s1 is a string, it has the
string s2 prefixed
(prepended).
Returns: string

%s1 = %s2.prefix('a');

replace(s1,
s2, s3)
replace(s1,
s2, s3, max)

In the string s1, the
function replaces all
occurrences of s2 with s3.
Replacement is case-
insensitive.

If max > 0, the
replacement is performed
at most max times.

Returns: string

%s = replace(%s1, %s2);
//or: replace(%s, %s1, %s2)

split(s1, s2)
split(s1, s2,
removeempt
y)
split(s1, s2,
removeempt
y, strip)

Splits the string s1 by
means of the delimiter s2.
Empty elements are
removed per default, and
the resulting strings are
stripped (blanks are
removed from the start and
end of the strings). The last
two options are 1 and 1, if

omitted. [New in 3.0.6]

%s = 'a, b,c,,d, , e';
#m1 = %s.split(',');
//--> ('a', 'b', 'c', 'd',
'e')
#m2 = %s.split(',', 1, 1);
//--> ('a', 'b', 'c', 'd',
'e');
#m3 = %s.split(',', 0, 1);');

//--> ('a', 'b', 'c', '',
'd', '', 'e')

546 Gekko 3.1.x help system

T-T Analyse

#m4 = %s.split(',', 1, 0);');

//--> ('a', ' b', 'c', 'd',
' ', ' e')
#m5 = %s.split(',', 0, 0);');

//--> ('a', ' b', 'c', '',
'd', ' ', ' e')

%s = 'a' + nl() +
'b'; //string with newline
#m = %s.split(nl(), 0); //-->
('a', 'b')
//Note: the 0 argument keeps
empty lines

startswith(s1
, s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%s = 'abcde';
%v = %s.startswith('abc');
Returns: 1

strip(s) Removes blank characters
from the start and end of
the string.
Returns: string

%s1 = %s2.strip(); //or:
strip(%s1)

stripstart(s) Removes blank characters
from the start of the string.
Returns: string

%s1 = %s2.striptart(); //or:
stripstart(%s1, %s2)

stripend(s) Removes blank characters
from the end of the string.
Returns: string

%s1 = %s2.stripend(); //or:
stripend(%s1, %s2)

substring(s,
start,
length)

The piece of the string
between character number
start and length (these
must be integer values).

You can alternatively use a
'slice', using []-notation,
see example.

Returns: string

%s = %s1.substring(3, 2);
//or: substring(%s1, 3, 2)
%s = %s1[3 .. 5];
//a slice from pos 3 to 5
(both inclusive)

suffix(s1, s2) If s1 is a string, it has the
string s2 suffixed
(appended)
Returns: string

%s1 = %s2.suffix('a');

547Gekko User Manual

T-T Analyse

upper(s) The string with upper-case
letters.
Returns: string

%s = upper('aBcD'); Result:
'ABCD'.

In addition, there are some functions that fetch different kinds of meta-data (as
strings) from the system or databanks, see under functions.

Examples

Concatenation:

%s1 = 'ab';
%s2 = 'cd';
%s3 = %s1 + %s2; //result: 'abcd'

You may wish to use strings to control file names.

%path = 'folderA' ;
%bank = 'prognosis' ;
read c:\{%path}\{%bank};

Gekko supports automatic in-substitution of any expression inside {}-curlies. For
instance:

%s1 = 'b';
%s2 = 'a' + %s1 + 'c'; //result: 'abc'
%s3 = 'a{%s1}c'; //result: 'abc', easier to type and read

In general, in such cases, it is better and more readable to use {}-curlies, instead of
concatenating with +. Using {}-curlies both for name-composition (like a{%s1}b) and

string substitution (like 'a{%s1}b') makes it easy to move composed names in and

out of strings, because the syntax is the same.

The tilde (~) can be used to avoid in-substitution of {}-curlies. Tilde can also be used

to allow single quotes inside a string:

%s1 = 'blue';
%s2 = 'the' + %s1 + 'car'; //result: 'the blue car'
%s3 = 'the {%s1} car'; //result: 'the blue car'
%s4 = 'the ~{%s1} car'; //result: 'the {%s1} car'
%s5 = 'the ~'blue~' car'; //result: 'the 'blue' car'

548 Gekko 3.1.x help system

T-T Analyse

You may put any valid Gekko expression inside the {}-braces, as long as it can be
evaluated to a string:

time 2020 2022;
x = 55000000;
%date = 2021;
%s1 = 'value in {%date} is {x[%date]/1e6}
M'; //result: 'value in 2021 is 55 M'
%s2 = 'value in ' + %date + ' is ' + x[%date]/1e6 + '
M'; //same, but more cumbersome to write and read

Strings are often used in loops, to loop over variables, see FOR.

If you need to convert a string to a date or value, you must convert it explicitly with
the date() and val() conversion functions, for instance:

%s1 = '2010';
%s2 = '123.45';
%d = date(%s1);
%v = val(%s1);

Note: whole lists of strings can be converted into lists of dates or values with the
dates() and vals() functions.

TELL examples

Below are some examples regarding the use of strings in the TELL statement (TELL
prints the string on the screen):

%s1 = 'Value in ';
%d1 = 2010;
%s2 = ' is: ';
%v1 = 113.45;
%v2 = 10;
%s3 = %s1 + %d1 + %s2 + (%v1 + %v2);
tell %s3;
tell 'Value in ' + %d1 + ' is: ' + (%v1 + %v2);
tell 'Value in {%d1} is: {%v1 + %v2}';

This will print Value in 2010 is: 123.45 three times, so the three last TELLs are

equivalent. When adding the scalars, it should be noted that scalar dates and scalar
values are automatically converted to strings when added to a string with the +

operator. So there is no need to use %s3 = %s1 + string(%d1) + %s2 + string(%

v1);.

If you need to write curly braces like {%d1} literally, preprend the symbol ~ to

indicate that Gekko should not try to in-substitute. For example:

549Gekko User Manual

T-T Analyse

tell 'The scalar name is ~{%d1}';

This will print 'The scalar name is {%d1}' on the screen, and not try to evaluate the
inside of the {}-curlies. If you need to format values, you can either use the
format() function, or use global formatting of {}-curlies via option string

interpolate format val = For instance. See more regarding format()

function in the Gekko functions section (the code '6:0.00' means a 6 character wide
field, where the number has exactly two decimals).

%v11 = 1/3; %v12 = 1/4; %v21 = 1/5; %v22 = 1/6;
tell '{format(%v11, '6:0.00')},{format(%v12, '6:0.00')}';
tell '{format(%v21, '6:0.00')},{format(%v22, '6:0.00')}';
//since the formatting is the same, you can use an option:
option string interpolate format val = '6:0.00';
tell '{%v11},{%v12}';
tell '{%v21},{%v22}';

// result:
// 0.33, 0.25
// 0.20, 0.17

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

If you need to convert a VAL or DATE scalar to a STRING type, use the string()
conversion function.

Gekko 3.0 will no longer in-substitute scalars outside {}-curlies, for instance the
string 'name is %name' will not work as intended (use 'name is {%name}').

Also, in Gekko 3.0 you can no longer use {s} instead of {%s} to refer to the name

corresponding to a scalar string. Obviously, using for instance x{i}{j} instead of x{%

i}{%j} inside a loop is easier on the eyes, but there are several drawbacks. See the

end of this page regarding the drawbacks.

See also the format() function and OPTION string interpolate format val = ... ;
regarding {...}-formatting of values inside strings.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

550 Gekko 3.1.x help system

T-T Analyse

Related options

OPTION string interpolate format val = "";

Related statements

DATE, VAL

551Gekko User Manual

T-T Analyse

4.3.84 SYS

The SYS statement provides access to the system shell (in Windows sometimes called
the DOS prompt). Gekko will wait until the SYS statement finishes before it
continues.

Syntax

sys <MUTE> statements WORKING = foldername;

MUTE (Optional). With this option set, the system shell runs silently in
Gekko. Alternatively, the system shell output (and error messages)
is shown in the Gekko main window.

WORKING (Optional). If set, the Windows system will use this folder as
"starting directory" for the system process. For example, SYS 'dir'

working = c:\tools; will show the contents of the c:\tools

folder. If WORKING is not indicated, the Gekko working folder is
used. [New in 3.1.16].

statement
s

A string with windows system shell commands. You may use SYS
without arguments. In that case, the system shell opens up as a
separate window.

Example

In general, the SYS statement returns the output of the system shell, for instance:

sys 'dir'; //shows the list of files in the working folder

You can use the SYS statement for file managing:

sys 'copy file1.txt file2.txt';

or for more complex tasks or jobs

sys 'start /wait gnuplot p1.prg';

If you need to insert scalar values, just use {}-parentheses. For instance:

552 Gekko 3.1.x help system

T-T Analyse

%name1 = 'file1';
%name2 = 'file2';
sys 'copy {%name}.txt {%name2}.txt';

To open up the system shell in a separate window for interactive use, call SYS
without arguments.

sys;

Note

Note the use of single quotes when using SYS.

· To call R via SYS, use for instance sys '""C:\Program Files\R\R-
3.6.2\bin\rscript.exe" --no-save "C:\Gekko\Files\test.r""';

· To call Python vis SYS, use for instance sys '""c:\Program
Files\Python36_64\python.exe" -u "C:\Gekko\Files\test.py""';

The use of "-quotes makes it possible to use blanks etc. in the file paths. When called

like this, both R and Python will return screen output to Gekko while the R/Python
program runs.

553Gekko User Manual

T-T Analyse

4.3.85 TABLE

The TABLE statement is used to call tables (.gtb files) designed in a special XML
format. This format is designed for ease of use regarding most types of tables with
the time dimension running outwards, and different variables running downwards.

Guide: tables
For an easier introductory guide on Gekko tables, see this page.

Table output can be either text or html. The latter is default since it often provides
more readable output. When a table (text or html) has been printed, you may use
the 'Copy' button to copy the cells to the clipboard, for successive pasting into e.g. a
spreadsheet like Excel. Copying the table this way includes full precision of all
numbers, but formatting will be lost.

For html tables shown in the 'Menu' tab in the Gekko window, the user may click the
link 'Transform options' to transform the data (for instance, percentage growth).

Tables can also be called from menus (see MENU).

Note that you may use scalar-variables (for instance STRINGs) inside the xml
elements. If you want to insert a scalar into a text field, enclose the scalar in {}-
curlies, for instance <txt>Table regarding the year {%year}</txt>.

Note: You may use the in-built XML Notepad editor to edit the .gtb file, cf. the XEDIT
statement.

Syntax

table < period operator HTML WINDOW=main > tablename ;

period (Optional). Time period.

operator (Optional). Can be m for multiplier or r for Ref databank. The m code

works as if two tables were subtracted, one made with no operator
('Work'), and one made with r operator (Ref). No other codes are
possible at the moment (operator n can also be used, but is the same

as omitting an operator).

HTML (Optional). If html is indicated, the table will be printed in html

format, instead of in text format. It will be shown in the 'Menu' tab
(unless the WINDOW=main option is active).

554 Gekko 3.1.x help system

T-T Analyse

WINDOW
=

(Optional). If WINDOW=main is indicated, output will be put into the

main window, even if the table is of html type. In that case, html
codes will be printed on the screen. This can be used together with
pipe<html>, in order to insert a html table inside a html file. You

may use TELL to insert other html lines into the html file.

tablenam
e

Name of the table to be printed (extension .gtb can be omitted)

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

The Gekko table system can be used in two ways: either via a simple XML syntax to
describe the appearance of the tables, or via a more matrix-like syntax where the
tables' elements are assigned one by one (like filling in a matrix). For most tables
with time running horizontally and variables vertically, the XML syntax is much
easier to use.

Example:

Table printed: 30-04-2018 14:53:30

| Table 1. Supply balance, Million DKK, current prices
 |

+--
-
| | 2005 2006 2007 2008
 2009 2010 |

+--
-
| GDP Y | 1554520 1605530 1676300 1734800
 1796410 1849360 |
| Imports M | 674748 716544 748044 771898
 802542 806695 |
| Total (Y+M) Yst | 2229270 2322080 2424340 2506700
2598950 2656050
+--
-

In this table (shown in text format), there is a column with descriptions ('GDP' etc.),
followed by a column with variable names ('Y' etc.). The table can easily be
constructed by means of XML syntax. The XML tables use syntax that resemble the
way tables are made in HTML syntax, specifically the use of the colspan attribute to

merge cells horizontally. Data-columns (for instance the period 2005-10 above) are
conceptually treated as a single (expandable) column, and formatting can be set on
many levels.

555Gekko User Manual

T-T Analyse

To start out with a concrete example, the above table was constructed by means of
the following code:

<?xml version="1.0" encoding="Windows-1252"?>
<gekkotable>
 <tableversion>1.0</tableversion>
 <table varformat="f9.0">
 <cols>
 <colborder/>
 <col txtalign="left"/>
 <col txtalign="right"/>
 <colborder/>
 <col type="expand" txtalign="center"/>
 <colborder/>
 </cols>
 <rows>
 <rowborder/>
 <row>
 <txt colspan="3">Table 1. Supply balance, Million DKK,
current prices</txt>
 </row>
 <rowborder/>
 <row>
 <txt/>
 <txt/>
 <date/>
 </row>
 <rowborder/>
 <row>
 <txt>GDP</txt>
 <txt>$</txt>
 <var>Y</var>
 </row>
 <row>
 <txt>Imports</txt>
 <txt>$</txt>
 <var>M</var>
 </row>
 <row>
 <txt>Samlet tilgang (Y+M)</txt>
 <txt>$</txt>
 <var>Yst</var>
 </row>
 <rowborder/>
 </rows>
 </table>
</gekkotable>

Inside the <table> tag (where the real defining of the table begins), the columns are

first defined inside the <cols> tag. You may visualize the above table as the following

3-column table:

556 Gekko 3.1.x help system

T-T Analyse

 ========== | ====== | ========
 COL1 | COL2 | COL3
 ========== | ====== | ========
 | |

| Heading spanning 3 columns.... |
-----------------------+-----------
| | Periods |
-----------------------+-----------
Description1 var1	Data
Description2 var2	Data
Description2 var3	Data
-----------------------+-----------

In the XML defintion above, inside the <cols> tag, the columns are defined. First

there is a <colborder>, corresponding to the left table border. Next there is a <col>

tag, with default text alignment set to left, followed by a similar tag with text

alignment set to right. These correspond to the "description" and "variable name"

columns in the table. Next, there is a <colborder> to separate descriptions/variable

names from the data, followed by a <col> of type expand. This column is expandable,

and expands into as many columns as there are time periods. The <cols> definitions

end with a <colborder>, corresponding to the right table border.

Regarding the <rows>, these are given one by one by means of <row> tags. Each

<row> expects 3 items, since there are 3 columns defined in the <cols> section. The

first item in <rows> is a <rowborder>, however, so these are added analogously to

the <colborders> under the <cols> tag. The first <rowborder> corresponds to the

top table border, and the next item is a <row> with a <txt> item inside. The <txt>

spans all 3 colums, so the vertical border between column 2 and 3 will be hidden in
this row. Next, there is a <rowboarder>, and then the date row begins. This row is

filled with two empty <txt> items (think of these ase placeholders), and then a

<date> tag corresponding to the third column. This puts dates corresponding to the

time period into this section of the table. Afterwards, there is a <rowborder>.

Next is variables, and these are given by means of two <txt> tags and one <var>

tag. The <txt> tags put text into the description and variable name fields, and the

<var> tag identifies the variable (or expression) to print out. So we have these tags

regarding the first variable row:

<txt>GDP</txt>
<txt>$</txt>
<var>Y</var>

The $ is a special code implying that this piece of text is to be taken from the

following <var> field. The text could alternatively have been given by means of

<txt>Y</txt>, but this way of doing it would produce a lot of duplicate variable

names in the file. To avoid duplication (and reduce the error rate when editing
variable names), it is convenient to use the $-codes. The two next rows are added in

a similar fashion, and finally a <rowborder> tag concludes the table.

557Gekko User Manual

T-T Analyse

It should be noted that there are three different item types: <txt>, <var> and

<date>. These are formatted differently, and to format them you may use attributes

corresponding to the type, for instance varformat, varalign, or txtalign. Such

attributes are inherited, and can be put on different levels of the table, more
specifically on the following tags (in that order):

· in <table> (applies to the whole table).

· in <col> (applies to the specific column>.

· in <rowformat> (applies to all following rows, until next <rowformat> overrides it).

· in <row> (applies to the specific row)

· or in the element itself (for instance in the <txt> or <var> tags).

For instance, in the example there is the following format given: <table

varformat="f9.0"> .This applies to the whole table (since there are no other

varformats in the table), and it means that variables are to be written with a width

of 9 characters, and without any decimals. Lower level formats override higher levels,
so for instance a specific row might be formatted differently. For instance <row

varformat="f9.2"> could be used if that particular row were a percent change,

where two decimals might be the most desirable format.

Regarding borders, parts of these can be hidden in different ways. The easiest way is
to use column spanning, as in the example above. Since the table heading ("Table

1. Supply balance") spans three columns, the inner vertical border after the

second column is not shown. To remove all vertical borders for a particular row (or
successive rows), you may use the tag <colborderhide> inside the <rows> tag. This

will remove all vertical borders for the following rows, until a <colbordershow> is set.

To remove only specific borders, you may use
<colboderhide>inner<colborderhide>, or <colboderhide>outer<colborderhide>

(this hides inner or outer borders). You may also indicate the borders to remove by
means of a comma-separated list of integers: <colboderhide>1,2<colborderhide>.

This will hide the first and second vertical borders.

List of different tags and attributes

In general, the tags (for instance <txt>) can be thought of as contaning data,

whereas the attributes (for instance txtalign="left") can be thought of as

containing formatting. So the tags, or more precisely the elements inside the tags
(for instance the element GDP in <txt>GDP</txt>) can be thought of as the content

of the table, whereas the attributes describe how the content is formatted/shown.

Tags:

· <col>: defines a column: set attribute type="expand" for data columns. You may

define a special kind of column showing only one (indicated) period.
· <colborder>: defines a vertical border separating columns

· <colborderhide>: hides vertical borders, content can be "inner", "outer", or list

of integers
· <colbordershow>: shows vertical borders (if some of them have been hidden)

558 Gekko 3.1.x help system

T-T Analyse

· <cols>: inside this tag, columns are defined one by one, including their type, and

any borders separating them
· <row>: indicates a new row, content is defined inside the <row>

· <rowborder>: indicates a horizontal border

· <rowformat>: sets format that is to apply to all rows until next <rowformat>

· <rows>: inside this tag, rows are defined one by one, including horizontal borders

etc.
· <subcolborder>: is used to show (grey) borders between columns inside a time

period. This tag is set inside a <col> tag. Example: <subcolborder period="%

per1"/> or <subcolborder period="2030"/>.

Attributes:

· colspan (example: colspan="2"), used inside a <row> tag to span/merge columns.

Similar to the way cells are merged horizontally in HTML tables. Note that code like
<text colspan="3">AAA</txt> <txt>BBB</txt> would make 'BBB' appear in the

fourth column, so the <text colspan="3"> tag really represents three <txt> tags.

· datealign (left/middle/right): used inside <table>, <col>, <rowformat>, <row>,

or <date>. Horizontal alignment of dates in a <date> tag.

· period (example period="#target_year"). Used inside a <col> tag to indicate

that only that particular period is to be shown, regardless of other time settings.
Handy for a column with special kinds of indicators etc. The attribute is also used
inside <subcolborder>, to indicate the period after which a gray line is to be

inserted. Example: <col period="#target_year" txtalign="center"

varformat="f8.3"/>.

· txtalign (left/middle/right): used inside <table>, <col>, <rowformat>, <row>,

or <txt>. Horizontal alignment of text in a <txt> tag.

· type (example: type="span"): used inside a <col> tag to indicate that it is

expandable (for instance data columns). Only columns of "expand" type are

allowed to auto-expand into more columns, corresponding to the number of time
periods the table is called with.

· vardisplay (example: vardisplay="p"): used inside <table>, <col>,

<rowformat>, <row>, or <var>. Sets operator regarding <var> tag. These should be

given as Gekko operators, for instance "p" for percent growth rate, "q" for
multiplier percentage difference, "n" for levels etc (cf. the PRT/PLOT/SHEET
statements).

· varformat (example: varformat="f12.2"): used inside <table>, <col>,

<rowformat>, <row>, or <var>. Sets the print format for <var> tags. For instance,

"f12.2" means floating point, width = 12 characters, and 2 decimals. Integers (no
decimals) can be set as for instance "f12.0". If you need to round off to, for
instance, the nearest hundreds, you may use negative decimals places, for instance
varformat = "f9.-2". A number like 12345 would then be printed as 12300.

· varscale (example: varscale="0.001"): used inside <table>, <col>,

<rowformat>, <row>, or <var>. All data in the given context is scaled/multiplied by

the value given.

Editing the table

559Gekko User Manual

T-T Analyse

It is recommended that you use the in-built XML Notepad editor to edit the XML files,
cf. the XEDIT statement (if used, choose 'View' --> 'Expand All' to unfold all XML
nodes). You may also use Notepad (cf. the EDIT statement), but it is recommended to
use a specific XML editor for editing the tables. Using a simple text editor like
Notepad entails some potential problems. There will be no check that the XML syntax
is correct, e.g. that a tag like <row> is always closed by means of a corresponding

</row> tag. Also, the XML syntax represents some characters in a special way:

notably the < , >, and & characters (these should be written <, >, and &).

If the file is not in valid XML syntax, Gekko will complain that the file is invalid and
abort.Internally, when executing a XML table, the XML is translated into "normal"
Gekko code (heavily using table objects) which is then executed in the same way as a
normal Gekko program file.

Example

Call the table table1.gtb, for the annual period 2012-2016:

table <2012 2016> table1;

To have it printed in HTML instead, and as multiplier differences (operator m), use:

table <2012 2016 m html> table1;

To edit the .gtb file using Notepad, you may use edit table1.gtb;, but it is

preferable to use a dedicated xml editor, which can be called with XEDIT:

xedit table1.gtb;

Note

In order to copy-paste a html table to Excel, the most reliable way is to use the copy-
button in the Gekko user interface. There is an option to paste decimal separators as
commas instead of periods (option interface clipboard decimalseparator).

Alternatively, you may right-click the html-table and paste from that menu, but that
way you will lose non-shown decimals in the table cells.

In html tables, if you hover over a number, a label will appear with full decimals.

You can use a TIMEFILTER to omit periods for a more readable table.

560 Gekko 3.1.x help system

T-T Analyse

If a variable is missing, and if option table ignoremissingvars = yes (default),

the values will be shown as missings ('M'), instead of Gekko reporting an error.

Gekko will look for the table in first the working folder, and then in the folders
denoted with option folder table, option folder table1 and option folder

table2 (in that order). If the table is called from a .html menu, the URL path of the

table call will be included too (after option folder table2). So if preferred for

menu systems, you may put your table (.gtb) files next to your menu (.html) files.

The function frombank() can be used to decorate a table with filename/date of the
underlying databank.

If you need to insert blank spaces in <txt>-fields in a html table (for instance to

manually control the width of a column), you can use the special xml-code
&nbsp; (if written in a text editor like Notepad), for instance three blanks:

<txt>Gdp&nbsp;&nbsp;&nbsp;</txt>. If the code is written via XEDIT,

you should write the code as . These special codes will only work for html

tables: for txt tables they will show up as noise. For txt tables, you can just use
normal blanks, for instance: <txt>Gdp </txt>.

There is an automatic table conversion tool from the older PCIM table format to the
new XML format. See the menu: 'Utilities' --> 'Converters' --> 'PCIM converters' -->
'Convert PCIM tables...'.

Related options

OPTION folder table = [empty];
OPTION folder table1 = [empty];
OPTION folder table2 = [empty];
OPTION interface table operators = yes; [yes|no]
OPTION table decimalseparator = period; [period|comma]
OPTION table html font = Arial;
OPTION table html fontsize = 72;
OPTION table html datawidth = 5.5;
OPTION table html firstcolwidth = 5.5;
OPTION table html secondcolwidth = 5.5;
OPTION table html specialminus = no; [yes|no]
OPTION table ignoremissingvars = yes; [yes|no]
OPTION table mdateformat = '';
OPTION table stamp = yes; [yes|no]
OPTION table thousandsseparator = no; [yes|no]
OPTION table type = html; [txt|html]

561Gekko User Manual

T-T Analyse

Related statements

MENU, PLOT, XEDIT, EDIT

562 Gekko 3.1.x help system

T-T Analyse

4.3.86 TARGET

TARGET is used by the GOTO statement, to transfer execution to the point following
right after the label.

Syntax

target name;

The label must be name-like, that is, alphanumeric characters including underscore
(and not starting with a digit). You can not use scalars or expressions etc. as labels.

Examples

See the GOTO help file.

Related statements

GOTO

563Gekko User Manual

T-T Analyse

4.3.87 TELL

The TELL statement prints a text string in the output window. TELL will abort with an
error if the argument is not a string, which can guard against unintended errors. PRT
will also print scalar strings, but TELL is convenient for messages.

Syntax

tell < LINE NOCR MUTE > message ;

message (Optional). The text to print (remember single quotes). Can be an
expression that can be evaluated as a string.

LINE (Optional). With <line>, an empty line is inserted before this

message. This is similar to using tell; tell 'message';.

NOCR (Optional). With <nocr>, no newline is inserted at the end of the

string (no carriage return). This way, you can use several TELL's in
succession on the same line.

MUTE (Optional). Use <mute=no> to turn off general mute set with option

interface mute = yes;. Use of <mute> or <mute=yes> will mute

the message and is essentially like commenting out the TELL
statement.

Examples

The TELL statement can be used to print text strings, for instance for messages:

tell; //blank line
tell 'First line';
tell 'Second line';

Use <nocr> if you need to join text:

tell <nocr> 'The ';
tell <nocr> 'fox is ';
tell 'red.';

564 Gekko 3.1.x help system

T-T Analyse

Use <mute=no> to overrule a general mute (typically used in program files), for

instance:

option interface mute = yes;
open mybank; //normally produces screen output
model mymodel; //normally produces screen output
tell <line mute=no> 'Databank opened and model loaded';
//
//Gekko keeps on muting from here

An alternative could be to put the OPEN and MODEL statements inside a BLOCK that
turns on muting:

block interface mute = yes;
 open mybank; //normally produces screen output
 model mymodel; //normally produces screen output
end;
tell <line> 'Databank opened and model loaded';
//
//Gekko does not mute from here

Below some examples, where scalars are inserted into the TELL statement in different
ways:

%s1 = 'Value in ';
%d1 = 2010;
%s2 = ' is: ';
%v1 = 113.45;
%v2 = 10;
%s3 = %s1 + %d1 + %s2 + (%v1 + %v2);
tell %s3;
tell 'Value in ' + %d1 + ' is: ' + (%v1 + %v2);
tell 'Value in {%d1} is: {%v1 + %v2}';

This will print Value in 2010 is: 123.45 three times, so the three last TELLs are

equivalent. When adding the scalars, it should be noted that scalar dates and scalar
values are automatically converted to strings when added to a string with the +

operator. So there is no need to use %s3 = %s1 + string(%d1) + %s2 + string(%

v1);.

If you need to write curly braces like {%d1} literally, preprend the symbol ~ to

indicate that Gekko should not try to in-substitute. For example:

tell 'The scalar name is ~{%d1}';

This will print 'The scalar name is {%d1}' on the screen, and not try to evaluate the
inside of the {}-curlies. If you need to format values, you can either use the
format() function, or use global formatting of {}-curlies via option string

565Gekko User Manual

T-T Analyse

interpolate format val = For instance. See more regarding format()

function in the Gekko functions section (the code '6:0.00' means a 6 character wide
field, where the number has exactly two decimals).

%v11 = 1/3; %v12 = 1/4; %v21 = 1/5; %v22 = 1/6;
tell '{format(%v11, '6:0.00')},{format(%v12, '6:0.00')}';
tell '{format(%v21, '6:0.00')},{format(%v22, '6:0.00')}';
//since the formatting is the same, you can use an option:
option string interpolate format val = '6:0.00';
tell '{%v11},{%v12}';
tell '{%v21},{%v22}';

// result:
// 0.33, 0.25
// 0.20, 0.17

Related statements

DISP, PRT

566 Gekko 3.1.x help system

T-T Analyse

4.3.88 TIME

The TIME statement sets global time used for subsequent time series operations etc.
The statement works for frequencies annual (a), quarterly (q), monthly (m), weekly

(w), daily (d) and undated (u). The TIME statement is the only way to change global

time. Dates have formats like 2020, 2020q3, 2020m3 or 2020m3d25. Note that week

numbering follows the ISO 8601 standard.

Syntax

time periods ;
time period ;
time ? ;

periods per1 per2

per1 Start period, for instance 2010 or 2010q1

per2 End period, for instance 2012 or 2012q4

period A single date that will be used as both start and end period.

? Shows the current time settings (also shown at the bottom of the main
window)

Example

If you only want to consider the year 2010, write:

time 2010 2010 ;
time 2010; //equivalent

If you want to use the period 1980 to 2010, write:

time 1980 2010;

statements like SERIES, PRT etc. respect global time if no time period is indicated in
the local <>-option field. In all the relevant statements (i.e. all statements operating
on time series), a local time period can be set inside the <> brackets, operating on
only the particular statement line.

https://en.wikipedia.org/wiki/ISO_8601

567Gekko User Manual

T-T Analyse

Global frequency is altered this way (here to quarterly):

option freq q;

This sets the frequency to quarterly ('m' for monthly, 'a' for annual, 'u' for undated).
If quarterly frequency is chosen, time periods are given as:

time 2000q2 2005q4;

That is, from second quarter of 2000 to fourth quarter of 2005 (both inclusive).
Months work similarly, for instance:

time 2000m2 2005m12;

This syntax regarding quarters and months can be used wherever it is relevant, for
instance in the PRT statement:

prt <2000m2 2005m12> fy, enl;

When the frequency is non-annual, you can still denote the time period by means of
integers (i.e. years). In that case, the full span of the sub-period is assumed: for
instance with quarterly frequency set, prt <2010 2012> would be equivalent to prt

<2010q1 2012q4>, and time 2010 2012 would be equivalent to time 2010q1

2012q4. Gekko will generally try to convert dates with "foreign" frequency into the

current frequency. Note: if the frequency is quarterly, the following TIME statement

time 2010;

will span 2010q1 to 2010q4, that is, the statement covers all the subperiods.

Note

With annual frequency, if you write a number small enough, Gekko assumes that you
intend to add 1900 to the number. So Gekko tranlates 95 into 1995 for instance.
Actually, in this way, you may write 125 instead of 2025, although this way of writing
is not recommended.

Timeseries may be converted from one frequency to another by means of the
COLLAPSE and INTERPOLATE comands.

568 Gekko 3.1.x help system

T-T Analyse

The TIMEFILTER statement may omit observations when printing etc., but can also be
used to average the non-shown periods into the shown periods. This can be practical
for timeperiods with many observations.

Local time periods like prt<2010 2015>x; do not allow the use of a single period, like

prt<2010>x;. A series statement can omit the 'SERIES' but keep the local time

period, for instance:

x <2020m1 2025m12> = 100; //same as series <2020m1 2025m12> x =
100;

Related statements

TIMEFILTER, COLLAPSE, BLOCK, OPTION freq = ...

569Gekko User Manual

T-T Analyse

4.3.89 TIMEFILTER

TIMEFILTER does not work for other frequencies than annual in Gekko 3.0 yet. For
PRT of annual series, <filter=avg> does not yet work.

The statement TIMEFILTER is used to indicate periods that are to be omitted in output
from TABLE, DISP, PRT and MULPRT. The statements PLOT, SHEET and CLIP are not
affected by the filter.

Syntax

timefilter filterperiods ;

filterperiods periods, periods, ... (note the comma)

periods singleperiod | periodlist

singleperiod Single observation

periodlist singleperiod .. singleperiod BY step (if you prefer, you may

use TO instead of .., and STEP instead of BY)

step An optional stepsize (default step: 1). Must be integer >= 1.
Omit BY step if not needed.

Examples

You may define periods like this:

timefilter 2010..2015, 2020..2030 by 5;

This results in the following:

Chosen periods: 2010, 2011, 2012, 2013, 2014, 2015, 2020, 2025,
2030
Hidden periods: 2016, 2017, 2018, 2019, 2021, 2022, 2023, 2024,
2026, 2027, 2028, 2029

570 Gekko 3.1.x help system

T-T Analyse

So when you use for instance PRT, you will get all periods from 2010 up to and
including 2015, and then the rest of the periods up to 2030 only shown every 5 years
(2020, 2025 and 2030). A normal print will look like this:

prt fY;

 fy [%]
 2010 1379471.0000 1.75
 2011 1431367.5000 3.76
 2012 1463109.6250 2.22
 2013 1491416.2500 1.93
 2014 1512247.3750 1.40
 2015 1534174.6250 1.45
 2020 1649068.8750 1.46
 2025 1773862.6250 1.47
 2030 1908568.7500 1.48

whereas an average-print will look like this:

prt <filter=avg> fY;

 fY %
 2010 1379471.0000 1.75
 2011 1431367.5000 3.76
 2012 1463109.6250 2.22
 2013 1491416.2500 1.93
 2014 1512247.3750 1.40
 2015 1534174.6250 1.45
 2016-2020 1602281.9750 1.45
 2021-2025 1723167.3250 1.47
 2026-2030 1853869.9250 1.47

Here, the skipped periods are averaged into the shown periods. For the absolute level
(the fY column), a simple average is used, whereas for the percentage column, a

more complicated averaging of growth rates is performed, in order to yield consistent
average growth rates for the aggregated periods

The filter is controlled via these general options:

· OPTION timefilter type = hide; [hide|avg]
· OPTION timefilter = no;

The last options shows whether filtering is to be applied or not, whereas the first
options selects the type of filtering. These can be overridden in the PRT statement,
for instance prt<filter>, prt<nofilter>, prt<filter=hide>, or prt<filter=avg>,

so that different filtering can be performed quite easily in the PRT statement, without
having to change the globals options.

571Gekko User Manual

T-T Analyse

Note

TIMEFILTER does not alter the TIME period settings. Note that this statement only
affects print layout (so SIM, SERIES etc. are unaffected by TIMEFILTER settings).
When simulating for instance, out-filtered periods would never be skipped: filtering
only affects visual reporting.

You may use TO instead of .. and STEP instead of BY when indicating periods, so

2010..2020 by 2 and 2010 to 2020 step 2 are equvialent (and the latter is more

similar to the FOR loop over DATEs).

Related statements

TIME, PRT

572 Gekko 3.1.x help system

T-T Analyse

4.3.90 TRACE2

TRACE2 shows data traces of timeseries statements in the data trace viewer. When
the syntax and inner workings of data tracing has matured, TRACE2 will become just
TRACE. The data trace viewer can also be started from the DISP command (click the
link).

NOTE: When running the same series statements again and again iteratively (for
instance, iterating over rows and columns in an input-output table until
convergence), you may consider switching off data tracing with option databank

trace = no;. For such solver-like scenarios, data tracing may slow down the

calculations needlessly.

Syntax

trace2 series ;

series A Gekko series or array-series.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

Examples

Consider this trace.gcm program file:

reset;
x1 = 1;
x2 = 2;
x = x1 + x2;
disp x;
trace2 x;

573Gekko User Manual

T-T Analyse

In the data trace viewer, you may click the ">" symbol to the left of x to unfold the

x1 and x2 sub-traces.

Data tracing is the ability of Gekko to trace timeseries operations backwards in time.
In the above example, when you print x, it will print as the value 3. Data tracing can

tell you that the value 3 originated from the statement x = x1 + x2, where x1

originated from x1 = 1 and x2 originated from x2 = 2 (x1 and x2 are "precedents" to

x). This explains the value 3. In addition to this, the data trace system can, among

other things, also tell the user when x, x1 and x2 were computed, in which Gekko

program file (and line), and over which time periods. The x data traces regarding x1

and x2 are kept even if x1 and x2 are subsequently deleted (but x is not).

Data tracing works in and out of databanks, so you may trace series statements
through Gekko databanks (.gbk). In Gekko >= 3.1.16, Gekko tracing is switched on
per default. To switch it off, you may use this option at the top of your Gekko
program:

option databank trace = no;
x1 = 1;
x2 = x1 + 2;
x3 = x1 + x2 + 3;
//no traces at all

To turn off tracing for only a few statement lines, you may use the following BLOCK
statement:

block databank trace = no;
 x1 = 1;
 x2 = x1 + 1;
end;
x3 = x1 + x2 + 3;
//x1 and x2 will not have traces

To turn tracing off for at a single statement, you may use this local option:

x1 <option databank trace = no> = 1;
x2 = x1 + 1;
x3 = x1 + x2 + 3;
//x1 will not have traces

Data tracing costs some performance and makes Gekko databanks larger. The data
trace time consumption is reported as a percentage after each Gekko job. See this
appendix for much more about this, and how traces can be occasionally pruned off
and stored in a central "archive trace databank".

574 Gekko 3.1.x help system

T-T Analyse

Functions

The following functions can be used together with data traces:

Function
name

Description Examples

traceDelete2
()
traceDelete2
(x)

Deletes all trace references
in the first-position
databank (or use x for an
optional databank name).
After this, a traceStats2()
will show 0 traces.

[New in Gekko 3.1.16]

tracedelete2();
tracedelete2('Work');

traceStats2(
)
traceStats2(
x)

For now, only a simple
overview of the number of
traces can be shown (x is
an optional databank
name). Depth = 0 means
traces that are directly
assigned to existing
timeseries, whereas depth
= n > 0 indicate traces
that are not assigned to
existing timeseries, but are
instead assigned to other
traces with depth = n-1.
Traces with depth > 0 can
be thought of as remnants
of timeseries that do not
(or do no longer) exist in
the particular databank.

[New in Gekko 3.1.16]

tracestats2();
tracestats2('Work');

Note

Data tracing has some similarities to decomposition of model equations. In both
cases, data values are tracked backwards to their origins. It is planned for data
tracing to be able to send off a data trace like for instance x = x1 + x2 to the

DECOMP engine for further analysis.

When a new trace is about to be added to a series x, Gekko will first check if the last

added trace is "practically identical" to the new one. If so, the new trace is omitted.
"Practically identical" means that the code and the file + line number are the same,

575Gekko User Manual

T-T Analyse

even though the entailed time period may differ. This avoids creating a web of trace
dependencies in time-loops like the following x <2010 2020> = 100; for val %t =

2010 to 2020; x[%t] = x[%t] + 1; end;. Here (and in contrast to x = 100; x =

x + 1;), x will get a trace corresponding to each year in the loop. But the 2020-trace

will only point to the 2010-trace as a subtrace, not to the 2011-trace, the 2012-trace
and so on.

Related options

OPTION databank trace = yes; [yes|no];

Related statements

DECOMP, DISP, PRT, SERIES

576 Gekko 3.1.x help system

T-T Analyse

4.3.91 TRANSLATE

The statement translates command files (.cmd) from AREMOS or older versions of
Gekko.

· Translate from AREMOS to Gekko 3.0. Details here.
· Translate from Gekko 2.0/2.2/2.4 to Gekko 3.0. Details here.
· Other translation: <move>, <remove> for Gekko 3.0 files.

Note: to translate from Gekko 1.8 to Gekko 2.0, this is possible using for instance the
Gekko 2.4 or 3.0 stable release versions. The 1.8 to 2.0 translator is not available in
Gekko 3.1.x.

Note that the translators are for command files (.cmd/.gcm), not model files (.frm).

The user is advised to compare the non-translated and translated files line by line,
perhaps with a file comparison utility. The translators are by no means perfect, and
should be thought of as translation guides.

Syntax

translate < AREMOS GEKKO20 MOVE REMOVE KEEPTYPES > filename ;

AREMOS (Optional). Translates command files (.cmd) from AREMOS syntax.
If you prefer to omit parentheses around lists of numbers in
SERIES statements, you can use TRANSLATE<remove> to remove
these afterwards.

GEKKO20 (Optional). Translates program files (.gcm) from Gekko
2.0/2.2/2.4 syntax to Gekko 3.0 syntax. NOTE: the translator is
not intended for .frm files (model files). Use TRANSLATE <gekko20

keeptypes> ... ; to keep type keywords in assignment

statements.

KEEPTYPES (Optional). An option for the Gekko 2.0 translator only. You may
optionally keep types when translating assignments, so that VAL x

= 100; becomes VAL %x = 100; instead of just %x = 100;.

Applies to SERIES, VAL, DATE, STRING, LIST and MATRIX.

MOVE (Optional). A simple translator that moves the <>-field in
assignments (typically SERIES statements). For instance: <2010

2020> y = 100; becomes y <2010 2020> = 100;. This translator

does not touch anything else, so it is for existing 3.0 files where
the user would like to move the option fields. It will also convert
series <2010 2020> y = 100; into series y <2010 2020> =

100;, but not remove the SERIES keyword.

https://en.wikipedia.org/wiki/AREMOS

577Gekko User Manual

T-T Analyse

REMOVE (Optional). A simple translator that removes superfluous ()-
parenteses around a comma-separated list of numbers in
assignments (typically SERIES statements). For instance: y = (2,

3, 4); becomes y = 2, 3, 4;. This translator does not touch

anything else, so it is for existing 3.0 files where the user would
like to remove such parentheses.

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put
inside quotes. Regarding reading of files, files in libraries can be
referred to with colon (for instance lib1:bank.gbk), and "zip

paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

The translator to Gekko 3.0 will create a new file with "_translate" added to the file
name.

Examples

To translate calc2.cmd (written in AREMOS) to calc2.gcm (Gekko 3.0 syntax), use

translate <aremos> calc2;

Translate p.gcm (written in Gekko 2.0/2.2/2.4) to p_translate.gcm (Gekko 3.0):

translate <gekko20> p;

The translators will do their best to come up with syntax suggestions to suit Gekko
3.0, but be warned that the resulting file may not even parse or run, or if it runs, it
may even yield the wrong results! So please use with some care. That being said, the
translators typically alleviate quite a lot of tedious editing of relatively easy code, so
that the user can concentrate on translating the more tricky parts.

Please inspect the code thoroughly afterwards, preferably with a file comparing tool.
(For instance in Total Commander: mark the two files, and use 'Files' --> 'Compare
by content' to highlight the differences).

Related statements

RUN

578 Gekko 3.1.x help system

T-T Analyse

579Gekko User Manual

T-T Analyse

4.3.92 TRUNCATE

TRUNCATE shortens a timeseries, so that the observations outside the given period
are discarded.

Syntax

truncate < period > variables ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4

or %per1 %per2+1.

variables A list of variables to truncate

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

· Looping: with a list like for instance #m = a, b;, you may use truncate x{#m}; to

truncate xa and xb.

Example

To remove all data outside the sample 1990-2010 for all variables starting with 'fx' in
the first-position databank:

truncate <1990 2010> fx*;

You may omit the period:

truncate p1, p2, p3;

In that case, the three variables are truncated according to the global time period.

Related statements

SERIES

580 Gekko 3.1.x help system

T-T Analyse

4.3.93 UNFIX

UNFIX works in conjunction with SIM<fix>. It removes any goals/means set with the
EXO and ENDO statements.

Syntax

unfix ;

Example

See the examples in the ENDO help file.

Note

Note that when ENDO and EXO are active, there is a target icon at the bottom right
in the user interface, stating the number of goals and means set. After UNFIX, this
icon disappears, since there are no more goals/means set for SIM<fix>.

Related options

OPTION model type = default; //default | gams

Related statements

ENDO, EXO, SIM

581Gekko User Manual

T-T Analyse

4.3.94 UNLOCK

UNLOCK is used to set an open databank editable.

Syntax

unlock databank ;

Example

open mybank;
unlock mybank;

This opens up mybank in the last position on the databank list (F2), and sets it
editable (so that data inside can be changed).

Note

You may use OPEN<edit> to open an editable databank in the first position.
open<edit>mybank; is actually short for open<first>mybank; unlock mybank;.

Related statements

LOCK, OPEN

582 Gekko 3.1.x help system

T-T Analyse

4.3.95 VAL

The VAL statement is used to assign a numeric value to a scalar variable of value
type. Value names always start with the symbol %, like the other scalar types date

 and string. Using the VAL keyword is no longer mandatory in Gekko 3.0.

Note: the VAL type is sometimes called 'val' and sometimes 'value' in this
documentation. These two are the exact same thing. Note however that you must
use 'val' and not 'value' as type description in function and procedure definitions,
and in for loops. Note also that Gekko has no integer type: just use a VAL type.

Value scalars can be used in expressions, for instance in series or in
PRT/MULPRT/PLOT/SHEET/CLIP statements. An integer value may be used as an
annual or undated date.

Syntax

%v = expression;
val %v = expression;
val ?; //print val scalars

It is no longer legal to use for instance val v = 1.23;, omitting the %.

Example

You may use values as a container for fixed floating point numbers for use in your
program.

%v1 = 1.10;
%v2 = 1/(10 + %v1);
tell '{%v1}, {%v2}';
prt %v1, %v2;
tg = %v1 * tg;
tg <2010 2013> += (%v2, -%v2, 0.5*%v2, 0.01); //must use
parentheses when not simple numbers

When printing values and series at the same time in a PRT statement, note that
these values are held constant over any time period.

You can pick out individual timeseries observations with [] and put these into a
value:

%gdp2020 = gdp[2020];

After this, the value %gdp2020 stores the value of series gdp in 2020.

583Gekko User Manual

T-T Analyse

You may loop over value ranges, see FOR.

To convert dates or strings into values, you may use the val() function.

You may compose the value names if you need to, using {}-curlies:

for val %i = 1 to 3;
 %v{%i} = 100 * %i; //defines %v1 = 100, %v2 = 200, %v3 = 300
end;
for val %i = 1 to 3;
 %v = %v{%i};
 tell 'Index {%i} has value {%v}';
end;

The result:

Index 1 has value 100
Index 2 has value 200
Index 3 has value 300

Here, the expression %v{%i} picks out the corresponding v-value. In general

however, for such use column vectors (n x 1 matrices) or lists or values are
recommended, cf. the identical example in the MATRIX section.

The following creates values from a list:

reset;
for string %i = a, b, c; //or: for string %i = ('a', 'b', 'c');
 %{%i} = 100;
end;
mem;

This creates value scalars %a, %b and %c, all with value 100.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

If you need to convert a date or string scalar to a avlue type, use the val()
conversion function.

You may use m() to indicate a missing value.

584 Gekko 3.1.x help system

T-T Analyse

See also the format() function and OPTION string interpolate format val = ... ;
regarding {...}-formatting of values inside strings.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

Related options

OPTION string interpolate format val = "";

Related statements

DATE, STRING, SERIES, FOR, IF

585Gekko User Manual

T-T Analyse

4.3.96 VAR

Gekko statements of the type ... = ... ; assign the right-hand side expression to

the left-hand side variable, which is also called an assignment. Assignments can be
done for different types of variables, and you can read more about the specific
variable types and their syntax on these pages: SERIES, VAL, DATE, STRING, LIST,
MAP and MATRIX.

The var keyword can always just be omitted, so it is in a sense superfluous in

assignment statements. For example, these three statements are equivalent:

y = 100;
var y = 100;
series y = 100;

The first statement works because Gekko notices that the left-hand side variable has
no type symbol % or #, so the variable must therefore be a timeseries (with constant

value 100). The next statement just adds the superfluous var keyword. The third

statement guarantees that y ends up being a timeseries, but we knew this already.

Therefore,

If you use a type indicator, it will guarantee that the left-hand side of the expressions
ends up being of the indicated type. For instance:

date %x = 2020;

In this case, the right-hand side is actually a numeric value (it would have been a
date, if it had been stated as for instance 2020a, or 2020q3), and the date keyword

indicates that Gekko should try to convert the right-hand side into a date, which is
possible in this case. On the contrary,

var %x = 2020;

does not indicate any type on %d, so %d will end up being a value type. The same goes

for the following:

%x = 2020;

In this case, %d also ends up being a value type, too. As a last note, the following

statements are equivalent:

date %d = 2020;
%d = date(2020);

586 Gekko 3.1.x help system

T-T Analyse

To conclude: in most cases, the type identifier (or the var keyword) can just be

omitted in assignment statements (statements of the form ... = ... ;, unless the

user wants to be absolutely sure of the type of a given left-hand side variable. The
following are examples of the compact way of assigning, without using type indicators
or VAR:

x = 100; //will become a series
x <2020 2030> = 100; //will become a series
%x = 'abc'; //will become a string
%x = 2.5; //will become a value
%x = 2020; //will become a value: works fine
as annual date, too
#x = (1, 2*3-4); //will become a list of values
#x = 1, 2; //allowed for simple numbers (no
math expressions).
#x = ('a', 'b'); //will become a list of strings,
"#x = a, b;" can be used too
#x = a, b; //allowed for simple strings
#x = (%x1 = 'abc', %x2 = 2.5); //will become a map
#x = [1, 2]; //will become a 1x2 matrix (row
vector)

In this appendix, variable assignment rules, including variable types, is explained in
more detail.

Related statements

 SERIES, VAL, DATE, STRING, LIST, MAP, MATRIX

587Gekko User Manual

T-T Analyse

4.3.97 WRITE

The statement writes variables to a Gekko databank file (.gbk). A .gbk file is a
Gekko-specific binary databank format that stores series, values, dates, strings, lists,
maps, and matrices.

Syntax

write < period RESPECT > filename ;
write < period RESPECT > variables FILE=filename ;

period (Optional). Without a time period indicated, Gekko will write all
the data for all observations. When a period is indicated, the
written data(bank) is truncated.

RESPECT (Optional). With this option, if no period is given, the global
period is used.

variables Variables or lists (wildcards and bank indicators may be used),
and items may be separated by commas. If no variables are
given, the full first-position databank is written.

filename Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path

\gekko\bank.gbk. Filenames containing blanks and special

characters should be put inside quotes. Regarding reading of
files, files in libraries can be referred to with colon (for instance
lib1:bank.gbk), and "zip paths" are allowed too (for instance c:

\projects\data.zip\bank.gbk). See more on filenames here.

· If no period is given inside the <...> angle brackets, no time period is used.
· If a variable is stated without databank, the databank is assumed to be the first-

position databank.

There is the following equivalence between WRITE and EXPORT: WRITE =
EXPORT<all>, and the inverse: EXPORT = WRITE<respect>. If a local period is set,
WRITE and EXPORT behave in the same way.

Examples

You may write the contents of the first-position databank like this:

write data;

588 Gekko 3.1.x help system

T-T Analyse

This will produce the file data.gbk, containing the first-position databank. If you only

want subset of the variables (or a subset of the time period), you may write for
instance:

write<2040 2050> fy, fe, fm FILE=sim4050;

This produces the file sim4050.gbk, containing the three variables fy, fe, fm over

the period 2040-50. If practical, you may also use wild-card lists:

write fx* file=fxfile;

This writes all variables starting with fX to the file fxfile.gbk. Actually write **

file=databank; is equivalent to write databank;, cf. the wildcards page regarding

the double star ** notation. To write a list of strings containing variable names, use

{}-curlies:

#m = fy, fe, fm; //or: #m = ('fy', 'fe', 'fm);
write <2040 2050> {#m} FILE=sim4050;

Without the braces, the list #m itself would have been written, not the three series.

Note

If option folder = yes, and option folder bank is set, the WRITE statement tries

to write to that particular folder instead of the working folder.

If a model has been loaded, and all the endogenous variables of the model exist in
the first-position databank, the WRITE statement will store info regarding the model,
last simulation period etc. inside the .gbk file. After this, when reading the databank
again, a link to this model info is provided. This can be practical when in doubt about
when the variables in a given databank were simulated, the simulation period, the
model name and signature, etc.

Gekko 3.x.x always writes a gbk databank in the 1.2 format version. See more about
gbk formats under the READ statement, including how to exchange data between
newer and older Gekko versions.

See the Gekko menu 'Options' --> 'Program dependency tracking' or use option

global dependency tracking = ...; to activate dependency tracking, so that the

use of external files (for instance program files, read/written databanks etc.) are
shown as a list at the end of a Gekko session.

589Gekko User Manual

T-T Analyse

Related options

OPTION folder bank = [empty];

Related statements

READ, IMPORT, EXPORT, SHEET, MODEL, HDG

590 Gekko 3.1.x help system

T-T Analyse

4.3.98 X12A

The X12A (X12-arima) performs seasonal adjustment on quarterly or monthly data.
The component uses a well-known external component developed by the US Census
Bureau, and is similar to the AREMOS command with the same name. (Later on, X13-
arima-seats and Tramo-Seats might be provided in Gekko, perhaps via the
JDemetra+ project).

Syntax

x12a < period PARAM=... BANK=... > variables ;

period (Optional). If not stated, Gekko will use the global time period.

variables Variables and/or list(s). Wildcards may be used.

PARAM= (Optional). A text string containing parameter values for X12A. If a
parameter string is not provided, Gekko will use 'save=(d10, d11,
saa) mode=mult sigmalim=(1.50,2.50) seasonalma=msr

force=totals' as default parameter. With the default parameter, if

you are correcting the series y, the series y_saa is the result.

BANK= (Optional). A databank name indicating where the timeseries are
located.

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

Gekko appends the save=(...) types with underscore in the timeseries names, for

instance y_saa for the saa type.

Example

You may try the following example:

reset;
option freq q;
create y;

https://en.wikipedia.org/wiki/AREMOS

591Gekko User Manual

T-T Analyse

time 2000q1 2009q2;
y = 85.2, 87.2, 87.1, 87.2, 87.3, 90, 90.1, 90.4, 90.5, 92.4, 92.5,
94.7, 96.3, 98.5, 98.6, 98.5, 99.2, 99.8, 100.4, 100.5, 101.2,
 102.3, 101.9, 101.7, 102.9, 103.5, 103.5, 103.5, 104.6, 104.5,
104.9, 104.9, 105.9, 106, 106, 106, 106.5, 106.7;
%p = 'save=(d10, d11, saa) mode=mult sigmalim=(1.50,2.50)
seasonalma=msr force=totals';
x12a <param = %p> y; //the parameter could be omitted here,
because the default parameter is identical
plot y, y_saa;

Result:

Note the parameter save = (d10, d11, saa). You can choose between c17, d10,

d11, d12, d13 and saa. The last one is only available if force=totals is set as

parameter. Normally, the _saa series is considered the output of X12A.

Note

For much more information on X12-arima, see
https://www.census.gov/ts/x12a/v03/x12adocV03.pdf from the US Census Bureau.
See section 2.7 regarding program limits. It seems that there is a limit starting at
around 60 years of data. For quarterly data, only up to 60 calendar years are
supported. And for monthly data, only up to 59 years (708 months) are supported. To
remedy this, you may split the period into overlapping sub-periods and use SPLICE to
splice them.

https://www.census.gov/ts/x12a/v03/x12adocV03.pdf

592 Gekko 3.1.x help system

T-T Analyse

Please note that all the parameters are located inside a text string.

If you need to inspect the results in more detail, please inspect the tempX12aFile...

files in the temporary files folder (cf. the Gekko menu Help --> About...).

If you need more advanced seasonal correction, you may consider using the R
interface (see R_RUN). R contains quite a lot of facilities for seasonal correction.

The example can be exactly reproduced in AREMOS with the following AREMOS
command:

x12a y d10,d11,saa "mode=mult sigmalim=(1.50,2.50) seasonalma=msr
force=totals print=alltables";

Related statements

COLLAPSE, SMOOTH

593Gekko User Manual

T-T Analyse

4.3.99 XEDIT

The XEDIT statement uses the open-source XML Notepad xml editor to open up the
designated file. The statement is practical for editing plot files (.gpt), or table files
(.gtb). In general, a xml editor is much easier to use for editing xml files than a text
editor.

Tip: use 'View' --> 'Expand All' to unfold all XML nodes for better overview. Use
Ctrl+D to duplicate a xml node (including its children nodes). The nodes are easy to
copy, delete and move areound in XML Notepad.

Syntax

xedit filename ;

filena
me

Filenames may contain an absolute path like c:

\projects\gekko\bank.gbk, or a relative path \gekko\bank.gbk.

Filenames containing blanks and special characters should be put inside
quotes. Regarding reading of files, files in libraries can be referred to
with colon (for instance lib1:bank.gbk), and "zip paths" are allowed too

(for instance c:\projects\data.zip\bank.gbk). See more on filenames

here.
The extension .gpt is automatically added, if it is missing. If the filename
is set to '*', you will be asked to choose the file in Windows Explorer.

Examples

You may use this to open up the file p.gpt from the working folder:

xedit p;

The .gpt extension is automatically inserted. You may select .gpt files like this:

xedit *;

This will open up a file dialog with .gpt files to choose from (you can choose other
extensions, too).

To edit a table file called t1.gtb, you may use:

https://xmlnotepad.codeplex.com/

594 Gekko 3.1.x help system

T-T Analyse

xedit t1.gtb;

Related statements

SYS, EDIT, PLOT, TABLE

595Gekko User Manual

T-T Analyse

4.4 Gekko functions

Gekko in-built functions can be used in expressions. The input parameters and the
output type is described. The functions are divided into categories.

· Functions. Details on Gekko functions.

Note that user-defined functions are possible, too. See the FUNCTION statement.

596 Gekko 3.1.x help system

T-T Analyse

4.4.1 Functions

Gekko has a number of in-built functions, listed below. Note that all Gekko functions
implement so-called UFCS so that a function like for instance f(x, y) can generally

be written as x.f(y), and f(x) can generally be written as x.f().

Mathematical functions:

Function
name

Description Examples

abs(x) Returns the absolute value
of x (series, val or matrix).
Returns:
series/value/matrix

%v1 = abs(%v2);

avg(x1,
x2, ...)

Returns the average of x1,
x2, ... etc. The input
parameters may be series
or value.
Returns: series/value

y = avg(x1, x2, x3);
%v = avg(%v1, %v2, %v3);

avgt(x)
avgt(<t1
t2>, x)

Returns the time-average
of the observations of the
timeseries x over the
local/global time period (or
over t1 to t2, if indicated)
Returns: series

y = avgt(x);
y = avgt(<2020 2025>, x);
y = x.avgt(<2020
2025>); //same as above

ceiling(x) Returns the the smallest
integer which is greater
than or equal to x (series,
val or matrix). See also
int(), floor() and

round().

Returns:
series/value/matrix

prt ceiling(-2.2);

dif(x) or
diff(x)

Absolute time-difference of
 series x: can also be used
on left side of '='. Does not
work on value.
Returns: series

y = dif(x);
dif(y) = 100;

dify(x) or
diffy(x)

Yearly difference. Same as
dif(x), but will use 4 lags

y = dify(x);

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

597Gekko User Manual

T-T Analyse

for quarterly data, and 12
lags for monthly data.
Returns: series

dlog(x) Logarithmic time-difference
of series x: can also be
used on left side of '='.
Does not work on value.
Returns: series

y = dlog(x);
dlog(y) = 0.02;

dlogy(x) Yearly logarithmic time-
difference. Same as
dlog(x), but will use 4 lags

for quarterly data, and 12
lags for monthly data.
Returns: series

y = dlogy(x);

exp(x) Returns the exponential
value of x (series, value or
matrix).
Returns: series/value

y = exp(x);
%v1 = exp(%v2);

floor(x) Returns the largest integer
which is less than or equal
to x (series, val or matrix).
See also int(), ceiling()

and round().

Returns:
series/value/matrix

prt floor(-2.2);

iif(in1, op,
in2, out1,
out2)

Conditional, works like an if
statement. Think of it like
if in1 op in2 then out1

else out2, where op is a

string containing the
operator ==, <>, <, <=, >=,

>. The function can be used

to avoid explicit time
looping for timeseries. The
op input must be a string,
and the rest of the inputs
must be of math type
(there is another iif()-

example here). If needed,
you can use == (or <>)

together with m() to test

for the presence of missing
values, see example.

time 2010 2012;
in1 = 1, 2, 3;
in2 = 3, 2, 1;
y1 = iif(in1, '<=', in2, 50,
100);
//Result: y1 = 50, 50, 100.

in3 = 100, m(), 300;
y2 = iif(in3, '==', m(),
1000, in3);
//Result: y2 = 100, 1000, 300

598 Gekko 3.1.x help system

T-T Analyse

You may alternatively use
$-conditionals, see
examples under SERIES.
See also the replace() and

isMiss() functions for

series.
Returns: series/value

int(x) Returns the integer value
of x (series, val or matrix),
discarding the fractional
part (after the .). See also

floor(), ceiling() and

round().

Returns:
series/value/matrix

prt int(-2.2);

isMiss(x)
isMiss(x,
'all')

The input parameter may
be series or value, and the
function returns 1 or 0 (or
1's and 0's).

If x is a series, the first
variant of the function
returns 1, else 0, over the
period that contains data
(cf. fromSeries(x,

'dataStart') and
fromSeries(x,

'dataEnd')). With option

'all', the local or global

period is used instead.

An example is provided
regarding how to replace
missing values inside
series, but note that this
can also be done with the
iif() or replace()

functions.

Returns: series/value

prt isMiss(1);
prt isMiss(miss());
time 2020 2023;
xx = 1, m(), 3, m();
prt <n> x, isMiss(xx), 1 -
isMiss(xx);
//Note that for 2023, the
function returns a
//missing value. The function
only finds missing
//values between non-missing
values.
prt <n> xx, isMiss(xx,
'all');
//With 'all' option, missing
values that are not
//enclosed between non-
missing values will be
//set to 1, too.
prt sumt(isMiss(xx, 'all'));
//Prints the number of
missings over 2020-23.

time 2001 2005;
x = 1, 2, m(), 4, 5;
y = 100;
y = y $ (x.isMiss()) + x $
(not x.isMiss());
//y becomes 1, 2, 100, 4, 5.

lag(x, lag) Lags series x a number of
periods. Note the sign of
the lag: lag(x, 2) = x[-

y = lag(x, 2); //same as x[-
2]

599Gekko User Manual

T-T Analyse

2]. Can be used if x is an

expression.
Returns: series

log(x) Returns the natural
logarithmic value of x
(series, value or matrix).
Can also be used on the left
side of '='.
Returns:
series/value/matrix

y = log(x);
%v1 = log(%v2);
log(y) = a * log(b);

max(x1,
x2, ...)

Finds the largest value.
Arguments may be value,
series or date.
Returns: value/series/date.
[New in 3.1.6]

prt max(2, 4, 1, 3);
prt max(2000q1, 2000q4);
time 2001 2003;
x1 = 1, 2, 3;
prt max(x1, 2);

min(x1,
x2, ...)

Finds the lowest value.
Arguments may be value,
series or date.
Returns: value/series/date.
[New in 3.1.6]

prt min(2, 4, 1, 3);
prt min(2000q1, 2000q4);
time 2001 2003;
x1 = 1, 2, 3;
prt min(x1, 2);

mod(x1, x2) Modulo, the remainder of
the division x1/x2.
Returns: value/series.
[New in 3.1.12]

%x = mod(7, 4); //3
%x = mod(8, 4); //0
%x = mod(9, 4); //1

movavg(x1,
lags)

Moving average of series
x1.
Returns: series

y = movavg(x, 3);
y = (x + x[-1] + x[-
2])/3; //same

movsum(x1,
lags)

Moving sum of series x1, cf.
movavg().

Returns: series

y = movsum(x, 3);
y = x + x[-1] + x[-
2]; //same

pch(x) Percentage growth in series
x: can also be used on left
side of '='. Does not work
on value.
Returns: series

y = pch(x);
pch(y) = 2;

pchy(x) Yearly growth. Same as
pch(x), but will use 4 lags

for quarterly data, and 12
lags for monthly data.

y = pchy(x);

600 Gekko 3.1.x help system

T-T Analyse

Returns: series

pow(x, y) The exponent must be a
value or number, not a
series. The function pow(x,

y) is equal to x**y or x^y,

that is, a in the y'th power.
You may use power(x, y)

as synonym.
Returns: series/value

y = pow(x1, %x2);
%v = pow(%x1, %x2);

rnorm(mean,
var)
rnorm(mean,
vcov)

Returns a random number
from a normal distribution
with mean and variance
provided. If fed with a n x 1
matrix of averages, and a n
x n covariance matrix, the
function will return a n x 1
matrix of values. See also
rseed() and runif().

Returns: value/matrix

%n = rnorm(0, 1);
%n = rnorm(-100, 25**2);
#n = rnorm(#mean, #vcovar);

rseed(x) Given value x, it sets a
random seed for runif()

and rnorm() functions. The

function returns the seed
as a value, but can be used
without return value.
Returns: value

rseed(12345);

round(x, d) Rounds x (series, val or
matrix) to d decimal places.
See also int(), floor()

and ceiling().

Returns:
series/value/matrix

%v1 = round(%v2, 3);

runif() Returns a random number
from a uniform distribution
between 0 and 1. See also
rseed() and rnorm().

Returns: value

%v = runif();

seq(start,
end)

Returns a list of integer
values or dates between
start and end (both
included). Start and end

#m = seq(1, 100);
#t = seq(2001q1, 2005q4);

601Gekko User Manual

T-T Analyse

must be two values or two
dates.
Returns: list

sqrt(x) Returns the square root of
x (series, value or matrix).
Returns:
series/value/matrix

y = sqrt(x);
%v1 = sqrt(%v2);

sum(x1,
x2, ...)
sum(list, x)

Returns the sum of x1,
x2, ... etc. The input
parameters may be series
or value.
If the first argument is a
list name (or a list of list
names), the sum function
will sum the second
argument over these lists.
Returns: series/value

y = sum(x1, x2, x3);
%v = sum(%v1, %v2, %v3);

y = sum(#j, x[a, #j]);
y = sum((#i, #j), x[#i, #j]);
y = sum(#j, xa{#j});
y = sum((#i, #j), x{#i}{#j});

To sum a simple list #j of series

names, you may use this:

y = sum({#j}); //shorter than
sum(#j, {#j})

Note that for PRT/PLOT etc., you
should use the more explicit PRT

sum(#j, {#j}); because

PRT/PLOT auto-unfolds
'uncontrolled' lists into
columns/lines.

sumt(x)
sumt(<t1
t2>, x)

Returns the time-sum of
the observations of the
timeseries x over the
local/global time period (or
over t1 to t2, if indicated)
Returns: series

y = sumt(x);
y = sumt(<2020 2025>, x);
y = x.sumt(<2020
2025>); //same as above

tanh(x) Returns the hyperbolic
tangens of x (series, value
or matrix). Returns:
series/value/matrix

%x = tanh(0.5);

Conversions

Function
name

Description Examples

602 Gekko 3.1.x help system

T-T Analyse

date(x) Tries to convert the scalar x
to date type. See also
under "date combining
functions".
Returns: date

%d = date(2000+15);
Result: %d = 2015.

dates(x) Tries to convert each
element of the list x into a
date.
Returns: list

#m1 = (2001, 2002, 2003);
#m2 = dates(#m1); //or:
#m1.dates()

data(x) Converts a string x
containing blank-separated
numbers to a list of values.
Returns: list of values

#m = data('1 2 3');
x = data('1 2 3');

format(x,
code)

Formats the
value/date/string x by

means of the formatting
code. The formatting code

is as follows for values:

'[width]:[format]'
'[width]:[format]
=[culture]'

The width specifies that the
string will be at least
[width] characters wide. If

the [width] is positive, the

number is right-aligned
within the field, and if it is
negative, it is left-aligned.

The [format] follows the

conventions shown here or
here, so you may either use
a pattern like 0.000 or

0.### (exactly three digits

or at most three digits), or
you may use a description
like F3 (floating point, three

digits). So 12:0.000 or

12:F3 are both a 12

characters wide field, and a
number with three
decimals.

%v = 12.3456;
%d = 2020q1;
%s = 'abc';

tell;
tell '123456789012' + '|';
tell '------------' + '|';
tell %v.format('0.000') +
'|';
tell %v.format('12:0.000') +
'|';
tell %d.format('12') + '|';
tell %s.format('12') + '|';
tell %v.format('-12:0.000') +
 '|';
tell %d.format('-12') + '|';
tell %s.format('-12') + '|';
tell '------------' + '|';

// 123456789012|
// ------------|
// 12.346|
// 12.346|
// 2020q1|
// abc|
// 12.346 |
// 2020q1 |
// abc |
// ------------|

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-numeric-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings

603Gekko User Manual

T-T Analyse

The [culture] argument

after an optional = symbol

changes how thousands and
decimal operators look like.
For instance, en-US is

English (US variant), da-DK

is Danish, see the possible
cultures here. So
format(1234567.8987,

'0,0.00=da-DK') will

return 1.234.567,90.

Without culture, it would
return 1,234,567.90.

A value format can be set
globally with option
string interpolate

format val = ... ;. This

can be practical when
printing out for instance a
table of values with the
same value formatting.

You may also format strings
or dates: in that case only
[width] can be used

(positive or negative). In
this way, table-like
alignment is quite
straightforward.

Returns: string.

string(x) Tries to convert the scalar x
to string type. See also
under "string combining
functions".
If x is a list of strings, the
string() function returns a
comma-separated list of
strings.
Returns: string

%s = string(12) + string(34);
Result: %s = '1234'.

strings(x) Tries to convert each
element of the list x into a
string.
Returns: list

#m1 = (1, 2, 3);
#m2 = strings(#m1); //or:
#m1.strings()

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-lcid/a9eac961-e77d-41a6-90a5-ce1a8b0cdb9c

604 Gekko 3.1.x help system

T-T Analyse

val(x) Tries to convert the scalar x
to value type.
Returns: value

%v = val('12' + '34');
Result: %v = 1234.

vals(x) Tries to convert each
element of the list x into a
value.
Returns: list

#m1 = ('1', '2', '3');
#m2 = vals(#m1); //or:
#m1.vals()

Date combining functions

Function
name

Description Examples

date(d, f,
opt)
date(d, f)

Converts the date d into a
new date with frequency f
(string). The optional option
can be omitted, or be
'start' or 'end'. Using

'start' or 'end' is only

relevant when converting
from a lower to a higher
frequency.

Beware that week numbers
are special around New
Year.

Returns: date

%d = 2021q1;
prt %d.date('a'); //2021
prt %d.date('m'); //error!
prt %d.date('m',
'start'); //2021m1
prt %d.date('m',
'end'); //2021m3
prt %d.date('w',
'start'); //2020w53 !!
prt %d.date('w',
'end'); //2021w13
//Note that the first week
that fully
//contains the first quarter
of 2021 starts
//in 2020!

date(y, f,
sub)
date(y, 'm',
m, 'd', d)

Constructs a new
quarterly/monthly/weekly
date from y (integer),
frequency (string), and
subperiod (integer). You
may also construct a daily
date with a similar syntax.

Note: you may also use
date(x), where x can be a
value or a string, and
Gekko will try to convert
the argument into a date.

Returns: date

%d = date(2020, 'q',
2); //2020q2
%d = date(2020, 'w',
42); //2020w42
%d = date(2020, 'm', 12, 'd',
24); //2020m12d24

fromExcelDa Converts an Excel date (the See examples regarding the

605Gekko User Manual

T-T Analyse

te(v) val v, counting the number

of days since January 1,
1900) to a date with daily
frequency.

Returns: date (daily)

toExcelDate() function.

getFreq(d) Extracts the frequency of a
date
Returns: string

%d = 2020q2;
prt %d.getfreq(); //'q'

getDay(d) Extracts the day number
from a date. Will fail if the
date is not daily.
Returns: value (integer)

%d = 2020m3d25;
prt %d.getday(); //25

getSpecialDa
y(year,
name)

Finds a special day by year
and name, and returns its
daily date. Mostly used for
holidays. If you input a
wrong name, Gekko will
provide a link showing all
possible special days.
Current possible holiday
names (English, and
equivalent Danish names):

New_Years_D
ay

Nytaarsdag

Leap_Day Skuddag
Maundy_Thur
sday

Skaertorsdag

Good_Friday

Langfredag

Easter_Sunda
y

Paaskedag

Easter_Monda
y

Anden_paask
edag

Labour_Day

Foerste_maj

General_Pray
er_Day

Store_bededa
g

Ascension_Da
y

Kristi_himmel
fartsdag

Whit_Sunday

Pinsedag

Whit_Monday

Anden_pinsed
ag

Constitution_ Grundlovsdag

prt
2021
.getSpecialDay
('Easter_Sunday'); //2021m4d4
prt
2021
.getSpecialDay
('Paaskedag'); //same day

for(val %year = 2021 to
2025);
 %day = %
year
.getSpecialDay
('Christmas_Eve');
 %s = %day.getWeekday('en');
 tell 'In {%year}, Christmas
Eve is on a {%s}';
end;
//Result:
//In 2021, Christmas Eve is
on a Friday
//In 2022, Christmas Eve is
on a Saturday
//In 2023, Christmas Eve is
on a Sunday
//In 2024, Christmas Eve is
on a Tuesday
//In 2025, Christmas Eve is
on a Wednesday

prt
2020
.getSpecialDay('Leap_Day');
prt
2021
.getSpecialDay('Leap_Day');

606 Gekko 3.1.x help system

T-T Analyse

Day
Christmas_Ev
e

Juleaften

Christmas_Da
y

Foerste_juled
ag

Boxing_Day

Anden_juleda
g

New_Years_E
ve

Nytaarsaften

Note that getSpecialDay(%

year, 'Leap_Day') may

return a null value, else it
returns February 29 in leap
years). The leap day is not
a holiday, but is
nevertheless kept in this list
of special days. See
example.

%y = 2020;
if(not %
y
.getSpecialDay
('Leap_Day').isNull());
 //code to handle if %y is a
leap year
end;

getMonth(d)
getMonth(d,
lang)

Extracts the month number
from a date. More specific
than getSubPer(), and will
fail if the date is not
monthly or daily.

You may input a language
('en' = English, 'da' =

Danish), in which case a
string is returned.

Returns: value (integer) or
string

%d = 2020m2;
prt %d.getmonth(); //2
prt %
d
.getmonth
('en'); //'February'
prt %d.getmonth('en').lower()
[1..3]; //'feb'

getQuarter(d
)

Extracts the quarter
number from a date. More
specific than getSubPer(),
and will fail if the date is
not quarterly.
Returns: value (integer)

%d = 2020q2;
prt %d.getquarter(); //2

getSubPer(d
)

Extracts the sub-period
from a date (1 if annual or
undated, the quarter if
quarterly, the month if
monthly or daily, and the
week if weekly).
Returns: value (integer)

%d = 2020q2;
prt %d.getsubper(); //2

607Gekko User Manual

T-T Analyse

getWeek(d) Get the week number from
a date of weekly frequency.
Does not accept daily
frequency as argument, but
the conversion date('w')

can be used as intermediary
for this (see examples).
Beware that the year may
change when converting
from daily to weekly
frequency.
Returns: value (integer)
[New in 3.1.13]

%d = 2020w20;
p %d.getWeek(); //20
p %d.getYear(); //2020

%d = 2019m12d31;
p %d.getWeek(); //error!
p %d.date('w').getWeek(); //1
p %
d
.date('w').getYear(); //2020!

%d = 2021m1d1;
p %
d.date('w').getWeek(); //53
p %
d
.date('w').getYear(); //2020!

getWeekday
(d)
getWeekday
(d, lang)

Extracts the weekday
number from a date. Will
fail if the date is not daily.
The numbers are as follows:
Monday = 1, Tuesday = 2,
Wednesday = 3, Thursday
= 4, Friday = 5, Saturday =
6, Sunday = 7.

You may input a language
('en' = English, 'da' =

Danish), in which case a
string is returned.

Returns: value (integer) or
string.
[New in 3.1.12]

%d = 2020m3d25;
prt %d.getweekday(); //3
prt %
d
.getweekday
('en'); //Wednesday
prt %
d.getweekday('en').lower()
[1..3]; //wed
prt %
d.getweekday('da'); //Onsdag

getYear(d) Extracts the year from a
date.
Returns: value (integer)

%d = 2020q2;
prt %d.getyear(); //2020

max(d1,
d2, ...)

Finds the largest of any
number of dates. (max()

can also be used with value
arguments).
Returns: date
[New in 3.1.6]

prt max(2002q1, 2001q4);

min(d1,
d2, ...)

Finds the smallest of any
number of dates. (min()

can also be used with value

prt min(2002q1, 2001q4);

608 Gekko 3.1.x help system

T-T Analyse

arguments).
Returns: date
[New in 3.1.6]

observations
(d1, d2)

Counts the number of
observations (periods), with
both start and end date
included. The date
difference using - is always

the same as the number of
observations minus 1.

prt observations(2020q2,
2023q3); //14
prt 2023q3 -
2020q2; //13

toExcelDate(
d)

Converts a daily date into
an Excel date (counting the
number of days since
January 1, 1900). See also
fromExcelDate(). Excel
dates can be subtracted to
obtain day spans. [New in
3.0.7]

Returns: value.

%v1 =
toExcelDate(2019m11d12);
%v2 = toExcelDate(2019m12d3);
prt %v1, %v2; //43781 and
43802
prt %v2 - %v1; //21 days
(span)
%d = fromExcelDate(%v1 +
100);
prt %d; //100 days from
2019m11d12

truncate(d1,
d2)

Finds overlap between two
different time periods. The
period d1 to d2 is compared
with the global time period
(if no local period is
indicated), or with the local
time period (if such a period
is indicated in the <...>

fields). Use a local time
period if you need to find
the overlap between two
arbitrary time windows.

Returns: a list of two
elements, start and end
date of the resulting period.
If the two elements are
both null, there is no
overlap.

[New in 3.1.6]

time 2010 2020;
#m = truncate(2000,
2030); //(2010, 2020)
#m = truncate(2000,
2015); //(2010, 2015)
#m = truncate(2000,
2005); //(null, null)
time 1980 1990;
#m = truncate(<2010 2020>,
2000, 2030); //(2010, 2020)
#m = truncate(<2010 2020>,
2000, 2015); //(2010, 2015)
#m = truncate(<2010 2020>,
2000, 2005); //(null, null)
//
// The overlapping period (z)
can be visualized as
// the overlap of these time
windows/periods:
//

// period1 . x x x x x . .
.
// period2 . . . y y y y y
.
// truncate() . . . z z z . .
.

609Gekko User Manual

T-T Analyse

String combining functions

Function
name

Description Examples

[x]-index Index: returns the
character at position x.
Returns: string

%s = 'abcd';
prt %s[2]; //'b'

[x1..x2]-
index

Index: returns the range of
characters from position x1
to x2 (both inclusive). You
may omit x1 or x2.
Returns: string

%s = 'abcd';
prt %s[2..3]; //'bc'

concat(s1,
s2)

Appends the two strings:
same as s1 + s2.
Returns: string

%s = concat('He', 'llo');
Result: 'Hello'.

endswith(s1,
s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%v = endswith('abcde',
'cde');
Returns: 1

index(s1, s2) Searches for the first
occurrence of string s2 in
string s1 and returns the
position. It returns 0 if the
string is not found. The
search is case-insensitive
Returns: val

%v = index('onetwothreetwo',
'two');
Returns: 4.
%v = index('oneTWO', 'two');
Returns: 4.

isAlpha(s) Returns 1 if all the
characters are letters
(alphabet). [New in 3.0.5].

%v = isAlpha('aBc');
Returns: 1

isLower(s) Returns 1 if the string
contains no uppercase
characters. [New in 3.0.5].

%v = isLower('abc12');
Returns: 1

isNumeric(s) Returns 1 if all the
characters are of numeric
value. [New in 3.0.5].

%v = isNumeric('123');
Returns: 1

isUpper(s) Returns 1 if the string %v = isUpper('ABC12');

610 Gekko 3.1.x help system

T-T Analyse

contains no lowercase
characters. [New in 3.0.5].

Returns: 1

length(s) The length of the string
(number of characters).
You may use len() instead
of length().
Returns: val

%v = %s.length();

lower(s) The string in lower-case
letters.
Returns: string

%s = lower('aBcD');
Result: 'abcd'.

nl() A system
newline/linebreak.
Computerwise, nl() is

equal to the C# string
"\n", but beware that you

cannot use the Gekko
string '\n' instead of nl(),

because the former is equal
to the C# string "\\n".

Returns: string

%s = 'a' + nl() +
'b'; //string with newline
tell %s;
#m = %s.split(nl()); //list
with 2 elements
p #m;

prefix(s1,
s2)

If s1 is a string, it has the
string s2 prefixed
(prepended).
Returns: string

%s1 = %s2.prefix('a');

replace(s1,
s2, s3)
replace(s1,
s2, s3, max)

In the string s1, the
function replaces all
occurrences of s2 with s3.
Replacement is case-
insensitive.

If max > 0, the
replacement is performed
at most max times.

Returns: string

%s = replace(%s1, %s2);
//or: replace(%s, %s1, %s2)

split(s1, s2)
split(s1, s2,
removeempt
y)
split(s1, s2,
removeempt
y, strip)

Splits the string s1 by
means of the delimiter s2.
Empty elements are
removed per default, and
the resulting strings are
stripped (blanks are
removed from the start and

%s = 'a, b,c,,d, , e';
#m1 = %s.split(',');
//--> ('a', 'b', 'c', 'd',
'e')
#m2 = %s.split(',', 1, 1);
//--> ('a', 'b', 'c', 'd',
'e');
#m3 = %s.split(',', 0, 1);');

611Gekko User Manual

T-T Analyse

end of the strings). The last
two options are 1 and 1, if

omitted. [New in 3.0.6]

//--> ('a', 'b', 'c', '',
'd', '', 'e')
#m4 = %s.split(',', 1, 0);');

//--> ('a', ' b', 'c', 'd',
' ', ' e')
#m5 = %s.split(',', 0, 0);');

//--> ('a', ' b', 'c', '',
'd', ' ', ' e')

%s = 'a' + nl() +
'b'; //string with newline
#m = %s.split(nl(), 0); //-->
('a', 'b')
//Note: the 0 argument keeps
empty lines

startswith(s1
, s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%s = 'abcde';
%v = %s.startswith('abc');
Returns: 1

strip(s) Removes blank characters
from the start and end of
the string.
Returns: string

%s1 = %s2.strip(); //or:
strip(%s1)

stripstart(s) Removes blank characters
from the start of the string.
Returns: string

%s1 = %s2.striptart(); //or:
stripstart(%s1, %s2)

stripend(s) Removes blank characters
from the end of the string.
Returns: string

%s1 = %s2.stripend(); //or:
stripend(%s1, %s2)

substring(s,
start,
length)

The piece of the string
between character number
start and length (these
must be integer values).

You can alternatively use a
'slice', using []-notation,
see example.

Returns: string

%s = %s1.substring(3, 2);
//or: substring(%s1, 3, 2)
%s = %s1[3 .. 5];
//a slice from pos 3 to 5
(both inclusive)

suffix(s1, s2) If s1 is a string, it has the %s1 = %s2.suffix('a');

612 Gekko 3.1.x help system

T-T Analyse

string s2 suffixed
(appended)
Returns: string

upper(s) The string with upper-case
letters.
Returns: string

%s = upper('aBcD'); Result:
'ABCD'.

List functions:

Note that some of the functions assume that the lists are lists of strings. This will be
fixed regarding values and dates.

Function
name

Description Examples

[x]-index Index: picks out a single
element. In contrast to R,
this does not return a 1-
element list containing the
variable. If you need that,
use for instance #m[3..3].
Returns: var

#m[3]; //the third element

[x1..x2]-
index

Index: picks out a range of
elements. You may omit x1
or x2.
Returns: list

#m[3..5]; //the third to
fifth elements

[x1, x2]-
index

For a nested list of lists,
#m[3, 5] will return the

same element as #m[3][5],

so this is just convenience
to make a nested list
accessible like a matrix. See
more here.
Returns: variable

[New in 3.0.6].

#m = ((1, 2), (3, 4));
prt #m[2, 1], #m[2]
[1]; //same

[x1..y1,
x2..y2]-
index
[x1..y1, x2]-
index

For a nested list of lists,
#m[2..3, 2..4] will select

the given 'rows" and
"columns", corresponding to
selecting a submatrix from

// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
#m = ((1, 2, 3), (4, 5, 6),
(7, 8, 9), (10, 11, 12));

613Gekko User Manual

T-T Analyse

[x1, x2..y2]-
index

a matrix. Beware that in
general, #m[2..3, 2..4] is

completely different from
#m[2..3][2..4]. See more

here.
Returns: list
[New in 3.0.6].

prt #m[2, 2..3];
prt #m[2][2..3]; //same as
above
prt #m[2..4, 2]; //matrix-
like selection
prt #m[2..4][2]; //different
from above!
prt #m[2..4, 2..3]; //matrix-
like selection
prt #m[2..4]
[2..3]; //different from
above!

append(x1,
x2)
append(x1,
i, x2)

Adds variable x2 as it is at
the end of list x1. Note that
if x2 is a list of for instance
3 items, only 1 element is
added (the list itself). If you
need to add the 3 elements
individually, use extend().

If used with i argument, x2
is inserted at index i,
instead of at the end. See
also extend().

To prepend, use append(x1,
1, x2).

Returns: list

#y = #x1.append(#x2); //or:
append(#x1, #x2)
#y = #x1.append(2,
#x2); //insert at position 2

contains(x1,
x2)

Checks if the list of strings
x1 contains the string x2.
Returns 1 if true, 0
otherwise. You may
alternatively use x2 in x1,

see the last example. See
also the count() and index()
functions. The comparisons
are case-insensitive.
Returns: val

%v = #x1.contains(%s);
if(#x1.contains(%s) == 1);
tell 'yes'; end;
if(%s in #x1); tell 'yes';
end;

count(x1,
x2)

Counts the number of times
the string x2 is present in
the list of strings x1. See
also the contains() and
index() functions.

%v = #x1.count(%s); //or:
count(#x1, %s)

614 Gekko 3.1.x help system

T-T Analyse

Note: to obtain the number
of elements in a list, use
the length() function. The
comparisons are case-
insensitive.

Returns: val

data(x) Accepts a string of blank-
separated values x and
turns them into a list of
values. This is handy for
long sequences of blank-
separated numbers, instead
of manually setting the
commas.
Returns: list

#m = data('1.0 2.0 1.5');

dates(x) Tries to convert each
element of the list x to a
date.
Returns: list

#y = dates(#x);

except(x1,
x2)

The except() function
subtracts x2 from x1. You
may alternatively use the
operator -. Only works for

lists of strings. See also
intersect() and union().

Was called difference() in
Gekko 2.0. See also
extend().

Returns: list

#y = #x1.except(#x2); //or:
except(#x1, #x2)
#y = #x1 - #x2; //same

#y -= #x1; //subtract from
itself

extend(x1,
x2)
extend(x1, i,
x2)

The arguments x1 and x2
must be lists. The function
inserts the elements of list
x2 one by one at the end of
(or at position i in) the list
x1. The resulting list may
contain dublets.

For two lists x1 and x2, you
may alternatively use the +

#y = #x1.extend(#x2); //or:
extend(#x1, #x2)
#y = #x1 + #x2; //same as
above
#y = #x1.extend(2,
#x2); //insert at position 2

#y += #x1; //add to itself

615Gekko User Manual

T-T Analyse

operator. See also except()
and append().

To pre-extend, use
extend(x1, 1, x2).

Returns: list

flatten(x) For at list x, the function
returns a flattened version
of the list. For instance, the
list (1, (2, 3)) is

transformed into a non-
recursive list of non-list
elements: (1, 2, 3).

Returns: list

#m1 = (1, (2, 3));
#m2 = #m1.flatten(); //or:
flatten(#m1).

index(x1,
x2)

Returns the index of the
first occurrence of the
string x2 in the list of
strings x1. Returns 0 if x2
is not found in x1. See also
the count() and contains()
functions. The comparisons
are case-insensitive.
Returns: val

%i = #x1.index(%s); //or:
index(#x1, %s)

intersect(x1,
x2)

The intersect() function
finds the common elements
of the two list of strings x1
and x2. The resulting list
will not contain dublets. You
may alternatively use the
operator &&. Only works for

lists of strings. See also
except() and union().
Returns: list

#y =
#x1.intersect(#x2); //or:
intersect(#x1, #x2)
#y = #x1 && #x2;

length(x) Returns the number of
elements in the list x. You
may use len() instead of
length().
Returns: val

%v = #x.length(); //or:
length(#x).
%v = #x.len(); //the same

list(x1,
x2, ...)

Returns a list of the
variables x1, x2, etc. The

#m = (); //will fail
#m = list(); //ok: empty

616 Gekko 3.1.x help system

T-T Analyse

function is handy for lists
with only 0 or 1 elements.
See examples.
Returns: list

list
#m = (1, 2); //easy
#m = (1); //will fail
#m = (1,); //is ok
#m = list(1); //is ok

lower(x) Returns string elements in
the list as lower-case.
Returns: list

#y = #x1.lower(); //or:
lower(#x1)

pop(x1, i)
pop(x1)

Removes the element at
position i in the list x1.
Removes the last element if
called with pop(x).
Returns: list

#y = #x1.pop(2); //or:
pop(#x1, 2)
#y = #x1.pop(); //last
element
#y = #x1.pop(1); //first
element

preextend(x
1, x2)

Same as extend(x1, 1, x2),
putting the elements of x2
in the first position of x1.

#y =
#x1.preextend(#x2); //insert
at position 1

prefix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 prefixed (prepended)
Returns: list

#y = #x1.prefix(%s); //or:
prefix(#x1, %s);

prepend(x1,
x2)

Same as append(x1, 1, x2),
putting x2 in the first
position of x1.

#y =
#x1.prepend(#x2); //insert
at position 1

sort(x)
sort(x,
'natural')

Returns a sorted list of
strings, provided that x is a
list of strings. Sorting is
case-insensitive.
When the 'natural'

argument is used, strings
containing numbers will sort
naturally, for instance
returning a8, a9, a10,

instead of a10, a8, a9.

Returns: list
Natural sort: [New in
3.1.10].

#y = #x.sort(); //or:
sort(#x)
#y = #x.sort('natural');

remove(x1,
x2)

Removes any string x2 from
the list of strings x1. See
also the except() function.
Returns: list

#y = #x1.remove(%s); //or:
remove(#x1, %s);
#y = #x1 - %s; //also
legal

https://en.wikipedia.org/wiki/Natural_sort_order

617Gekko User Manual

T-T Analyse

replace(x1,
x2, x3)
replaceinside
(x1, x2, x3)
replaceinside
(x1, x2, x3,
max)

replace(): In the list of
strings x1, if this string
element is the same as x2,
x3 is inserted instead.

replaceinside(): the string
element has any occurences
of x2 inside the string
replaced with x3. The
replacements may be
limited via the max
argument.

Returns: list

#y = #x1.replace(%x2, %
x3); //or: replace(#x1, %x2,
%x3)

#y = #x1.replaceinside(%x2, %
x3); //or: replace(#x1, %x2,
%x3, 'inside')

reverse(x) To be done

split(x, s) To be done

strings(x) Tries to convert each
element of the list x to a
string
Returns: list

#y = strings(#x);

suffix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 suffixed (appended)
Returns: list

#y = #x1.suffix(%s); //or:
suffix(#x1, %s);

t(x) For a nested list of lists, the
t() function returns the
transpose, similar to
transposing a matrix. [New
in 3.0.6].
Returns: list (of lists)

#m = ((1, 2), (3, 4));
p #m, t(#m);

union(x1,
x2)

The union() function finds
the union of the two lists.
Alternatively use the
operator ||. The resulting

list will not introduce
dublets, in contrast to the
similar + operator (simple

concatenation). Only works
for lists of strings. See also
except() and intersect().
Returns: list

#y = #x1.union(#x2); //or:
union(#x1, #x2)
#y = #x1 || #x2;

618 Gekko 3.1.x help system

T-T Analyse

unique(x1) Retains only those elements
of list x1 that are unique
(list of strings only).
Returns: list

#y = #x1.unique(); //or:
unique(#x1)

upper(x) Returns string elements in
the list as upper-case.
Returns: list

#y = #x1.upper(); //or:
upper(#x1)

vals(x) Tries to convert each
element of the list x to a
value
Returns: list

#y = vals(#x);

venn(x1, x2) For two lists of strings, this
function prints out lists
corresponding to a Venn
diagram.

That is, intersection and
two differences. For
instance, venn(#m1, #m2)

corresponds to printing out
the following:

· #m1 && #m2
· #m1 - #m2
· #m2 - #m1

See also intercept(),
except() and union().
Returns: nothing.

#m1 = a, b, c, d, e;
#m2 = c, d, e, f, g;
venn(#m1, #m2);

//Results:

//The following 3 strings are
in both lists:
//'c', 'd', 'e'

//The following 2 strings are
in list #1, but not in list
#2:
//'a', 'b'

//The following 2 strings are
in list #2, but not in list
#1:
//'f', 'g'

Bank/name/frequency/index manipulations

Function
name

Description Examples

addBank(x,
bank)

If x does not have a
bankname, a bankname is

%name = addBank('x!q', 'b2');
Result: 'b2:x!q'

619Gekko User Manual

T-T Analyse

added. The input x may be
string or list.
Returns: string or list

addFreq(x,
freq)

If x does not have a freq, a
freq is added. The input x
may be string or list.
Returns: string or list

%name = addFreq('x', 'q');
Result: 'x!q'

getBank(x) Returns the bank part of x.
The input x may be series,
string or list.
Returns: string or list

%bank = getBank('b2:x!q');
Result: 'b2'

getFreq(x) Returns the freq part of x.
The input x may be series,
string or list.
Returns: string or list

%bank = getFreq('b2:x!q');
Result: 'q'

getFullName
(bank,
name, freq)

Returns the full name
corresponding to the input,
where bank, name and freq
are strings.
Returns: string

%name = getFullName('b2',
'x', 'q');
Result: 'b2:x!q'

getFullName
(bank,
name, freq,
index)

Returns the full name
corresponding to the input,
where bank, name and freq
are strings, and index is a
list (of strings)
Returns: string

%name = getFullName('b2',
'x', 'q', ('a', 'b'));
Result: 'b2:x!q[a,b]'

getIndex(x) Returns the index part of x.
The input x may be string
or list.
Returns: list

#index = getIndex('b2:x!q[a,
b]');
Result: ('a', 'b')
If the input is a list, the
output will be a list of
lists.

getName(x) Returns the name part of x.
The input x may be series,
string or list.
Returns: string or list

%name = getName('b2:x!q');
Result: 'x'

getNameAnd
Freq(x)

Returns the name part of x.
The input x may be series,
string or list.
Returns: string or list

%name =
getNameAndFreq('b2:x!q');
Result: 'x!q'

620 Gekko 3.1.x help system

T-T Analyse

removeBank
(x)

Removes any bank in x.
The input x may be string
or list.
Returns: string or list

%name = removeBank('b2:x!q');
Result: 'x!q'

removeBank
(x, bank)

Removes any banks in x
with the indicated
bankname. The input x
may be string or list.
Returns: string or list

%name = removeBank('b2:x!q',
'b2');
Result: 'x!q'
%name = removeBank('b3:x!q',
'b2');
Result: 'b2:x!q'

removeFreq(
x)

Removes any freq in x. The
input x may be string or
list.
Returns: string or list

%name = removeFreq('b2:x!q');
Result: 'b2:x'

removeFreq(
x, freq)

Removes any freq in x with
the indicated freqname.
The input x may be string
or list.
Returns: string or list

%name = removeFreq('b2:x!q',
'q');
Result: 'b2:x'
%name = removeFreq('b3:x!q',
'm');
Result: 'b2:x!q'

removeIndex
(x)

Removes any index in x.
The input x may be string
or list.
Returns: string or list

%name =
removeIndex('b2:x!q[a, b]');
Result: 'b2:x!q'

replaceBank(
x, b1, b2)

Replaces any banks in x
having name b1 with name
b2. The input x may be
string or list.
Returns: string or list

%name = replaceBank('b2:x!q',
 'b2', 'b3');
Result: 'b3:x!q'
%name = replaceBank('b2:x!q',
 'b3', 'b4');
Result: 'b2:x!q'

replaceFreq(
x, f1, f2)

Replaces any freq in x
having freq b1 with freq
b2. The input x may be
string or list.
Returns: string or list

%name = replaceFreq('b2:x!q',
 'q', 'm');
Result: 'b3:x!m'
%name = replaceFreq('b2:x!q',
 'm', 'a');
Result: 'b3:x!q'

setBank(x,
bank)

The indicated bankname is
set, even if it exists
already. The input x may
be string or list.
Returns: string or list

%name = setBank('b3:x!q',
'b2');
Result: 'b2:x!q'

621Gekko User Manual

T-T Analyse

setFreq(x,
freq)

The indicated freq is set,
even if it exists already.
The input x may be string
or list.
Returns: string or list

%name = setFreq('b2:x!q',
'm');
Result: 'b2:x1!m'

setName(x,
name)

The indicated name is set.
The input x may be string
or list.
Returns: string or list

%name = setName('b2:x!q',
'y');
Result: 'b2:y!m'

setNamePref
ix(x, p)

The name of x has prefix p
added.The input x may be
string or list.
Returns: string or list

%name =
setNamePrefix('b2:x!q', 'a');
Result: 'b2:ax!m'

setNameSuff
ix(x, s)

The name of x has suffix s
added.The input x may be
string or list.
Returns: string or list

%name =
setNameSuffix('b2:x!q', 'b');
Result: 'b2:xb!m'

Timeseries functions

Function
name

Description Examples

arrayPack(na
me, lname)

This function finds all non-
array ("normal") timeseries
in the first-position
databank and puts them
into a single 1-dimensional
array-series called name. In

addition, a list lname is

created, containing the
names of the "packed"
timeseries.

Note that after the function
is called, the first-position
databank only contains the
array-series and the list.
See also arrayUnpack().

[New in 3.1.16]

read adambank.gbk;
arraypack('adam',
'#adamvars');
write <gdx> adambank.gdx;
//Creates the 1-dimensional
array-series adam,
//with elements corresponding
to the normal timeseries
//inside adambank.gbk. For
instance, adambank.gbk may
//contain the series fY, which
is mirrored in the element
//adam[fY]. Also, the list
#adamvars will contain the
//element 'fY' (and more).
//When writing the gdx file,
the adam variable will
//have domain names 'adamvars'
and 't'.
//(You may use
arraypack('adam', '*'), in
which case

622 Gekko 3.1.x help system

T-T Analyse

//the Gekko list is not
created).

arrayUnpack
(name)

This function takes the 1-
dimensional array-series
called name from the first-

position databank and
transforms ("unpacks") all
the elements of the array-
series into normal
timeseries. The function
deletes the array-series
before it returns. See also
arrayPack().

[New in 3.1.16]

read <gdx> adambk.gdx; //has
adam variable inside
arrayunpack('adam');
//Now the first-position
databank contains normal
//timeseries corresponding to
the elements of the
//array-series adam.

bankFlatten(
t)
bankFlatten(
bank, t)

For the global (or locally
given) period, all series
and array-series are
flattened. This means that
over the global (or local)
period, all values are set to
their value in t. A bank

name may be provided: if
not, the first-position
databank is used.

[New in 3.1.16]

time 1960 2022;
bankFlatten(2000);
//All series and array-series
are set to
//their 2000 value, over the
global period
//1960-2022.
bankFlatten(<1970 2010>,
2000);
//same, but now flattened over
1970-2010.
bankFlatten('Ref', 2000);
//for the Ref databank

bankReplace
(x1, x2)
bankReplace
(bank, x1,
x2)

For the global (or locally
given) period, in all series
and array-series, the value
x1 is replaced with x2. A

bank name may be
provided: if not, the first-
position databank is used.

[New in 3.1.16]

time 1960 2022;
bankReplace(m(), 0);
//All series and array-series
have missing value replaced
with 0, over the global period
1960-2022.
bankReplace(<1970 2010>, m(),
0);
//same, but now over 1970-
2010.
flatten('Ref', m(), 0);
//for the Ref databank

binary(x) Converts a table-like
nested list of strings into a
corresponding array-series
where the present
elements (that is, the
'rows' of the nested list)
are represented with value

time 2001 2002;
#m = (('a', 'b', '2001'),
('a', 'c', '2002'));
x1 = #m.binary();
x2 = #m.binary().replace(m(),
0); //set missing to 0
prt #m; //try also prt <view>
#m;

623Gekko User Manual

T-T Analyse

1. The nested list must
contain time info as the
last element of each
sublist. The function can be
used to tranform a
multidimensional GAMS set
into a corresponding array-
series. This can be
convenient for printing,
etc.

[New in 3.1.14]

prt <n> x1; //1 or missing
prt <n> x2; //1 or 0

// x1[a, b] x1[a,
c]
// 2001 1.0000
M
// 2002 M
1.0000
//
// x2[a, b] x2[a,
c]
// 2001 1.0000
0.0000
// 2002 0.0000
1.0000

collapse(x)
collapse(x,
method)
collapse(x,
freq)
collapse(x,
freq,
method)

Function variant of the
COLLAPSE statement,
converting from higher to
lower frequency. Note
possible differences
compared to COLLAPSE
regarding the use of
databanks and time
periods.

You may input a frequency
(freq), choose from 'a',

'q', 'm', 'w'. If frequency

is not indicated, the
function will per default
collapse from d to m, w to m,

m to q, or q to a.

The method argument can
be 'total', 'avg',

'first', 'last',

'strict' or 'flex'. The

last two of these indicate
how missing values are
handled. You may combine
the first four and the last
two of these with -, for

instance 'avg-flex' to

choose method 'avg'

combined with missing
handling 'flex'. Note that

missing handling 'flex' is
currently only available for
collapse of daily (!d)

time 2020 2020;
option freq q;
x = 1, 3, 2, 6;
p <n> x, x.collapse();
//same: x.collapse('total')
//same: x.collapse('a')
//same: x.collapse('a',
'total')

//Result:
// x
x.collapse()
// 2020

// q1 1.0000

// q2 3.0000

// q3 2.0000

// q4 6.0000

// a
12.0000

//Nested collapse, d --> m -->
q --> a
time 2020 2025;
option freq d;
x!d = 1;
p <n>
x
!
d
.collapse().collapse().collaps
e();

// x!d.collap
// se().collapse

624 Gekko 3.1.x help system

T-T Analyse

series. Regarding these
options, see the COLLAPSE
statement.

You may use option
collapse method = ... ;

and option collapse

missing d = ... ; to

control default values for
the method and missing
handling. See OPTION.

Returns: series.

[New in 3.1.11]

// ().collapse()
// 2020 366.0000
// 2021 365.0000
// 2022 365.0000
// 2023 365.0000
// 2024 366.0000
// 2025 365.0000

//x!d.collapse('a') could be
used instead

flatten(x, d) Transforms 1 array-
timeseries x into n normal
timeseries with names
reflecting the array-series
dimensions and delimiter
corresponding to the string
argument d. For instance,
an array-series npop

defined over the two
dimensions #sex and #age

could contain the element
(sub-series) npop[m, 40],

which flatten() would

turn into the normal series
npop_m_40.

[New in 3.1.16]

npop = series(1);
npop[m, 40] = 60000;
npop[f, 40] = 62000;
npop[m, 41] = 59000;
npop[f, 41] = 61000;
npop.flatten('_');
delete npop;
p <n dec=0 width=10> {'*'};

//Output:
// npop_f_40 npop_f_41
 npop_m_40 npop_m_41
//2014 62000 61000
 60000 59000
//2015 62000 61000
 60000 59000
//...

getDomains(
x)

Returns a list of strings
containing the domains for
each dimension of the
array-series x. Returns an
empty list if there are no
domains given. See also
getFixType(),

setFixType(),

setDomains().

Returns: list

#d = getdomains(x); //or: #d =
x.getdomains();

getElements(
x)

Returns a nested list of
strings, which for each
dimension of the array-

x = series(2);
x[a, b] = 1;
x[a, c] = 2;

625Gekko User Manual

T-T Analyse

series shows which
elements occur (in all sub-
series). In the example on
the right, the first
dimension only contains
a's, whereas the second

dimension contains b and

c. The returned list has as

many elements as the
dimensionality of the
array-series. See also
subseries().

[New in 3.1.10]

prt x.getelements();
// ('a',), ('b', 'c')
prt x.getelements()[2];
// 'b', 'c'
prt x.getelements()[2][1];
// 'b'

getFixType(x
)

Returns the "fix" type of an
array-timeseries x, where

the return value can be
'variable' or

'parameter'. Array-series

imported from GAMS gdx
can be of variable or
parameter type. See also
setFixType(),

getDomains(),

setDomains().

Returns: string.

[New in 3.1.14]

//See example under
setFixType()

hpfilter(x,
lambda)
hpfilter(<t1
t2>, lambda)
hpfilter(x,
lambda, log)
hpfilter(<t1
t2> x,
lambda, log)

Returns a HP-filtered
version of series x. Lambda
is normally 6.25 for
annual, 1600 for quarterly,
and 129600 for monthly
series. An additional
argument 0 or 1 may be
added (1 if log-transforms
are to be used inside the
calculation). Time period
may be indicated with t1-
t2.
Returns: series

y = hpfilter(x, 6.25);
y = hpfilter(x, 6.25,
1); //log-transforms
y = hpfilter(<1970 2015>, x,
6.25);
y = x.hpfilter(<1970 2015>,
6.25); //alternative syntax

interpolate(x
)
interpolate(x
, method)

Function variant of the
INTERPOLATE statement,
converting from lower to
higher frequency. Note

time 2020 2021;
x = 1, 3;
p <n> x, x.interpolate();

//

626 Gekko 3.1.x help system

T-T Analyse

interpolate(x
, freq)
interpolate(x
, freq,
method)

possible differences
compared to INTERPOLATE
regarding the use of
databanks and time
periods.

Method must be 'repeat'

or 'prorate'.

Destination freq must be
'q', 'm', 'w', or 'd'. Per

default, interpolate() will
transform from a to q, q to

m, m to d and w to d.

Returns: series.

[New in 3.1.11]

 x.
// x
interpolate()
// 2020

// q1
 1.0000
// q2
 1.0000
// q3
 1.0000
// q4
 1.0000
// a 1.0000

//

// 2021

// q1
 3.0000
// q2
 3.0000
// q3
 3.0000
// q4
 3.0000
// a 3.0000

isArraySeries
(x)

Returns 1 if the variable is
an array-series, and 0
otherwise.

[New in 3.1.14]

x = series(1);
x[a] = 100;
prt isArraySeries(x);

isTimelessSe
ries(x)

Returns 1 if the variable is
a timeless series, and 0
otherwise.

[New in 3.1.14]

x = timeless(100);
prt isTimelessSeries(x);

laspchain
(plist, qlist,
t)
laspchain(<t
1 t2>, plist,
qlist, t)
laspchain(<t
1 t2>, plist,
qlist, t,
option)

Laspeyres chain index.

For annual data: calculates
a map containing two
series p and q (price and

quantity) from a list of
prices and a corresponding
list of quantities, setting p

= 1 in period t (t is a
date). See also the bottom
of the LIST help page. A

#p = p1, p2; //prices
#q = q1, q2; //quantities
#m = laspchain(#p, #q,
2000); //#m is a map
prt #m.p, #m.q;

Or in one statement (only the
quantity printed):
prt laspchain(('p1', 'p2'),
('q1', 'q2'), 2000).q;

#m = laspchain(<1980 2020>,
#p, #q, 2000); //with period

627Gekko User Manual

T-T Analyse

period can be indicated in
the <t1 t2> field.

For quarterly data: option
'annualoverlap' must be

indicated. When quarterly
data are input, the so-
called annual overlap
method is used, where the
algorithm starts out
collapsing the quarterly
data into annual data, then
computes a "normal"
annual chain index for the
aggregate price, and lastly
uses this annual price
index to compute the
quarterly indexes.

Returns: map

laspfixed
(plist, qlist,
t)
laspfixed(<t1
t2>, plist,
qlist, t)

Laspeyres fixed-price
index. As laspchain(), but

with fixed prices.
Returns: map

//See example regarding
laspchain()

percentile(x,
%v)

Computes the %v
percentile for the series x,
for the global time period.
Any missing values within
that sample are ignored.
Setting %v = 0.5 results in
the median.
Returns: val

%z = percentile(y, 0.25);
%z = percentile(y, 0.50);

rebase(x, t)
rebase(x, t,
index)

Function variant of the
REBASE statement. Note
possible differences
compared to REBASE
regarding the use of
databanks and time
periods.

You cannot use start/end
dates with this function,
only a single date

time 2020 2022;
x = 10, 11, 12;
prt <n> x, x.rebase(2021),
x.rebase(2021, 1);
//
 x x.re
// x
.rebase(2021) base(2021, 1)
// 2020 10.0000
90.9091 0.9091
// 2021 11.0000
100.0000 1.0000

628 Gekko 3.1.x help system

T-T Analyse

(alternatively, use REBASE
statement).

Returns: series.

[New in 3.1.11]

// 2022 12.0000
109.0909 1.0909

rename(x,
cfg)

For an array-series x:
renames and reorders
dimension elements,
according to a cfg nested
list.

[New in 3.1.16]

TODO

reorder(x,
ord)

For array-series x, this
function reorders the
dimensions according to
the list ord. The list must
contain the integers 1..n,
where n is the
dimensionality of the
array-series.

Note: for an array-series
dimension of size n, if
reorder() is fed with the

list (1, 2, 3, ... , n),

the function returns an
identical array-series.

[New in 3.1.16]

x = series(3);
x[a, c, e] = 1; x[a, c, f] =
2;
x[b, d, e] = 3; x[b, d, f] =
4;
y = x.reorder((2, 3, 1));
prt y;
//Will print subseries y[c, e,
a], y[c, f, a],
//y[d, e, b] and y[d, f, b].
The first dimension of x
//has been moved to the last
dimension of y, and
//the other two dimensions are
moved forwards.

replace(x,
v1, v2)

For the series or array-
series x, the function
replaces the value v1 with
the value v2, over the
given sample.

See also iif(), isMiss(),

and the $-conditional.

Returns: series

time 2001 2003;
x = (1, m(), 3); //m() is
missing value
//result is (1, 0, 3):
y = x.replace(m(), 0); //or:
replace(x, m(), 0)
//the replacement is done for
the sample:
z <2000 2004> = x.replace(m(),
0);
//result is (0, 1, 0, 3, 0)

rotate(x, d) Transforms the array-
series x to a new array-
series, where the time

//pop is a 1-dimensional
array-series
//with ages 0-100 in its
dimension.

629Gekko User Manual

T-T Analyse

dimension and dimension
number d swap places.
For instance, the array-
series pop may contain
sub-series for each age
group 0 to 100, that is,
pop['0'], pop['1'], ... ,
pop[100']. These 101 sub-
series are all defined over
a time period, say 2020-
2050. Then profile =
rotate(pop, 1) will be a
new array-series
containing sub-series for
each time period 2020 to
2050, that is,
profile['2020'],
profile['2021'], ... ,
profile['2050']. These 31
sub-series are all defined
over an undated time
period 0 to 100,
corresponding to the age
dimension. Hence, plot
<0u 100u>

profile['2020']; will plot

the age profile of the
population in the year
2020.
See example under PLOT
(age profiles section).
Returns: series

//note: 'u' indicates undated
frequency

profile!u = rotate(pop, 1);
#t = ('2020', '2030', '2040',
'2050');
plot <0u 100u> profile!u[#t];

series(freq,
n)

Constructs a series or
array-series of the given
frequency and with the
given dimensions (n). You
can skip some of these
options, see examples.

See also isArraySeries().

Returns: series

x = series('q',
3); //quarterly array-series,
3-dim
x = series('q'); //quarterly
normal series
x = series(3); //3-dim array-
series with current frequency
x = series(); //normal series
with current frequency

y = series(1);
y['a'] = 100; //or: y[a] =
...

setDomains(
x, d)

Sets a list of strings (d)
containing the domains for
each dimension. You may

#d = ('#b', '#x');
setdomains(x, #d); //or:
x.setdomains(#d);

630 Gekko 3.1.x help system

T-T Analyse

use '*' to indicate a

domain-free dimension (in
GAMS called the universal
set), but otherwise each
element should start with
symbol # (to indicate that

it is a list). See also
getFixType(),

setFixType(),

getDomains().

Returns: nothing

setFixType(x
, type)

Sets the "fix" type of an
array-timeseries x, where

type can be 'variable' or

'parameter'. When

exporting an array-series
to a GAMS gdx file, this
difference is of
significance. See also
getFixType(),

getDomains(),

setDomains().

[New in 3.1.14]

x = series(1);
x[a] = 100;
p x.getFixType();
//returns: 'variable', which
is default
write <gdx> data1; //variable
in GAMS
x.setFixType('parameter');
p x.getFixType();
write <gdx> data2; //parameter
in GAMS

smooth(x)
smooth(x,
method)
smooth(x, y)
smooth(x,
method, y)

Function variant of the
SMOOTH statement to fill
holes (missing values).
Note possible differences
compared to SMOOTH
regarding the use of
databanks and time
periods.

Method must be 'linear',

'geometric', 'repeat',

'spline', or 'overlay'. If

method is not stated,
'linear' is default. The y

variable can be a series,
value or 1x1 matrix (it is
only used for 'overlay'
smoothing).

Returns: series.

[New in 3.1.13]

z =
x.smooth('linear'); //user
linear smoothing
z =
x
.smooth(); //short
for the above
z = x.smooth('overlay',
y); //use y series to fill
holes
z =
x
.smooth(y); //short
for the above
z =
x.smooth(0); //use
0 value as overlay

631Gekko User Manual

T-T Analyse

splice(x1,
x2, ...)
splice(x1, t1,
x2, ...)
splice(x1, t1,
t2, x2, ...)
splice(type,
x1, ...)

Function variant of the
SPLICE statement to splice
two or more overlapping
timeseries into one
resulting timeseries. Note
possible differences
compared to SPLICE
regarding the use of
databanks and time
periods.

Type can be 'rel1',

'rel2', 'rel3', 'abs' for

the method, or 'first',

'last', '1', '2', '3', etc.

for indicating the "primary"
series number (such
numbers must be strings).
You may combine the
method and "primary"
indication with -, for

instance 'rel3-first' or

'abs-2'. Default is 'rel1-

last'. See many more

details under SPLICE.

Returns: series.

[New in 3.1.15]

time 2001 2005;
x1 <2001 2003> = 1, 2, 3;
x2 <2003 2005> = 11, 12, 13;
y = splice(x1, x2);
prt y, x1, x2;

//Regarding the left-hand side
series,
//note that splice() never
inserts
//values outside of the given
//local or global time period.
//So this time period is
respected,
//in contrast to the SPLICE
statement.

subseries(x,
option)

Helper function for array-
series.

· option = 'elements':

nested list of strings with
element combinations for
each sub-series.

· option = 'names': list of

sub-series names (as
strings). You may
remove the frequency
part of these names with
removefreq(), see

example.
· option = 'length': the

number of sub-series
inside the array-series.

· option = 'dimensions':

the number of

x = series(2);
x[a, b] = 1;
x[a, c] = 2;
prt x.subseries('elements');
// ('a', 'b'), ('a', 'c')
prt x.subseries('names');
// 'x!a[a, b]', 'x!a[a, c]'
prt
x
.subseries
('names').removefreq();
// 'x[a, b]', 'x[a, c]'
prt x.subseries('length');
// 2
prt x.subseries('dimensions');
// 2

632 Gekko 3.1.x help system

T-T Analyse

dimensions of the array-
series.

See also getelements().

[New in 3.1.10]

timeless(freq
, v)

Constructs a timeless
series of the given
frequency, to value v. You
can skip some of these
options, see examples.

In many cases, you can
just use a value scalar with
the same functionality. But
timeless series can be
practical, for instance they
can be used as array-
series.

See also
isTimelessSeries().

Returns: series

x = timeless('q',
3); //quarterly timeless
series, with value = 3.
x =
timeless('q'); //quarterly
timeless series, no value set.
x = timeless(3); //timeless
series with current frequency,
with value = 3.
x = timeless(); //timeless
series with current frequency,
no value set.

y = series(1);
y['a'] = timeless(100); //or:
y[a] = ...

Time, databank and other environment info

Function
name

Description Examples

bankfilenam
e(s)
bankfilenam
e(s, p)

OBSOLETE: use
fromBank(%s,

'filename') or
fromBank(%s,

'fullpath').

bankname(s) Returns the name of the
bank. Input can be the
string 'first' or 'ref', or a val
designating the number in
the databank list.
Returns: string

%b1 = bankname('first');
%b0 = bankname('ref');
%b2 = bankname(2);

633Gekko User Manual

T-T Analyse

currentDateT
ime()

Returns current date and
time.
Returns: string

%s = currentDateTime();
//Returns: '15-09-2014
12:34:58' (for instance).
tell currentDateTime();

currentDate(
)
currentDate2
()

Returns current date,
either as a string, or as a
date with daily frequency.
[New in 3.1.1]
· currentDate() returns:

string
· currentDate2() returns:

daily date. You may
convert to other
frequencies with the
date() function, cf.

examples.

%s = currentDate();
//Returns: '15-09-2014' (for
instance).
%d =
currentDate2(); //da
ily
%m =
currentDate2().date
('m'); //monthly
%a =
currentDate2().date
('a'); //annual

currentDay() Returns the current day
(between 1 and 31). [New
in 3.0.5].
Returns: val

%v = currentDay();

currentFolde
r()

Returns the current
working folder (cf. option

folder working = ...).

[New in 3.0.6].
Returns: string.

%s = currentFolder();

currentFreq(
)

Returns the current
frequency, for instance a,

q, m, d or u.

Returns: string

%s = currentFreq();
//Returns: 'a' (depending upon
frequency setting, cf. option
freq).

currentHour(
)

Returns the current hour.
[New in 3.0.5].
Returns: val

%v = currentHour();

currentMinut
e()

Returns the current
minute. [New in 3.0.5].
Returns: val

%v = currentMinute();

currentMont
h()

Returns the current month.
[New in 3.0.5].
Returns: val

%v = currentMonth();

634 Gekko 3.1.x help system

T-T Analyse

currentPerSt
art()

Returns the start of the
global time period.
Returns: date

%s = currentPerStart();
//Returns: 2012q1 (for
instance).

currentPerEn
d()

Returns the end of the
global time period.
Returns: date

%s = currentPerStart();
//Returns: 2015q4 (for
instance).

currentSecon
d()

Returns the current
second. [New in 3.0.5].
Returns: val

%v = currentSecond();

currentTime(
)

Returns current time.
Returns: string

%s = currentTime();
//Returns: '12:34:58' (for
instance).

currentYear(
)

Returns the current year.
[New in 3.0.5].
Returns: val

%v = currentYear();

exist(x) Returns 1 if the variable x
exists, else 0. The variable
name must be a string. For
timeseries, you do not
have to add frequency to
the name (for instance !q),

if the series is of current
frequency. The function
respects the option

databank search setting

(that is, in sim-mode it will
only look in the first-
position databank, if a
databank name is not
provided).

The exist() function can

also check if an array-
subseries exists, cf.
example.

Returns: val

x = 1;
prt exist('x');
prt exist('work:x');

y = series(2);
y[a, a] = 1; y[a, b] = 2; y[b,
b] = 4;
prt exist('y[a, a]'); prt
exist('y[b, a]');
for string %i =
y.getelements()[1];
 for string %j =
y.getelements()[2];
 if(exist('y[{%i},{%j}]'));
 y[%i,%j] *= 100;
 end;
 end;
end;
prt y;

filteredperiod
s(d1, d2)

Returns the number of
filtered periods between d1

and d2 (these are dates).

Returns: val

%v = filteredperiods(%d1, %
d2);

635Gekko User Manual

T-T Analyse

fromDataban
k(x, type)

Accesses meta-information
from the databank x
(string). Type (string) can
be:

· 'filename' (only file,

returns string)
· 'fullpath' (file and

path, returns string)
· 'label' (cf. HDG,

returns string)
· 'stamp' (last time

written, returns string)
· 'stamp2' (last time

written, returns daily
date)

· 'format' ("1.0"/"1.1" or

"1.2", returns string)
· 'count' (number of

variables, returns val)

[New in 3.1.15].

· TODO: EXAMPLES

fromSeries(x
, type)

Accesses meta-information
from the timeseries x. Type
can be

· 'name' (returns string)

· 'bank' (returns string)

· 'freq' (returns string)

· 'label' (returns string)

· 'source' (returns

string)
· 'units' (returns string)

· 'stamp' (returns string)

· 'stamp2' (returns date)

· 'dataStart' or

'dataEnd' (returns date:

period with actual data)
· 'dataStartTruncate' or

'dataEndTruncate' (ret

urns date: period with
actual data, truncated
with global or local time
period). May return
null/empty. [New in
3.1.6]

%s =
ref:gdp.fromSeries('label');
//Returns 'Gross domestic
product' (for instance).
%d =
gdp.fromSeries('dataStart');
//Returns 1980q1 (for
instance). Same logic
regarding 'dataEnd' argument.
%s = gdp.fromSeries('freq');
//Returns 'q' (for instance).

time 2011 2015;
x = 1, 2, 3, 4, 5;
time 2013 2017;
prt
x
.fromSeries
('dataStartTruncate'); //2013
time 2011 2015;
prt x.fromSeries(<2013 2017>,
'dataStartTruncate'); //2013

636 Gekko 3.1.x help system

T-T Analyse

The x argument can be
either a series name or
string.

gekkoBitness
()

Returns bitness of Gekko
(either "32" or "64").
Returns: string. [New in
3.1.11]

tell 'Gekko {gekkoVersion()}
({gekkoBitness()}-bit)';
//Gekko 3.0.1 (64-bit) --> for
instance

gekkoInfo(x) Returns a string with info
on Gekko. Choose
between:

· 'short1' = Gekko-version
· 'short2' = Gekko-version

+ bitness
· 'short3' = Gekko-version

+ bitness + period
· 'short4' = Gekko-version

+ bitness + working
folder

· 'short5' = Gekko-version
+ bitness + period +
working folder

Returns: string. [New in
3.1.11]

tell gekkoInfo('short1');
//Gekko 3.0.1

gekkoVersio
n()

Returns the Gekko version
number (xx.yy.zz).
Returns: string

tell 'Gekko {gekkoVersion()}';
//Gekko 3.0.1 --> for instance

getEndoExo(
)

Returns a list with names
of those variables that
start with 'endo_' or 'exo_'.
This is used with GAMS
models, when fixing
equations.
Returns: list of strings.

#m = getEndoExo();

isLibraryLoad
ed(x)

Returns 1 if the library
with the name x (a string)
is loaded, and 0 otherwise.
Returns: val

%v = islibraryloaded('lib1');

isOpen(x) Returns 1 if the databank
with the name x (a string)
is open, and 0 otherwise.

%v = isopen('mybank');

637Gekko User Manual

T-T Analyse

Returns: val

root()
root('root')
root('gekko')

Returns the name of the
root folder as a string. The
root folder is defined as a
folder that contains a file
with the name root.ini or

gekko.ini (root() or

root('root') will look for

root.ini, whereas

root('gekko') will look

for gekko.ini).

To find the root directory,
Gekko first looks for a
root.ini/gekko.ini file in

the working folder. If not
found, it looks in the
parent folder of the
working folder, and so on
upwards. If no
root.ini/gekko.ini file is

found, or if more than one
is found, Gekko aborts with
an error. NOTE: the
root.ini/gekko.ini file

must also be consistent
with the folder where the
running gcm file is
residing, else an error is
issued (change the working
folder if this is an issue).
This is to avoid confusion.

Using this root function
makes it easier to refer to
files inside a larger folder
structure, without hard-
coding the name of the
root folder. This also
makes it easier to copy or
move a folder structure.
[New in 3.1.13].

open g:
\update
\data\scenario5\bank; //hard-
coded root
open {root()}
\data\scenario5\bank; //using
root()
// In the latter OPEN, it is
presupposed that the
// folder g:\update contains a
file with the
// name root.ini. The contents
of this file has
// no significance, but could
contain a remark that
// the file should not be
deleted or moved.
// If the system of folders
inside g:\update is
// later on moved to a new
location, for instance
// to g:\update2, the latter
OPEN statement still works
// in the new location.
// You could alternatively use
relative paths to
// the same effect, but then
you would have to use
// paths like open ..\..\..
\data\scenario5\bank;.

//To use a gekko.ini file
instead of
//root.ini as root, use:
open {root('gekko')}
\data\scenario5\bank;

//The contents of a root.ini
file could be for instance:
// Do not delete or move.
Used by the Gekko root()
// function to provide an
"anchor" for relative paths.

time()
time(<t1
t2>)

Returns the current time
period as a series where
the dates are represented
as values. Works with

option freq q;
time 2010q1 2011q4;
p time();
p time(<2010q3

638 Gekko 3.1.x help system

T-T Analyse

quarters and months, too.
The function may for
instance be practical for
creating trend variables.
Returns: series

2011q3>); //truncated
//the first one prints
2010.125, 2010.375, 2010.625,
2010.875, ...

Matrix functions:

Function
name

Description Examples

avgc(x) Average over cols.
Returns: matrix

#m2 = avgc(#m1);

avgr(x) Average over rows
Returns: matrix

#m2 = avgr(#m1);

chol(x)
chol(x, type)

Cholesky decomposition of
matrix x. Accepts type
(string), either 'upper' or
'lower'.
Returns: matrix

#m2 = chol(#m1, 'upper');

cols(x) Returns the number of
colums of x
Returns: val

%v = cols(#m);

design(x) Returns a "design" matrix,
equivalent to the same
Gauss function. The
function is practical for
aggregating rows or
columns.

Input: is a n x 1 column
matrix
Returns: n x k matrix of 0's
and 1's. The input numbers
specify the columns in
which the 1's should be
placed.

In the example, a 4 x 5
matrix #x of 1's is defined,

and by means of the
aggregation matrix #m, it is

#a = [3; 1; 1; 3; 2];
#m = design(#a);
#x = ones(4, 5);
p #m, #x * #d;

#m
 1
 2 3
 1 0.0000
0.0000 1.0000
 2 1.0000
0.0000 0.0000
 3 1.0000
0.0000 0.0000
 4 0.0000
0.0000 1.0000
 5 0.0000
1.0000 0.0000

#x * #d
 1
 2 3

https://docs.aptech.com/gauss/design.html

639Gekko User Manual

T-T Analyse

aggregated from size 4 x 5
to 4 x 3. In this case, the
new column 1 is the old
columns 2 and 3, the new
column 2 is the old column
5, and the new column 3 is
the old columns 1 and 4.

 1 2.0000
1.0000 2.0000
 2 2.0000
1.0000 2.0000
 3 2.0000
1.0000 2.0000
 4 2.0000
1.0000 2.0000

det(x) Determinant of a matrix.
Returns: val

%v = det(#m);

diag(x) Diagonal. If x is a n x n
symmetric matrix, the
method returns the
diagonal as a n x 1 matrix.
If x is a n x 1 column
vector, the method returns
a n x n matrix with this
column vector on the
diagonal (and zeroes
elsewhere).
Returns: matrix

#m2 = diag(#m1);

divide(x1,
x2)

Element by element
division of the two matrices.
If x2 is a row vector, each
x1 column will be divided
with the corresponding
value from the row vector.
And if x2 is a column
vector, each x1 row will be
divided with the
corresponding value from
the column vector.
Returns: matrix

#x = divide(#x1, #x2);

i(n) Returns a n x n identity
matrix.
Returns: matrix

#m = i(10);

inv(x) Inverse of matrix x
Returns: matrix

#m2 = inv(#m1);

maxc(x) Max over cols
Returns: matrix

#m2 = maxc(#m1);

maxr(x) Max over rows #m2 = maxr(#m1);

640 Gekko 3.1.x help system

T-T Analyse

Returns: matrix

minc(x) Min over cols
Returns: matrix

#m2 = minc(#m1);

minr(x) Min over rows
Returns: matrix

#m2 = minr(#m1);

m(r, c) or
miss(r, c)

Returns a n x k matrix filled
with missing values. Cf.
also m() function for
values.
Returns: matrix

#m = m(5, 10);

multiply(x1,
x2)

Element by element
multiplication of the two
matrices. If x2 is a row
vector, each x1 column will
be multiplied with the
corresponding value from
the row vector. And if x2 is
a column vector, each x1
row will be multiplied with
the corresponding value
from the column vector.
Returns: matrix

#x = multiply(#x1, #x2);

ones(n, k) Returns a n x k matrix filled
with 1's
Returns: matrix

#m = ones(5, 10);

pack(v1,
v2, ...)
pack(<t1
t2>, v1,
v2, ...)

Using period t1-t2, the
timeseries v1, v2, ... are
packed into a n x k matrix,
where n is the number of
observations and k is the
number of variables. If the
period is omitted, the global
time period is used.
Returns: matrix

#m = pack(<2020 2030>, x, y,
z); Returns: a 11 x 3 matrix
#m with the values.

rows(x) Returns the number of rows
of x.
Returns: val

%v = rows(#m);

sumc(x) Sum over cols
Returns: matrix

#m2 = sumc(#m1);

641Gekko User Manual

T-T Analyse

sumr(x) Sum over rows
Returns: matrix

#m2 = sumr(#m1);

t(x) Returns the transpose of a
matrix.
Returns: matrix

#m2 = t(#m1);

trace(x) Returns the trace of a
matrix.
Returns: val

%v = trace(#m);

unpack(m)
unpack(<t1
t2>, m)

The column matrix m (with
only one column) is
unpacked into a timeseries
spanning the period t1-t2.
If the period is omitted, the
local/global time period is
used.
The unpack() function is not
strictly necessary: you may
alternatively assign a nx1
matrix directly to a series
(see example).
Returns: series

//This picks out the second
column of #m (and all the
rows).
y = #m[.., 2].unpack(<2020
2030>);
y <2020 2030> = #m[..,
2].unpack(); //same
y <2020 2030> = #m[..,
2]; //also works

zeros(n, k) Returns a n x k matrix filled
with 0's. Zeroes() can be
used as alias.
Returns: matrix

#m = zeros(5, 10);

Modelling

Function
name

Description Examples

modelRawEq
s()

Returns a list of strings
corresponding to the
equation names used by
the loaded raw GAMS
model. Note: the so-called
GAMS scalar model is not
used in this function.

Returns: list of strings.
[New in Gekko 3.1.16]

model <gms> mymodel.zip;
sim <res>; //residuals
#eqs = modelRawEqs();
for string %s = #eqs;
 p <n nomax> {%s};
end;
//prt {#eqs} may print too
wide

642 Gekko 3.1.x help system

T-T Analyse

modelRawVa
rs()

Returns a list of strings
corresponding to the
variable names used by the
loaded raw GAMS model.
Note: the so-called GAMS
scalar model is not used in
this function.

Returns: list of strings.
[New in Gekko 3.1.16]

#vars = modelRawVars();
for string %s = #vars;
 p <n nomax> {%s};
end;
//prt {#vars} may print too
wide

Data trace handling:

Function
name

Description Examples

traceDelete2
()
traceDelete2
(x)

Deletes all trace references
in the first-position
databank (or use x for an
optional databank name).
After this, a traceStats2()
will show 0 traces.

[New in Gekko 3.1.16]

tracedelete2();
tracedelete2('Work');

traceStats2(
)
traceStats2(
x)

For now, only a simple
overview of the number of
traces can be shown (x is
an optional databank
name). Depth = 0 means
traces that are directly
assigned to existing
timeseries, whereas depth
= n > 0 indicate traces
that are not assigned to
existing timeseries, but are
instead assigned to other
traces with depth = n-1.
Traces with depth > 0 can
be thought of as remnants
of timeseries that do not
(or do no longer) exist in
the particular databank.

[New in Gekko 3.1.16]

tracestats2();
tracestats2('Work');

Miscellaneous functions:

643Gekko User Manual

T-T Analyse

Function
name

Description Examples

compareFold
ers(f1, f2)

The function compares two
folders f1 and f2 (with
subfolders): kind of like
COMPARE for files. The
files are compared by
contents: byte for byte for
binary files, and line for
line for text files (differing
whitespace at the start or
end of a single text line will
not count as a difference).
The function outputs three
files: comparefolders.txt
with file info,
comparefolders1.zip with
differing common text files
for easy comparison, and
comparefolders2.zip with
Gekko code to update
folder1 or folder2.

Note that in
comparefolders1.zip, folder
delimiters are represented
as --, and extension dot is

represented as ,. Sort the

files by name when
opening the .zip. You may
drag and drop a folder from
a file manager like Total
Commander into the Gekko
input window, to paste the
folder path as a string.
Total Commander is also
convenient for comparing
the files in
comparefolders1.zip.

[New in Gekko 3.1.16].

comparefolders('c:
\update\newdata', 'c:
\update\olddata');

existFile(x) Returns value 1 if the file
exists, 0 otherwise. If the
file is stated without path,
Gekko will also look in
loaded libraries for it. See

if(existfile('c:
\data\scenario5.gbk'));
 //do something;
end;

644 Gekko 3.1.x help system

T-T Analyse

also readFile() and
writeFile().

[New in Gekko 3.1.9]

flush() Removes all cache files
(can also be done from the
Gekko menu File -->
Delete cache files...). This
forces Gekko to re-read
datafiles and models rather
than using cached
versions. At start up,
Gekko performs flushing
automatically every 14
days, or when the cache
files take up more than 50
GB of file space.

The function is intended for
occasional manual use, and
Gekko will refuse using it
from a Gekko program.
Using it too often will just
slow down reading datafiles
and models.

[New in Gekko 3.1.14]

flush();

gamsscalar(x
)

This function can be called
with gamsscalar('pack'),

which creates a zip file
with the GAMS scalar
model, suitable for a
MODEL statement. The
function uses a settings file
gamsscalar.json. The

scalar model can be used
for DECOMP and
SIM<res>. More info on
this soon.

gamsscalar('pack');

isNull(x) Returns value 1 if x is a
null variable, 0 otherwise.
See also null().
[New in Gekko 3.1.13]

#m = ((1, 2, 3), (4, null(),
6));
if(isNull(#m[2, 2]));
 //do something if cell [2,
2] is null
end;

645Gekko User Manual

T-T Analyse

isUtf8File(x) Check if the text file x
(string path) seems to be
in UTF-8 format or not (if
not, the format may be
ANSI). If the file is stated
without path, Gekko will
also look in loaded libraries
for it. See also existFile(),
readFile() and writeFile().
Returns: value 0 or 1.
[New in Gekko 3.1.16]

%b =
isUtf8File('rawdata.txt');

//The checking is done by
'tasting' the file.
//See also 'option system read
encoding = ...' and
//'option system write
encoding = ...'

m() or
miss()

Returns a missing value.
Useful in some series or
matrix expressions. Cf.
also the m(r, c) function
for matrices.
Returns: value

y <2020 2020> = m();
#m = [1, 2; m(), 4];

map() Returns an empty map. #m = map();

null() Returns a null variable. At
the moment, null variables
are mostly used to indicate
empty "cells" in lists. You
cannot perform calculations
on null variables, but you
can use the type()

function to see the type of
a given variable/cell (see
example). See also
isNull(). [New in 3.0.6].
Returns: null variable

#m = ((1, 2, 3), (4, null(),
6));
prt #m;
prt #m[2, 2].type(); //'null'

readFile(x) Reads the file x (string)
into a string. If the file is
stated without path, Gekko
will also look in loaded
libraries for it. See also
existFile(), writeFile() and
readScreen().
Returns: string

%s = readFile('rawdata.txt');

//See also 'option system
encoding ...'

readScreen() Reads the Gekko output
screen (the upper part)
into a string. See also
readFile(). You may use
the split() and nl()

#m = readscreen().split(nl(),
0);
//This list contains the lines
//shown on the screen. The 0
argument

646 Gekko 3.1.x help system

T-T Analyse

functions to split the string
into lines.
Returns: string

//makes sure empty lines are
retained.

tic() Starts a timer, see toc().

Used to time Gekko
programs.

tic();

toc() Returns the number of
seconds elapsed since a
timer was started with
tic(). Used to time Gekko

programs.

tic();
PRT toc();
//Prints seconds elapsed since
tic().

type(x) Returns the type of a given
variable x. The type is

'val', 'date', 'string',

'series', 'list', 'map',

'matrix' or 'null'. See

examples. At the moment,
null variables are mostly
used to indicate empty
"cells" in lists. [New in
3.0.6].
Returns: string

#m = (1, 2021, 2021a, 'cat',
null());
p #m;
p #m[1].type(); //'val'
p #m[2].type(); //'val'
p #m[3].type(); //'date'
p #m[4].type(); //'string'
p #m[5].type(); //'null'

writeFile(x,
s)

Writes the string s to the
file x (string). A newline
can be indicated with '\n'.

See also existFile() and
readFile().

writeFile('rawdata.txt', '170
121 387');

//See also 'option system
encoding ...'

yesno(x) Converts value 1 or 0 into
string 'yes' or 'no'. Quite

a lot of options accept
yes/no, but not 1/0.

[New in Gekko 3.1.9]

tell existfile('c:
\data\scenario5.gbk').yesno();

Part V

648 Gekko 3.1.x help system

T-T Analyse

5 Gekcel (Excel add-in)

Gekcel is a Gekko add-in for Microsoft Excel. Gekko proper already has Excel
interfaces (the SHEET, IMPORT and EXPORT statements), but these are called from
within Gekko, using the Gekko graphical user interface (GUI). Instead of using these
Excel interfaces from within Gekko, the Gekcel add-in does the inverse: that is, the
add-in makes it possible to use Gekko from within Excel. Gekcel allows all Gekko
components to be used from within Excel, including read/write of Gekko databanks
(.gbk) etc.

Note: The Gekcel interface is quite basic and simple in its current version. See the
section on "Further development" regarding how the interface could be augmented
and refined in the longer run. To use Gekcel, you need Microsoft Excel installed on
your pc (Gekcel will not work for LibreOffice, Google Sheets or similar). About
installation, see the guided tour.

When using the Gekcel add-in, only Excel is opened up, and the Gekko GUI is not
shown at all. In Excel, Gekko results are shown in the current worksheet tab (as
Excel cells), and/or in the so-called "Immediate Window" (more on this later on). For
instance, when using the Gekcel add-in, the user can issue Gekko statements from
within Excel, like for instance statements that read a Gekko databank or print
timeseries.

The following Excel VBA (Visual Basic) script illustrates how to read a databank and
print out the ratio of two timeseries x1 and x2:

Public Sub Demo()
 Gekko "read demo.gbk;"
 Gekko "prt <2015 2020> x1/x2;"
 Gekko_Get
End Sub

This syntax etc. will be explained in more details in the following sections, so it is just
to illustrate that interacting with Gekko via VBA scripts is quite easy when using
Gekcel. As an alternative to using VBA, the so-called Excel "Immediate Window" can
also be used to the same effect. The result of the above VBA code will look like the
following in Excel:

If, instead, the user starts up Gekko proper and the corresponding statements are
typed into the Gekko GUI input window:

649Gekcel (Excel add-in)

T-T Analyse

read demo.gbk;
prt <2015 2020> x1/x2;

the following would be shown in the Gekko output window:

So in that sense, the Gekcel add-in for Excel is capable of showing the same kinds of
results that the normal Gekko program does. The familiarity of using an Excel
spreadsheet is one of the reasons that the Gekcel add-in was developed. Calling an
add-in from within Excel may seem a less daunting task than opening up the full
Gekko program and issuing statements from there.

The Gekko add-in is not limited in any way, so anything Gekko can do can also be
done via the add-in. The add-in is also complete in the sense that nothing else than
the add-in needs to be installed in order to use Gekcel.

Read more about Gekcel in the sub-sections.

5.1 Gekcel basics

The next section (Gekcel guided tour) provides a step by step guided tour of Gekcel
and how to use it, whereas the current section tries to explain some of the basic
ideas behind the add-in. (The impatient may skip the current section and jump
directly to the guided tour).

Gekcel comes in form of a macro-enabled Gekcel.xlsm file, together with

Gekcel.xll , Gekcel.dll, and some other .exe and .dll files. The Gekcel.xlsm file is

primary in the sense that it contains Excel VBA functions to interact with Gekko.

These interfacing Excel functions are written in VBA (Visual Basic), the programming
language of Excel. This does not imply that you are expected to code complicated
stuff in VBA, since basic use of Gekcel only entails the use of the simplest kinds of
VBA calls like Gekko "read demo.gbk;" and similar. So don't worry: Gekcel is meant

to make it more simple for Excel users to use Gekko, not to force anyone to learn
how to code VBA.

As mentioned, the next section (guided tour) takes you through an example step by
step, and after that guided tour you will probably realize that the VBA part of Gekcel
mostly works like a kind of Gekko program file (.gcm), storing the Gekko statements
in sequences. And if you really dislike VBA, you may alternatively use the so-called

650 Gekko 3.1.x help system

T-T Analyse

Excel Immediate Window, completely avoiding the use of the Excel VBA editor (there
is a section on that, too).

To return to the functionality of Gekcel, in its essence, the Gekcel add-in is capable of
starting up a silent Gekko session in the background (without opening up the Gekko
graphical user interface), and issue Gekko commands from within Excel (typically via
VBA). In addition, data can be transferred from Gekko to Excel worksheet cells and
vice versa. There are the following fundamental Gekcel VBA functions available:

· Gekko(). Runs a Gekko statement from within Excel.
· Gekko_Get(). Transfers data from Gekko into an Excel worksheet tab.
· Gekko_Put(). Transfers data from an Excel worksheet tab to Gekko.

The Gekko_Get() and Gekko_Put() subroutines are explained in more details here.

In Gekcel.xlsm, the three VBA subroutines can be seen in the VBA Editor in Excel.

More on how to open and use the Excel VBA Editor in the next sections, but the
functionality of the three subroutines is as follows:

· The Gekko() function is straightforward. For instance, you may use Gekko("read

demo.gbk;") in VBA to issue the Gekko statement read demo.gbk;, opening up

that particular Gekko databank.
· The Gekko_Get() function uses the following logic. When a Gekko statement is

called from within Excel/Gekcel, instead of producing an .xlsx file or printing out
results in the Gekko main window, some of the Gekko statements instead produce
an internal two-dimensional table containing the results. This table can
subsequently be loaded into the active Excel worksheet by means of the VBA
Gekko_Get() function. At the moment, two Gekko statements can be used in this

way: SHEET and PRT. So the idea is to call for instance SHEET with Gekko("sheet

x1, x2;"), which produces the before-mentioned two-dimensional internal table.

After this, the internal table can be transferred to the active worksheet in Excel
with Gekko_Get(). More details here.

· The Gekko_Put() function does the reverse, that is, it takes all cells from the

currently active worksheet tab and transfers them to the internal two-dimensional
table. After this, the Gekko IMPORT statement can be used to transfer data from
the internal table to Gekko (to its first-position databank). So the procedure is to
first call the Gekko_Put() function, and then use Gekko("import <xlsx>

gekcel;") to transfer the data to Gekko. The use of gekcel as filename is arbitrary

just to indicate where the data comes from: when Gekcel is used, all import<xlsx>

statements will take data from the internal table, instead of looking for an xlsx file.
(It is planned to make it possible to use just Gekko("import <xlsx>;") in Gekcel,

skipping the superfluous filename). More details here.

So to reiterate: when "remote controlling" Gekko from Excel/Gekcel, three of the
Gekko statements are rewired, namely SHEET, PRT and IMPORT<xlsx>. The first two
statements produce an internal two-dimensional table that can be fetched into Excel
via the Gekko_Get() VBA function. To do the reverse, Gekko_Put() transfers the

current worksheet cells to the same kind of internal table, which IMPORT<xlsx> can
subsequently read into the Gekko first-position databank.

651Gekcel (Excel add-in)

T-T Analyse

When getting data from Gekko, note that both SHEET and PRT have a lot of
functionality besides "just" printing out variables. For instance, you may use
mathematical expressions, and there are a lot of operators available, like <p> for

percentage growth, <m> for databank comparisons, etc. Therefore, you can often

avoid the effort of transforming the data via point and click (and dragging formulas)
in Excel, and instead make Gekko do the heavy lifting. Besides mathematical
expressions and operators, SHEET and PRT can also use wildcards and lists to search
for or "compose" variable names.

It should be noted that when used from Excel/Gekcel, the Gekko SHEET and PRT
statements produce the same contents, except for a difference regarding
presentation:

· SHEET produces a data table with periods in each row, and variables in each
column

· PRT produces a data table with variables in each row, and periods in each column.
Besides, percentage growth is also shown per default.

There are a lot of options available to control this formatting if needed (cf. option

sheet ... ; and option print ... ;).

5.2 Gekcel guided tour

In the previous section on Gekcel basics, the basic ideas behind the Gekcel add-in for
Excel were explained.

In the current section we will go through a simple practical example step by step. In
the example, we will create some timeseries in Gekko (remote-controlled from
Excel/Gekcel), transfer these to Excel, change them in Excel, and transfer them back
to Gekko.

Download and installation

First you need to "install" Gekcel. To download and install, do the following:

1. Download the Gekcel.zip file. If in doubt, take Gekcel.zip from the latest

development version (here). If you are using Excel 32-bit: download Gekcel 32-
bit, and if you are using Excel 64-bit: download Gekcel 64-bit. How to determine
bitness of your Excel version?: +toggle.

On a 64-bit Windows pc, Microsoft Excel can be installed as either a 32-bit or 64-bit
version. Until 2020, 32-bit was the default when installing Excel (or Office), so there
are a lot of 32-bit Excel versions installed out there, also on 64-bit Window systems.
Gekcel needs the same "bitness" as Excel to run, and to check the bitness of you
current Excel versions, perform the following (for Excel 2013, 2016 or 2019): Select
the 'File' tab from the Excel ribbon, select 'Account' and then 'About Excel'.

http://t-t.dk/gekko/develop/

652 Gekko 3.1.x help system

T-T Analyse

The version and bit-level of Excel will be displayed in the top line of the window (for
Excel 2010, you should select 'Help' instead of 'Account'). Excel 2007 and prior is
always 32-bit.

2. Create a new separate folder for the Gekcel "installation", and unpack the files
inside Gekko.zip into this folder.

3. From the "installation" folder, open the Gekcel.xlsm file (double click it). You may

get a security warning about macros being disabled (activate these macros).
4. If you already have an older version of Gekcel installed, you may have to remove

this older version manually first (probably this step can be skipped in most cases).
This can be done from the File tab, click Options. Under Manage choose COM Add-
ins in the drop-down and click Go. From there, you can choose Remove. Do this
for all components with "Gekcel" in the name. After this, it is perhaps best to go to
File tab, click Options. Under Manage choose Excel Add-ins in the drop-down (this
is default), and click Go. Here, you can deactivate Gekcel in a checkbox.

5. From the "installation" folder, drag (in File Explorer/Windows Explorer) the file
Gekcel.xll into the recently opened Gekcel.xlsm Excel spreadsheet (you may

get a security warning: accept to activate the add-in). Alternatively if this does not
work (perhaps because of security settings) you can do this: from the recently
opened Gekcel.xlsm spreadsheet, click the File tab, click Options, under Manage

choose Excel Add-Ins, click Go, and in the newly opened window, you can now
browse for and select the Gekcel.xll file (click ok after that). If during this step

there is an Excel window asking something like "Copy 'Gekcel.xll' to the Addins
folder for [your name]?", answer no to that question (Gekcel depends upon other
files thatn Gekcel.xll, so answering yes will cause problems). When Gekcel.xll is
active on a spreadsheet, there is a "Gekko" tab at the Ribbon.

6. Close Gekcel.xlsm.

7. Optional. If you prefer, you may now take a copy of Gekcel.xlsm, and transfer it

to some "working" folder of your choice. For new users, it is perhaps best to skip
this step, to avoid potential folder issues. If you do make a copy, the copied
Gekcel.xlsm should still remember the location of the other Gekko files (in the

"installation" folder).

Note 1: Gekcel is a self-contained product bundle, containing all necessary Gekko
files inside (including gekko.exe etc.). Therefore, Gekcel runs completely

independently of any normal Gekko installation (and vice versa), and the version
number and bitness of Gekcel vs. Gekko installations may differ.

Note 2: When Gekko is called via Gekcel, the default working folder is always the
same folder as the Excel worksheet resides in (in this example, Gekcel.xlsm). If this

folder is read-only or if the folder cannot be identified, Gekko will use the desktop as
working folder. Alternatively, you can set the working folder manually with the VBA
statement Gekko "option folder working = g:\data\testing;" (for example).

Note 3: When trying to open/load Gekcel.xll, you may encounter a warning about
the file format and the file being potentially corrupted. If opening anyhow, you may
see something like the following:

653Gekcel (Excel add-in)

T-T Analyse

This is often an indication that the bitness is wrong: that you are either trying to use
32-bit Gekcel on 64-bit Excel, or vice versa. In that case, Excel will not provide any
helpful explanation, but will just fail like shown above.

Running the demo (VBA subroutine)

Open up the same Gekcel.xlsm again. It should hopefully remember Gekcel, and

show a "Gekko" tab at the Ribbon. If not, you may have to drag Gekcel.xll onto

Gekcel.xlsm again.

First, we will try to run the in-built Gekko_Demo() VBA subroutine inside

Gekcel.xlsm. (A VBA subroutine is just a VBA function that does not return

anything). To do this, you will first have to open up the Excel VBA editor.

The VBA editor is found in the Developer tab, click the Visual Basic button. (If you do
not see the Developer tab, go to File --> Options --> Customize Ribbon and make
sure that "Developer" is checked in the right pane. Alternatively, you may use the
Macros section of the View tab, but enabling the Developer tab is better.).

This should open up the VBA editor:

654 Gekko 3.1.x help system

T-T Analyse

Near the bottom of the VBA editor, you should find the Gekko_Demo() subroutine:

Public Sub Gekko_Demo()
 Gekko "tell gekkoinfo('short4');" 'Print version and
working folder
 Gekko "time 2015 2020;" 'Set period 2015-20
 Gekko "x1 = 1, 2, 3, 4, 5, 6;" 'Set series x1
 Gekko "x2 = 2, 3, 4, 5, 6, 7;" 'Set series x2
 Gekko "clone;" 'Copy Work databank to
Ref databank
 Gekko "sheet x1, x2;" 'Send Work data to
internal table
 Gekko_Get 'Get internal table into
active Excel worksheet
 Range("C2").Value = 2.1 'Change something in
Excel (x1 in 2016)
 Range("D3").Value = 3.9 'Change something in
Excel (x2 in 2017)
 Gekko_Put 'Put active Excel
worksheet into internal table
 Gekko "import <xlsx> gekcel;" 'Import data from
internal table
 Gekko "compare file=compare.txt;" 'Compare data in Work
and Ref databanks
 Gekko "edit compare.txt;" 'Show the differences
(compare.txt)
End Sub

The demo creates two annual timeseries x1 and x2 in Gekko, transfers them to the

current Excel worksheet tab, changes two cells in that worksheet (corresponding to
x1[2016] and x2[2017]), transfers the two timeseries back to Gekko, and finally

compares the two timeseries to their original versions (in Gekko).

To run Gekko_Demo(), place the cursor somewhere inside the subroutine and press F5

or hit the "Run sub" green button. (This may fail with a "The macros in this project

655Gekcel (Excel add-in)

T-T Analyse

are disabled". To enable them, click the File tab, Options, Trust Center, Trust Center
Settings, Macro Settings, activate them and click ok).

This will run the statements, and in the end, the file compare.txt is shown in

Notepad (the file identifies the changes corresponding to the two altered cells C2 and

D3). The compare.txt file looks something like this:

Out of the 2 common series, there are differences regarding 2 of them:

x1 WORK REFERENCE ABS DIFF % DIFF

2015 1.0000 1.0000 0.0000 0.00
2016 2.1000 2.0000 0.1000 5.00
2017 3.0000 3.0000 0.0000 0.00
2018 4.0000 4.0000 0.0000 0.00
2019 5.0000 5.0000 0.0000 0.00
2020 6.0000 6.0000 0.0000 0.00

x2 WORK REFERENCE ABS DIFF % DIFF

2015 2.0000 2.0000 0.0000 0.00
2016 3.0000 3.0000 0.0000 0.00
2017 3.9000 4.0000 -0.1000 -2.50
2018 5.0000 5.0000 0.0000 0.00
2019 6.0000 6.0000 0.0000 0.00
2020 7.0000 7.0000 0.0000 0.00

In the Excel worksheet, you will see the following:

These are the values of x1 and x2 (with the two changes in cells C2 and D3 seen).

So, in VBA, you can just use the prefix Gekko followed by the Gekko statement

inside double quotes ("), because you may omit the more strict function call

parentheses (Gekko("time 2015 2020;")). In the same manner, you may use

Gekko_Put instead of Gekko_Put(), and Gekko_Get instead of Gekko_Get().

Remember that Gekko statements must end with semicolon ;, otherwise you will get

a syntax error!

Consider using OPEN/CLOSE

The VBA Gekcel interface is quite simple to use, as the Gekko_Demo() example above

illustrates. Beware however that if the databank used is shared between users on a
common network drive, it may be better to use OPEN<edit> and CLOSE, rather than
IMPORT/EXPORT or READ/WRITE. For instance:

656 Gekko 3.1.x help system

T-T Analyse

Public Sub Gekko_Update()
 Gekko "open <edit> data;" 'Load data.gbk as the
first-position databank
 Gekko "sheet x1, x2;" 'Send first-position
data to internal table
 Gekko_Get 'Get internal table into
active Excel worksheet
 Gekko "pause 'Click ok when finished';" 'Pause so that the user
has time to update values
 // ... change Excel data values ...
 Gekko_Put 'Put active Excel
worksheet into internal table
 Gekko "import <xlsx> gekcel;" 'Import data from
internal table into the first-position databank
 Gekko "close data;" 'Close data.gbk (write
any changes)
End Sub

Using the statement pair open<edit>data; ... close data; is better than using for

instance using read data; ... write data; because when open<edit> is used,

Gekko will check the status of data.gbk when the databank is closed. If its last

written date has changed since it was opened, Gekko will refuse to write the data
back to the databank. This guards agains synchronization issues, for instance if
another user has changed data.gbk after the open<edit> statement.

The subroutine could alternatively be split in two parts like the following:

Public Sub Gekko_Update1()
 Gekko "open <edit> data;" 'Load data.gbk as the
first-position databank
 Gekko "sheet x1, x2;" 'Send first-position
data to internal table
 Gekko_Get 'Get internal table into
active Excel worksheet
End Sub

Public Sub Gekko_Update2()
 Gekko_Put 'Put active Excel
worksheet into internal table
 Gekko "import <xlsx> gekcel;" 'Import data from
internal table into the first-position databank
 Gekko "close data;" 'Close data.gbk (write
any changes)
End Sub

Then Gekko_Update1() would load the data (here: series x1 and x2) from data.gbk

into the spreadsheet, and when finished Gekko_Update2() would transfer the data

back to data.gbk (while checking that data.gbk has not been tampered with).

657Gekcel (Excel add-in)

T-T Analyse

Getting data with an array function

The Gekko_Get() function used above obtains data fetched in a previous SHEET

statement (Gekko "sheet ...;"). You may instead fetch the data in one go, using

the more tailor-made Gekko_GetGroup() function.

The function is an array function that outputs an array of cells, and you must
therefore use Ctrl+Shift+Enter to enter it (this is also called a "CSE formula"). To use
it, first mark a two-dimensional range of cells where you want to show the data (for
instance 4 rows and 6 columns somewhere in your sheet). Then try to enter the
following formula, finishing with Ctrl+Shift+Enter. (It is assumed that the demo.gbk

databank from the Gekcel.zip file is present in the same folder as the spreadsheet).

=Gekko_GetGroup("demo.gbk"; "a"; "2020"; "2025"; ""; ""; "x1, x2,
x1/x2")

The above results should be shown. Excel automatically inserts the {}-curlies after

the Ctrl+Shift+Enter to indicate that this is an array function. Note that the year
2025 is not shown above, because only 6 columns were selected in the two-
dimensional range. When using the Gekko_GetGroup() array function, if the selected

area of Excel cells is too small to show the full results, the results are truncated. And
if the area is too large, missing values (here: #I/T, in English Excel versions: #N/A)

will fill out the area.

In the function call, the first argument is the Gekko databank, followed by the
frequency of the data, and start and end periods. The fifth argument is an optional
operator (try for instance "p" for percentage growth), whereas the sixth argument is

for other options (not used at the moment). The last argument is the timeseries that
are to be shown (separated by comma). Instead of one string at the end, you may
alternatively use three strings separated by ; as shown here:

=Gekko_GetGroup("demo.gbk"; "a"; "2020"; "2025"; ""; ""; "x1";
"x2"; "x1/x2")

You may use any legal Gekko-expressions, and wildcards should be stated like for
instance {'a*b?c'} for a a*b?c wildcard. Labels can be set with single quotes. For

instance:

658 Gekko 3.1.x help system

T-T Analyse

=Gekko_GetGroup("demo.gbk"; "a"; "2020"; "2025"; "p"; ""; "{'x*'}";
 "x1/x2 'ratio'")

Here, x1 and x2 match the wildcard x*, and x1/x2 is shown with the label 'ratio'.

The values are shown as percentage growth (because of operator "p"). If you use for

instance "n p" instead of just "p", you will get both levels and percentage growth

rates shown.

In essence, =Gekko_GetGroup("demo.gbk"; "a"; "2020"; "2025"; "n p"; "";

"{'x*'}"; "x1/x2 'ratio'") is translated into the corresponding Gekko

statements: read demo.gbk; option freq a; time 2020 2025; sheet <n p>

{'x*'}, x1/x2 'ratio';. You can see how this "translation" is done in the VBA

function Gekko_GetGropup() inside the spreadsheet.

Use of immediate Window

When used as above, Gekko will run silently, without showing any text messages
while running.

To see Gekko text messages (including error messages) and issue Gekko statements
in a more interactive fashion without VBA, you may alternatively activate and use
the so-called "Immediate Window" in Excel. Read more about this in the next section.

5.3 Immediate Window

When using the Gekcel add-in for Excel, there is a more direct way of issuing VBA
statements, rather than defining and running a VBA subroutine containing the
statement(s). This direct way is by means of the so-called "Immediate Window" in
Excel, and this window can also show Gekko text messages or other text output (like
Gekko errors).

To open the Immediate window from the Gekcel.xlsm file, do the following. From the

Developer tab, click the Visual Basic button to open up the Excel VBA editor. (If you

659Gekcel (Excel add-in)

T-T Analyse

don’t see the Developer tab, go to File --> Options --> Customize Ribbon and make
sure that "Developer" is checked in the right pane).

This should show a window similar to the the following. In this window, the left part
shows the "Project" where the VBA code is located, here under Modules, Module1.
The right part of the windows shows the VBA code itself.

To make this look a little bit more like the Gekko user interface, we may remove the
unnecessary left part of the window and add the so-called Immediate Window.
Remove the left part of the window ("Project"), by simply closing it with the close
button:

You may also have to remove a similar "Properties" window on the left part of the
VBA editor: this is done in the same way.

Next, you should open up the Immediate Window via the Excel menu: View -->
Immediate Window (or use the short-cut Ctrl+G). The Immediate Window will
probably show up in the lower part of the VBA editor. Try dragging it (drag the blue

660 Gekko 3.1.x help system

T-T Analyse

"Immediate" band) to the top of the VBA editor, so that the Excel VBA editor ends up
looking like this:

This now looks a bit more like the standard Gekko graphical user interface. Now, you
can again run the subroutine Gekko_Demo(). Click somewhere inside the subroutine

and click the green "Run Sub" button (or hit F5). This time, the Gekko output will be
shown in the Immediate Window, like for instance:

In this way, normal Gekko text messages and Gekko errors will be shown, making it
easier to see what Gekko is actually doing when running a VBA subroutine containing
Gekko statements.

The Immediate Window can also be used to input smaller snippets/lines of Gekko
code. For instance, in the Immediate Window you may try to issue a Gekko TELL
statement by writing the line Gekko "tell 'Hello from Gekko!';" in the

661Gekcel (Excel add-in)

T-T Analyse

Immediate Window and hitting [Enter]. After doing this, the answer from Gekko will
be shown just below like here:

Used like this, you may issue Gekko statements directly from the Immediate Window,
without defining and running a VBA subroutine. When hitting [Enter] in the
Immediate Window, Gekko will try to interpret and run the current line. If you need
to insert a newline without executing the current line, you can use Ctrl+Enter (like in
the Gekko GUI window proper).

Unfortunately, it does not seem possible to operate with two such Immediate
Windows, issuing statements in one of them and receiving Gekko output in the other.
So when using the Immediate Window to issue Gekko statements, Gekko statements
and Gekko output get mixed up in the Immediate Window. To avoid this mix up, you
have to run the the Gekko statement(s) as an Excel subroutine (VBA).

When using VBA, you can insert a breakpoint to make Excel stop execution at a
specific line (click on the grey bar to the left of the line):

After this, when you run the Gekko_Demo() subroutine (with the green "Run Sub"

button or F5), Excel will stop and wait before the execution of the red-marked line.

662 Gekko 3.1.x help system

T-T Analyse

After this, you may execute the lines one by one with Shift+F8. This way, you may
run Gekko statements one by one in an orderly fashion, while inspecting the Gekko
output. This provides an experience similar to running Gekko statements from the
Gekko GUI window proper.

Loops etc.

One thing to note about this way of executing Gekko statements is that a statement
like for instance Gekko "time 2015 2020;" is run as a whole, corresponding to

writing time 2015 2020; in the normal Gekko GUI window and hitting [Enter].

If you for instance have a loop like for val %i = 1 to 3; tell %i.string();

end; (printing the numbers 1, 2, and 3), you cannot issue this statement in VBA in

three parts, like for instance:

Public Sub Gekko_Loop()
 Gekko "for val %i = 1 to 3;"
 Gekko "tell %i.string();"
 Gekko "end;"
End Sub

This will fail with a Gekko parsing error (same error as issuing the statement for val

%i = 1 to 3; in the normal Gekko input window). Instead, in Gekcel, you have to

issue the loop as one statement, like for instance:

Public Sub Gekko_Loop()
 Gekko "for val %i = 1 to 3; tell %i.string(); end;"
End Sub

This will print the numbers 1, 2, and 3 in the Immediate Window (if this is
activated/shown).

Therefore, when using Gekcel, program structures containing BLOCK, FOR, IF,
FUNCTION or PROCEDURE (and corresponding END statements) must be issued as
one VBA statement.

If you need to use such functionality, you can just put this code in an external Gekko
.gcm file which you subsequently call with a RUN statement from Excel VBA.

663Gekcel (Excel add-in)

T-T Analyse

5.4 Further development

At the moment, the Gekcel interface is rather basic, just enabling the Gekko
statements SHEET and PRT to transfer data from Gekko to Excel, and the statement
Gekko IMPORT<xlsx>gekcel; to transfer data from Excel to Gekko.

Some ideas and suggestions:

· There are some questions about how the Gekko working folder is set, when an
Excel workbook with an Gekcel add-in starts. If this poses problems, the user can
always set the Gekko working folder manually with the Gekko statement option

folder working = ... ;, but the issue should be investigated.

· It is not at all clear how Gekcel.xlsm "knows" that it is coupled to a Gekcel.xll

add-in. This information is not stored in Gekcel.xlsm, so somehow Windows keeps

track of this.
· The Quarterly National Accounts of Statistics Denmark have written the VBA

functions Get_Gekko_Group() and Put_Gekko_Group() where the user can state a

list of timeseries names, and a date range. This way, a limited part of the current
worksheet can be operated on, limiting the scope for errors (in essence, keeping
parts of the worksheet read-only). At the moment, Gekko only implements the first
of these two, implemented as Gekko_GetGroup() function. There is also the

question of using CSE array-functions, because they are a bit cumbersome. With
some tricks, it is possible to state a VBA function in one cell and have the function
"spill" into multiple cells. This is normally not legal in Excel (until the new dynamic
arrays are common in Excel). The Central Bank of Denmark are exploring such
Excel tricks for Gekcel, using a Windows timer to do it.

· In the longer run, a Gekko Ribbon tab could be added to Excel, making it possible
to use some of the functionality of Gekko by means of input dialog windows (point
and click). For instance opening a particular bank, selection time period, selecting
timeseries, and having these timeseries show up in an Excel workbook tab. And
vice versa transfer data from such a workbook tab back to Gekko.

· As an alternative or supplement, Excel functions could be added, so that the user
can type =SomeGekkoFunction() in a cell, and get results displayed without using

the VBA editor window at all.
· The Gekko_Get() and Gekko_Put() calls could probably be omitted: these calls

were mostly added to comply more tightly with a corresponding EViews interface
for Excel. Perhaps a SHEET or PRT statement issued from Gekcel could itself append
a Gekko_Get() call, and an import<xlsx>gekcel; issued from Gekcel could itself

prepend a Gekko_Put() call?

· Perhaps CLS called from Gekcel should wipe out (clear) the Immediate Window?
· From Gekcel, it should be possible to write just import<xlsx>; instead of

import<xlsx>gekcel;. Actually, at the moment, you can write anything as

"filename" instead of gekcel.

· Other statements could decorate Excel cells, something like prt <cell = 'B2'>

'Hello'; to print something to a particular Excel cell.

· An option to avoid overwrites. At the moment, when using SHEET or PRT together
with Gekko_Get(), cells may be overwritten. Also an option to wipe out the

contents of the current worksheet tab, before writing to it with Gekko_Get().

· If possible, some functionality that sets up the Excel Immediate Window in a
Gekko-like fashion, without the user having to open and drag the window, etc.

https://support.microsoft.com/en-us/office/dynamic-array-formulas-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531
https://support.microsoft.com/en-us/office/dynamic-array-formulas-and-spilled-array-behavior-205c6b06-03ba-4151-89a1-87a7eb36e531

664 Gekko 3.1.x help system

T-T Analyse

· Decorate Excel (Gekcel) with Gekko version number if somehow possible. To see
the Gekko version number, you can issue a Gekko "tell gekkoversion();" from

the Immediate Window (or from VBA). To see more info, you can alternatively issue
a Gekko "tell gekkoInfo('short5');" (shows version, bitness, frequency,

period, and working folder).
· Is it possible to put all of the files inside one Excel .xll file? And how does the logic

actually work regarding the Gekcel.xlsm, Gekcel.xll files? When moving or

copying the .xlsm file, it seems to somehow remember the location of the Gekcel.xll
and other files, without storing this information in the Gekcel.xlsm file itself.

· Formatting: there are some issues with missing values turning up as 65535, but
this is perhaps now fixed via the Handle_Cells() VBA function. Also, it would be

nice if the Gekko formatting of values could carry over (4 decimals for levels, 2
decimals for percentages).

5.5 More: Gekko_Get/Put

The two subroutines Gekko_Get() and Gekko_Put() are not complicated at all, and if

you have special requirements regarding how to fetch or store data, you may rewrite
them to suit your particular needs.

The basic idea of both subroutines is that an internal two-dimensional VBA table
(think of it as a matrix or array) is used as an interface from Gekko to Excel
(Gekko_Get()) and from Excel to Gekko (Gekko_Put()). Below are these two

subroutines, as they look like in Gekcel 3.1.14.

Gekko_Get (transfer from Gekko to Excel)

Public Sub Gekko_Get()
 Dim cells As Variant
 cells = CreateObject("Gekcel.COMLibrary").Gekko_Get()
 cells = Handle_Cells(cells)
 nrows = UBound(cells, 1) - LBound(cells, 1) + 1
 ncols = UBound(cells, 2) - LBound(cells, 2) + 1
 Set rValues = Application.Range("A1:A1").Resize(nrows, ncols)
 rValues.ClearContents
 rValues.Value = cells
End Sub

All of this except the line containing "Gekcel.COMLibrary" is normal VBA code. It

first defines cells as a type that can receive a 2-d table of data from Gekko, which

takes place in line 2. The right-hand side of line 2 technically returns an object[,]

from Gekko, that is, an array of two dimensions, where the elements can be of any
type. When Gekko is run from inside Excel, this array is produced by either the PRT
or SHEET statement. Line 3 handles any missings (NaN) in the array, and the next
two lines figures out how many rows and cols the array has. Next, a rectangular
range of this size is selected (starting at the A1 cell in the current worksheet), this
range is cleared, and finally the cells are "pasted" into the range.

Gekko_Put (transfer from Excel to Gekko)

665Gekcel (Excel add-in)

T-T Analyse

Public Sub Gekko_Put()
 nrows = Range("A1").SpecialCells(xlCellTypeLastCell).Row
 ncols = Range("A1").SpecialCells(xlCellTypeLastCell).Column
 Set x = Application.Range("A1:A1").Resize(nrows, ncols)
 Dim x1() As Variant
 x1 = x.Value
 Dim temp As Variant
 temp = CreateObject("Gekcel.COMLibrary").Gekko_Put(x1, 1)
End Sub

All of this except the line containing "Gekcel.COMLibrary" is normal VBA code. The

first two lines try to figure out the data dimensions of the current worksheet (using
xlCellTypeLastCell to do this). In line 3, a rectangular range of this size is selected

(this more or less corresponds to putting the cursor at A1 and hitting [Ctrl+A] to
select the current data area). The VBA object x1 contains the data and is a

object[,] type, that is, an array of two dimensions, where the elements can be of

any type. In the last line of the subroutine, this array is is transferred to Gekko.
When Gekko is run from inside Excel, the array is consumed by calling the
IMPORT<xlsx> method. It should be noted that in this transferal, integers, floating
values and strings are accepted, but Excel dates may pose problems (if so, use strings
or integers as dates, for instance 2023q3 or 2024).

All in all, these subroutines are centered around a 2-dimensional table-like data
representation (object[,]) of the data that is being fetched or stored, either like

this:

date1 date2 date3

var1

var2

or like this:

var1 var2

date1

date2

date3

If you use this data representation as interface when talking to Gekko, you may use
VBA to handle how and where the data areas are found, retrieved, filled, etc. VBA
does that part of the job, not Gekko or Gekcel.

Part VI

667Appendix

T-T Analyse

6 Appendix

The following pages contain different appendices.

668 Gekko 3.1.x help system

T-T Analyse

6.1 AREMOS translator details

The AREMOS translator (cf. the TRANSLATE statement) tries to translate AREMOS
command files into corresponding Gekko program files.

This translator translates from AREMOS into Gekko 3.0 syntax.

First of all, Gekko recognizes AREMOS abbreviations, and will for instance recognize
DE, DEL, DELE, DELET, and DELETE as all being the same DELETE command. Gekko
has few abbreviations, because it may render program files hard to decipher.

The following commands are translated:

· ACCEPT has a note that the syntax is a bit different.
· ASSIGN x value #y ==> %x = %y.
· ASSIGN x integer #y ==> %x = %y. If the integer is date-like, a Gekko DATE is

used instead, for instance "ASSIGN per1 integer 1966;" ==> "DATE per1 = 1966;".
· ASSIGN x string #y ==> %x = %y.
· ASSIGN x literal #y ==> %x = %y. If the literal is date-like, a Gekko DATE is used

instead, for instance "ASSIGN per1 literal '1966a1;" ==> "DATE per1 = 1966A1;".
· CLOSEALL ==> RESTART. CLOSEALL is a procedure. A note is given that in some

cases, CLOSE *; CLEAR; is a better replacement.
· CONVERT ==> COLLAPSE. CONVERT seems to be a procedure that does the same

as COLLAPSE.
· COPY ... AS ... ==> COPY ... TO Regarding COPY, AREMOS allows for instance

"COPY d:var1 as e:;" with an 'e:' to indicate the destination databank. Gekko
demands a '*' after the colon, so such a statement is translated into "COPY d:var1
to e:*;".

· EXCELEXPORT ==> SHEET. A note is given on syntax differences.
· EXCELIMPORT ==> SHEET<import>. A note is given on syntax differences.
· FOR: Gekko tries to guess the type of the loop variable, if it is FOR y = x1 TO x2

BY x3. Here, if x1 and x2 look like dates, Gekko will use FOR data y =, else if
they look like normal values, Gekko will use FOR val y = Assign-variables
starting with 'per' (for instance #per0) are always deemed to have date-flavor!

· GRAPH ==> PLOT.
· IF: AREMOS apparantly accepts IF-statements without parentheses, for instance "IF

#v > 100; SERIES x = 200; END;". Gekko puts parentheses like this: "IF (#v >
100); SERIES x = 200; END;", to conform with Gekko syntax.

· INDEX: Syntax changed a bit, and options showbank=no and showfreq=no are set,
to correspond with AREMOS.

· OBEY ==> RUN.
· OPEN<protect> ==> just OPEN (Gekko databanks are protected as default).
· OPEN<primary> is changed to OPEN<edit>
· PRINT ==> PRT.
· RESTORE ==> gets a not about using RUN, where .opt is added to filename if this

extension is not there already.
· SET ==> OPTION.
· SET PERIOD ==> TIME.
· SET REPORT DECIMALS ... ==> Note that the syntax is: OPTION print fields ndec

... .

https://en.wikipedia.org/wiki/AREMOS

669Appendix

T-T Analyse

· SET REPORT COLUMNS ... ==> Note that the syntax is: OPTION print fields nwidth
=

· SET SAVEFILE ... ==> gets a note on using PIPE or PIPE con.
· SERIES with inline if-then-else are decorated with a comment about using the iif()

function. Note in general that "SERIES y = 100 rep *;" is not necessary in Gekko
("SERIES y = 100;" will do). Gekko will ignore such stray 'rep *', but they may
clutter the program files. SERIES labels like "SERIES 'label' y = x;" are transformed
into "SERIES <label = 'label'> y = x;".

· SOLVE ==> SIM.
· SPOOL ==> PIPE.
· STOP ==> EXIT.
· UNSPOOL ==> PIPE con.
· VIS ==> PLOT.

The translator keeps track of assign-vars, lists and matrices. Assign-vars get '%'-
identifier, lists keep their '#'-identifier, and matrices get '#'-identifier (apart from
this, please note that the Gekko matrix syntax is somewhat different from AREMOS
matrix syntax -- the translator does not handle these differences).

In addition:

· '!' is translated into '//'
· Double quotes (") are translated into single quotes (')
· List operators + and * are translated into || and &&.
· Double '#' like '##x' have a note about their proper translation ('%{%x}' or '#{%

x}')
· 'repeat' is changed to 'rep'
· Tries to eliminate spurious '|', for instance "PRINT a#i| + b#i|;" ==> "PRINT a%i +

b%i;". AREMOS accepts '|' almost anywhere, so AREMOS programs get easily
infected with too many of these. The elimination is heuristic.

· Numbers: Gekko 2.0 does not support '123.' to be the same as '123' or '123.0'. The
reason is that Gekko uses '..' for ranges (for instance #m[2..4]), where a number
like '123.' would interfere badly. So Gekko translates for instance '123.' into
'123.0'.

· Functions: Gekko does not support for instance "VAL v = log (10);", note the blank
between the log function and the parenthesis. So the translator removes such
blanks for the functions log(), exp(), pow(), abs(), pch(), dlog().

· Logical operators: In AREMOS they may be separated by blanks, for instance '< ='
instead of '<=' or '< >' instead of '<>'. Gekko removes such blanks.

· For lists, #a + #b ==> #a || #b, and #a * #b ==> #a && #b.
· Any '.cmd' is changed into '.gcm', for instance "RUN f.cmd;" ==> "RUN f.gcm;".
· Strings like 'the value is #x' are replaced with 'the value is {%x}'.
· Frequencies .a, .q and .m use '!' instead, for instance x.q ==> x!q.
· Variables on the left-handside get '%' or '#' if they are not series, for instance LIST

m = a, b; --> LIST #m = a, b;
· sum(0, a, b) is changed into sum(a, b). Gekko does not have this problem.
· An option field like SERIES <2020 2030> y = 100; is moved to the right of y, so it

becomes y <2020 2030> = 100;.
· The translator tries to set {}-curlies where they are needed (for instance around

assign literals).

670 Gekko 3.1.x help system

T-T Analyse

· Dynamic series like series series x = x[-1] + 2; are identified and decorated

with <dyn> tag.

671Appendix

T-T Analyse

6.2 Gekko 2.0 translator details

The Gekko 2.0 to 3.0 translator (cf. the TRANSLATE statement) tries to translate
Gekko 2.0/2.2/2.4/2.5.x program files into corresponding Gekko 3.0/3.1.x program
files.

The following statements are translated:

· COMPARE has a note about changed syntax

· COLLAPSE has . changed into !

· DOWNLOAD has a note about quotes

· FOR has type and type symbol added.

· INDEX a*b m --> INDEX a*b TO #m. Added <showbank=no showfreq=no> option.

· IMPORT/EXPORT have <all> added to the option field, if the option field does not

indicate two dates. Also, IMPORT<ser> --> IMPORT<flat>.

· (series pp, series qq) = laspchain(...) --> pp = laspchain(...).p; qq =

laspchain(...).q;

· LIST listfile m = ... ; --> #(listfile m) = ... ;

· NAME changed to STRING.

· hpfilter() and unpack() have CREATE removed.

· LIST: &+ --> ||, &* --> &&, &- --> -

· LIST<direct> is removed.

· LIST: prefix --> .prefix(), suffix --> .suffix(), trim --> .unique(), sort --

> sort(), strip --> replaceinside(). Use of strip in list has a new syntax

explanation
· MATRIX: || --> ;

· VAL, STRING, DATE have % added on left-hand side and statement removed.

· LIST and MATRIX have # added on left-hand side and statement removed.

· SERIES has statement removed.

· SERIES: Operator ^ --> ^=, % --> %=, + --> +=, * --> *=, # --> #=.

· SERIES #m = ... ; --> {#m} = ... ;

· SERIES y = 100 rep *; --> y = 100;. Superfluous rep * are often inherited from

AREMOS.
· SERIES x = x[-1] + 1; --> x <dyn> = x[-1] + 1;

· SHOW renamed to PRT.

· Wildcards like [a*b?c] are changed into ['a*b?c'] or {'a*b?c'} depending on

context. Ranges like [a1..b5] are changed into ['a1'..'b5'] or {'a1'..'b5'}.

· Variables like %(...) or #(...) have a note that it is better to use {}-curlies. For

instance, %(a%b) can be written as %a{%b}.

In addition:

· In general, the translator tries to add {}-curlies around %x or #x variables, when

these curlies are not already present but required in Gekko 3.0. To do this, the
translator may look at the definitions of %x (whether string, name, date or val) or

#x (whether list or matrix). If the variable is explicitly of date, val or matrix type,

no {}-curlies are added. In other cases, there may be an element of guessing,

depending upon the particular statement or function used, so in some cases, {}-

curlies may be added in places where they should not. To determine the type of %x

672 Gekko 3.1.x help system

T-T Analyse

or #x, only the current program file is looked at (this may pose a problem if the

variable is defined somewhere else). All {i} are replaced with {%i}. The translator

never removes existing {}-curlies.

· Index [0] --> length(), for instance #m[0] --> #m.length().

· Paths like data\%x\%y are transformed into data\{%x}\{%y}, for instance for READ

etc.
· A string like 'ab %s cd' is transformed into 'ab {%s} cd' (string interpolation).

Also translates ~ and | inside strings.

· avg() and sum() will convert for instance sum(#m) into sum({#m}). The summing

sum(#i, x[#i]) will not be translated correctly, however. It will become

sum({#i}, x[#i]), where it should not be altered.

· avgt() --> note about <> syntax for local time

· difference() --> except()

· endswith() --> note about case-insensitive in 3.0

· fromseries() --> note about the fact that the first argument must be series, not

string.
· hpfilter() --> note about <> syntax for local time

· pack() --> note about <> syntax for local time

· piece() --> substring()

· replace() --> note about case-insensitive in 3.0

· search() --> index()

· startswith() --> note about case-insensitive in 3.0

· strip() --> replace()

· sumt() --> note about <> syntax for local time

· trim() --> strip()

· unpack() --> note about <> syntax for local time

· An option field like series <2020 2030> y = 100; becomes y <2020 2030> =

100;.

· Differences in globals options (OPTION statement) are handled.

· You may optionally keep types when translating assignments, so that VAL x =

100; becomes VAL %x = 100; instead of just %x = 100;. This is controlled with the

<keeptypes> option when calling the translator. Applies to SERIES, VAL, DATE,

STRING, LIST and MATRIX.
· All VAL, DATE, STRING, LIST and MATRIX definitions have global: added. For

instance, VAL x = 100; becomes global:%x = 100; or VAL global:%x = 100;.

And LIST m = a, b; becomes global:#m = a, b; or LIST global:#m = a, b;.

Since the databank logic and simulation parts are not changed between Gekko 2.x.x
and Gekko 3.x.x, translation is generally not too difficult regarding the more basic
kinds of statements. If using more complicated stuff from Gekko 2.x.x, the translation
may be wrong. In that case, please consult the Gekko 3.x.x documentation to see
how the statement looks in the new syntax.

For non-series, the translator will put a global: on the variable. These can often be

omitted, but in Gekko 2.x, non-series did not live in databanks, hence the use of
global: in the translation.

673Appendix

T-T Analyse

674 Gekko 3.1.x help system

T-T Analyse

6.3 Assignments

Assignments are of the form ... = ... ; with a = symbol, for instance y = 2 * x;,

%y = 2 * %x;, #m = a, b;, and so on. So the right-hand side (RHS) expression is

assigned to the left-hand side (LHS) variable. There may also be a type indicator, like
SERIES y = 2 * x;, stating that y should become a series type. There are the

following type indicators:

· series: SERIES y = ...;

· val: VAL %y = ...;

· date: DATE %y = ...;

· string: STRING %y = ...;

· list: LIST #y = ...;

· map: MAP #y = ...;

· matrix: MATRIX #y = ...;

· var: y = ...; or %y = ...; or #y = ...; or VAR y = ...; or VAR %y = ...; or
VAR #y = ...;

· Note that var type in the descriptions below include the common case where the
type is not explicitly stated.

· In the following, LHS means left-hand side
· In the following, RHS means right-hand side

There are the following rules regarding assignments.

LHS name starts with % symbol (scalar).

· Fails if there is LHS type indicator and this is not val, date, string or var type.
· %y = ...timeless...;. The RHS is a timeless series. If the LHS type is val or var,

the LHS becomes a val with the value of the timeless series.
· %y = ...val...;. The RHS is a val. If the LHS type is val or var, the LHS becomes

the RHS val. If the LHS type is a date, Gekko tries to convert the val into a date
(for instance, 2020 into 2020a).

· %y = ...string...;. The RHS is a string. If the LHS type is string or var, the LHS

becomes the RHS string.
· %y = ...date...;. The RHS is a date. If the LHS type is date or var, the LHS

becomes the RHS date. If the LHS type is a date, Gekko tries to convert the val into
a date (for instance, 2020 into 2020a).

· %y = ...1x1 matrix...;. The RHS is a 1x1 matrix. If the LHS type is val or var,

the LHS becomes the RHS matrix element.

Left-hand side name starts with # symbol (collection).

· Fails if there is LHS type indicator and this is not list, map or matrix.
· matrix #y = ...series...;. The RHS is a normal series. If the LHS type is

matrix, the LHS becomes a matrix corresponding to the values inside the series. If
the RHS is a timeless series, and the LHS type is matrix, the LHS becomes a matrix
corresponding to the value inside the series (duplicated for each period in the
current time period). If the type is not stated, for instance #y = a;, Gekko will not

675Appendix

T-T Analyse

auto-convert the series a into a list of values #y (this could create confusion in

relation to naked list definitions).
· #y = ...list...;. The RHS is a list. If the LHS type is list or var, the LHS

becomes a list corresponding to the RHS list.
· #y = ...map...;. The RHS is a map. If the LHS type is map or var, the LHS

becomes a map corresponding to the RHS map.
· #y = ...matrix...;. The RHS is a matrix. If the LHS type is matrix or var, the

LHS becomes a matrix corresponding to the RHS matrix.

Left-hand side does not start with % or # symbol (series).

· Fails if there is LHS type indicator and this is not series
· y = ...series...;. The RHS is a series. If the LHS type is series or var, the LHS

becomes a series corresponding to the RHS series (frequencies must conform).
· y = ...val...;. The RHS is a val. The val is duplicated into all of the series

observations.
· y = ...list...;. The RHS is a list. The list elements are put into the series

observations (the list elements must be of val type, and if the last list element is
stated with rep *, the list is expanded to fit with the time period).

· y = ...1x1 matrix...;. The RHS is a 1x1 matrix. The matrix element is

duplicated into all of the series observations.
· y = ...nx1 matrix...;. The RHS is a nx1 matrix. If the size of the matrix fits the

time period, the matrix elements are put into the series observations.

Note in general that when assigning variables, the left-hand side is always assigned
to a copy of the right-hand side (pass by value, not pass by reference).

6.4 Missings

Gekko timeseries, including array-timeseries, can be represented via dimensions,
where one of the dimensions is time. In order to understand the concepts, a practical
example is used throughout this section. The data contains information on 4- and 5-
year old kids, measured at the beginning of August each year, cf. the following data
table:

Educatio
n

Age Year Number

k 4 2011 63

k 4 2012 65

k 5 2011 35

k 5 2012 37

s 5 2011 26

676 Gekko 3.1.x help system

T-T Analyse

This table can be thought of as representing "rows" of data, or data observations. The
columns apart from the number count can be thought of as dimensions, in this case
education (kindergarden or school), age, and year. It is noted that there are no data
rows corresponding to 4-year old schoolchildren, and the last data row regarding 5-
year old schoolchildren in 2012 seems to be missing.

In Gekko, the data could be represented as the following timeseries:

reset; time 2011 2012;
#e = k, s;
#a = ('4', '5');
x = series(2); //2 dimensions
x[k, 4] = 63, 65;
x[k, 5] = 35, 37;
x[s, 5] = 26, m(); //m() = missing
prt <n> x;

 x[k, 4] x[k, 5] x[s, 5]
 2011 63.0000 35.0000 26.0000
 2012 65.0000 37.0000 M

Note that x is two-dimensional, since there are two dimensions apart from the time

dimension. Note also that using prt <n> x[#e, #a]; would fail with an error

(missing sub-series/element x[s, 4]). We will return to that question later on. Each

column in the above print represents an array-subseries, where x is the array-series,

and for instance x[k, 4] is an array-subseries belonging to x.

In GAMS, the same would look like this:

set e /k, s/;
set a /4, 5/;
set t /2011, 2012/;
parameter x(e, a, t);
x('k', '4', '2011') = 63;
x('k', '4', '2012') = 65;
x('k', '5', '2011') = 35;
x('k', '5', '2012') = 37;
x('s', '5', '2011') = 26;
display x;

 2011 2012
k.4 63.000 65.000
k.5 35.000 37.000
s.5 26.000

Here, the x variable (defined as a parameter) is three-dimensional, since in GAMS,

the time dimension is just a dimension among the other dimensions. The print looks
similar, but it should be noted that whereas in Gekko the data is represented by
three building blocks (the three array-series x[k, 4], x[k, 5], and x[s, 5]), in

GAMS the data corresponds to the table rows, that is, seven building blocks, one for
each value shown in the GAMS print (the combination s.5 in 2012 does not exist).

Missing series or missing data value?

677Appendix

T-T Analyse

From the Gekko and GAMS prints, it is seen that the data value x[s, 5][2012] is

missing, whereas it is a bit less evident to see that the sub-series x[s, 4] does not

exist at all.

As indicated above, GAMS does not make the distinction between missing series or
missing data values. GAMS treats the elements of a variable x as simply rows of

multidimensional data, where the time dimension is not special. In Gekko, the fact
that there are no rows corresponding to the combination s, 4 entails that the array-

series x does not contain any array-sub-series x[s, 4], so that particular sub-series

is a missing series (does not exist inside x).

In contrast, regarding the data value x[s, 5][2012], the combination x[s, 5]

[2011] is present among the data rows, and therefore the sub-series x[s, 5] does

exist (with missing value for the year 2012).

As it is seen, Gekko distinguishes between missing series and missing data values,
and in many cases, this distinction can be practical. In the concrete case, if the data
is supposed to have been updated for the period 2011-12, we would not expect an
array-subseries to contain a missing data value like x[s, 5][2012]. It could be the

case that there are no 5-year olds in school in 2012, for instance if the school is
closing for new pupils. But in that case, it would have been sensible to include an
explicit row with the value 0 to indicate that, instead of just skipping the row:

Educatio
n

Age Year Number

s 5 2012 0

Because the default data value for a Gekko series is missing value, with an explicit 0,
the user would know that someone actually set that value to 0 -- that is, updated it
(in GAMS, the special value eps could be used to indicate a "real" updated 0). Setting

such missing data values to 0 in Gekko does not put any burden on processor or
memory. In contrast, creating an array-subseries x[s, 4] in Gekko and filling it with

missing values (or 0's) would be a waste of processor and memory ressources. This
particular combination (4-year olds in schools) simply does not exist, and should
therefore not take up any memory space. Such cases where some sub-series are non-
existing are very common, because data is often sparse in the non-time dimensions.
For instance, "education" may span nursery, kindergarden, school, secondary
education, etc., but for each of these, there is typically only a limited age range. For
instance, storing array-subseries full of missing data values representing 10-year olds
in kindergarden does not make much sense, and is certainly a waste of space.

There are many cases where a missing data value is always to be interpreted as
missing in the sense of "needs to be updated" or "forgotten". An example could be a
timeseries representing GDP, which simply does not make sense with the value 0.
Another example is for instance the value of deliveries from one aggregate sector to
another. If an array-subseries containing such data has data in 2011 and 2013, but a
missing data value in 2012, this is probably an error. The nominal value of input-
output deliveries between sectors do not normally change from non-zero to zero from

678 Gekko 3.1.x help system

T-T Analyse

year to year, so a missing value probably means that someone should update that
value. Still, regarding deliveries between small sectors, such a value may become
exactly 0 in some years, but representing this with a missing value should be
considered bad practice. In that case, the user should by all means use a real zero to
indicate that the data has been updated and is not just forgotten. All in all, the
sparsity of data is often less prevalent in the time dimension than in other
dimensions.

Missings, and three Gekko options

As noted above, Gekko distinguishes between missing series and missing data values,
because this distinction is sometimes useful, for instance when summing up or
printing array-series. When for instance summing up the nominal value of input-
output deliveries between aggregated sectors, one of the deliveries may contain a
missing value for, say, the year 2012. This may be unexpected, and as a
consequence, the sum will contain a missing value for that year, too. In this way, a
probable error can be identified and corrected, instead of just treating the value as if
it had been 0. In contrast, when summing up data like this, a missing array-subseries
is to be expected, because not all sectors deliver goods to all other sectors. So such a
missing array-subseries can just be skipped (treated as 0), when summing up or
printing, and therefore the distinction between missing series and missing data
values can be useful.

To return to the kindergarden/school example, there is a missing array-subseries
x[s, 4], corresponding to 4-year old schoolchildren. Such a series is absent, simply

because there are no 4-year olds in the school classes. So in that sense, it is correct
to treat x[s, 4] is implicitly containing 0's. In contrast, the missing data value x[s,

5][2012] is suspect. It could mean that the school has stopped admitting new 5-year

old pupils in 2012, but is more probably an error (missing update).

In Gekko, there are the following options to control how missing series and missing
data values are treated (default values are shown, too):

· option series array calc missing = error;
· option series array print missing = error;
· option series data missing = m;

1. The first option (calc) manages what happens if a whole array-subseries is

missing, for instance in the expression x[s, 4] or sum((#e, x[#e, 4]), where #e

contains the element s. The calc option deals with "controlled" indexes, that is,

either a direct index like the s in x[s, 4], or a list index like x[#e, 4], where #e

is controlled by for instance a sum-function.
2. The second option (print) manages "uncontrolled" indexing of array-subseries, for

instance prt x[#e];, where #e is not "controlled" via for instance a sum function.

In that case, the elements of x[#e] are unfolded into columns (instead of being

summed), and the option controls what happens if some of the "uncontrolled" sub-
series do not exist.

3. The third option (data) manages what happens if a series contains missing data

values.

679Appendix

T-T Analyse

Regarding the first and second options: note that a statement like y = x[#e]; is not

legal. Using list names as indexes in general assignments is only possible if the list is
controlled in a sum-function, but in the PRT/PLOT statement, a statement likeprt

 x[#e]; with a free-floating (non-controlled) #e list is implicitly converted into prt

unfold(#e, x[#e]); where the unfold()-function puts the elements into a list for

subsequent printing/plotting as columns.

The following sections explains this in more details, with examples.

1. First option: calc missing

We will first take a look at option series array calc missing. This option deals

with controlled sets/lists, for instance a sum like sum((#e, #a), x[#e, #a]), looping

over the combinations of the sets/lists #e and #a. Consider the following, building

upon the Gekko-code shown at the start of the section:

prt <n> sum((#e, #a), x[#e, #a]);

This will fail with an error, because the array-subseries x[s, 4] does not exist. With

option series array calc missing = m;, Gekko can be asked to treat such an

array-subseries as if it contained missing values instead, but in that case the sum will
just be missing for each year. Instead, treating the missing sub-series as 0's does the
trick:

option series array calc missing = zero;
prt <n> sum((#e, #a), x[#e, #a]);

 sum((#e, #a
), x[#e, #a])
 2011 124.0000
 2012 M

Now there is at least a value in 2011, whereas the value in 2012 is missing, since
x[s, 5][2012] has a missing data value. But the missing array-subseries x[s, 4] is

ignored as expected.

2. Second option: print missing

Next, we will take a look at option series array print missing. As mentioned

above, this option affects uncontrolled sets/lists,

prt <n> x[#e, #a];

This will abort with an error, because the array-subseries x[s, 4] does not exist.

Now, you may try the following:

option series array print missing = m;
prt <n> x[#e, #a];

680 Gekko 3.1.x help system

T-T Analyse

 x[k, 4] x[s, 4] x[k, 5] x[s, 5]
 2011 63.0000 N 35.0000 26.0000
 2012 65.0000 N 37.0000 M

Here, the missing x[s, 4] is shown as missing data values (actually 'N' instead of 'M'
to indicate that the series is non-existing). Else, 0's can be printed instead, for
instance:

option series array print missing = zero;
prt <n> x[#e, #a];

 x[k, 4] x[s, 4] x[k, 5] x[s, 5]
 2011 63.0000 0.0000 35.0000 26.0000
 2012 65.0000 0.0000 37.0000 M

Here, it is hard to tell from the print whether the sub-series x[s, 4] exists or not.

Finally, the column may be skipped altogether with skip, for instance:

option series array print missing = skip;
prt <n> x[#e, #a];

 x[k, 4] x[k, 5] x[s, 5]
 2011 63.0000 35.0000 26.0000
 2012 65.0000 37.0000 M

This corresponds to what GAMS does when printing, and is practical for sparse data.

3. Third option: data missing

Finally, there is option series data missing. This option is normally set to m

(missing), but if set to zero, any expression containing a databank timeseries (either

a normal series or array-subseries) with a missing data value will be interpreted as if
the data value was 0. We may try the following, again building upon the example at
the start of this page:

option series array calc missing = zero;
option series data missing = zero;
prt <n> sum((#e, #a), x[#e, #a]);

 sum((#e, #a
), x[#e, #a])
 2011 124.0000
 2012 102.0000

The first option handles the missing sub-series x[s, 4], whereas the second option

handles the missing data value x[s, 5][2012]. Another example could be a print

without summing. In that case, the #e and #a lists are non-controlled, and option

series array calc missing will not have any effect. Instead, option series

array print could be used:

option series array print missing = zero;

681Appendix

T-T Analyse

option series data missing = zero;
prt <n> x[#e, #a];

 x[k, 4] x[s, 4] x[k, 5] x[s, 5]
 2011 63.0000 0.0000 35.0000 26.0000
 2012 65.0000 0.0000 37.0000 0.0000

Instead, the following option is perhaps more suitable:

option series array print missing = skip;
option series data missing = m; //default
prt <n> x[#e, #a];

 x[k, 4] x[k, 5] x[s, 5]
 2011 63.0000 35.0000 26.0000
 2012 65.0000 37.0000 M

Here, the missing sub-series x[s, 4] is skipped, and the missing data value x[2, 5]

[2012] is shown as M.

Combining the options, and the <missing = ignore> option

The above-mentioned options can be combined:

option series array print missing = skip;
option series array calc missing = zero;
option series data missing = zero;
prt <n> sum((#e, #a), x[#e, #a]), x[#e, #a];

 sum((#e, #a
), x[#e, #a]) x[k, 4] x[k, 5] x[s, 5]
 2011 124.0000 63.0000 35.0000 26.0000
 2012 102.0000 65.0000 37.0000 0.0000

The first column is the sum of the next three colums, and the missing sub-series x[k,

5] and missing data value x[2, 5][2012] are handled as if they were 0. Note that in

the first column, #e and #a are controlled by the sum function (and thus managed by

the array calc option). The column corresponding to x[s, 4] is skipped, because it

does not exist, and this is managed by the array print option for uncontrolled

indexes.

Since a print like the above is often practical if missing series and missing data values
are to be ignored, Gekko contains the local option <missing = ignore> for both

PRT/PLOT, but also for assignments. The local option sets the following options
temporarily, and reverts them after the statement:

option series array print missing = skip;
option series array calc missing = zero;
option series data missing = zero;

Example:

682 Gekko 3.1.x help system

T-T Analyse

prt <n missing = ignore> sum((#e, #a), x[#e, #a]), x[#e, #a];
y <missing = ignore> = sum((#e, #a), x[#e, #a]);
prt <n> y;

 sum((#e, #a
), x[#e, #a]) x[k, 4] x[k, 5] x[s, 5]
 2011 124.0000 63.0000 35.0000 26.0000
 2012 102.0000 65.0000 37.0000 0.0000

 y
 2011 124.0000
 2012 102.0000

The first of the above options is set to skip, not zero, to avoid printing of superfluous

uncontrolled array-subseries that do not exist.

Illegal mathematical operations

option series data missing only affects data values directly accessed from a

timeseries (possibly array-subseries) residing in a databank, and not for instance the
results of expressions, functions, etc. Example:

reset; time 2011 2012;
option series data missing = zero;
y1 = -2, 2;
ly2 = log(y1);
prt <n> log(y1), ly2;

 log(y1) ly2
 2011 M 0.0000
 2012 0.6931 0.6931

In this print, with option series data missing = zero;, log(y1) has a missing in

2011, whereas ly2 is 0 in 2011. The reason is that in log(y1), the missing value

does not originate from a missing data value in a databank series (rather, the missing
values stems from the mathematical operation log(-2)), whereas in the y2 case, the

missing value does originate from a data value in a databank series (ly2, stored in

the first-position databank, has a missing value in 2011). With option series data

missing = m;, we would get

 log(y1) ly2
 2011 M M
 2012 0.6931 0.6931

In GAMS, we get the following:

set t /2011, 2012/;
parameter y1(t);
parameter ly2(t);
y1('2011') = -2;
y1('2012') = 2;

683Appendix

T-T Analyse

ly2(t) = log(y1(t));
display ly2; //display log(y1) or log(y1(t)) is not legal

2011 UNDF, 2012 0.693

So GAMS calculates and stores ly2 in 2011 as 'undefined' (UNDF), not 0.

Note

See also this Gekko blog post on array-series: http://t-t.dk/gekko/array-series.

6.5 Indexing

Indexing means the use of []-brackets to index a variable, like for instance x[a] (the

'a' element of the array-series x). In some cases dot notation is possible too: for

instance, #m.a can be used as synonym for the map element #m['a'], and x.1 can be

used as synonym for the lag x[-1]. Gekko has 7 variable types, and in the following

it will be shown how indexing can be used for each of these types.

Auto-quoting
Regarding indexing in Gekko, beware that using a simple non-quoted variable
name inside []-brackets is always interpreted as if it was quoted. For instance,

x[a] is interpreted as x['a'], and hence some typing of '-quotes can be omitted.

This convenience only applies if the contents of the []-bracket is 1 simple variable

name (for instance abc, _xy, px45 and the like). The name cannot contain other

symbols than alphanumeric or underscore if it is to be auto-quoted (and it cannot
start with a digit).

Value

A value like %v = 123; cannot be indexed.

Date

A date like %d = 2023q3; cannot be indexed.

String

A string like %s = 'abc'; can be indexed, but only with integers and ranges ...

684 Gekko 3.1.x help system

T-T Analyse

%s = 'abc';
prt %s[2]; //'b'
prt %s[2..3]; //'bc'
prt %s[2..]; //'bc'

Such indexing picks out an element or a range of elements, see more here. If you try
to use a non-integer index, Gekko will issue an error. For instance, %s[b] or %s['b']

will fail. To find substrings inside a string, you can use the index() function.

Series

For a normal series x, you can use indexing to pick out a particular observation

value, like for instance x[2023q3]. In addition, you can use lags or leads, like x[-1]

or x[+1]. Note that for lags or leads, a - or + must always be the first character of

the index. To lag a normal series, you may alternatively use dot-notation x.1 instead

of x[-1].

For an array-series x, you can use notation like x[a] or x['a'] (if x is 1-

dimensional) to pick out the subseries 'a' inside x. You may also use lists of strings

as indexes, for instance:

x = series(1); //1-dimensional
x[a] = 2; x[b] = 3; x[c] = 4;
#m = a, c;
prt x[#m]; //prints out x[a] and x[c]
x[#m] = 5; //changes values of x[a] and x[c]

For an array-series x, you cannot (at the moment at least) use for instance dot

notation x.a as synonym for x['a']. This is to avoid confusion.

For an array-series x, you cannot use for instance x['a*'] to search for subseries.

List

Lists can be indexed in different ways. You may use integers and ranges .. to select

sub-lists. For instance #m[2] to get element #2, #m[2..3] or #m[2..] to get a range

of elements. For multidimensional nested lists (lists inside lists), there are some
special Python-inspired rules regarding such 'slices', cf. the descriptions here.

On a list of strings, if you use a string as index, you essentially ask if the list contains
the string (case-insensitive), and Gekko returns 0 (false) or 1 (true). Or you can use
a wildcard or range, in which case Gekko returns a list of hits. Examples:

#m = ax, ay, bz, aw2; //four strings

685Appendix

T-T Analyse

prt #m['az'], #m['bz']; //0 and 1
prt #m['a*']; //returns the list ax, ay, aw2
prt #m['a?']; //returns the list ax, ay
prt #m['aw'..'ax']; //returns the list ax, aw2

Matrix

Matrices can only contain values, and you may use integers and ranges .. to select

sub-matrices.

#m = [1, 2, 3; 4, 5, 6; 7, 8, 9]; //3x3 matrix
prt #m[2, 3]; //6
prt #m[2..3, 1..2]; //[4, 5; 7, 8]
prt #m[2.., ..]; //[4, 5, 6; 7, 8, 9]

Map

Maps can be thought of as mini-databanks. To pick out a series a from a map #m, you

can use #m['a'], or the shorter dot-notation #m.a. Examples:

#m = (a = 100, %d = 2023q3); //a map with a series and a date
inside
prt #m['a'], #m.a; //prints out the series a inside #m (note: #m[a]
can be used for series)
prt #m['%d'], #m.%d; //prints out the date %d inside #m (note: #m[%
d] will fail)

At the moment, no other form of indexing is possible for maps. If a databank m

contains the series a, it can be referenced by means of the colon syntax m:a, and the

dot syntax #m.a for maps can be thought of as being analogous to the colon.

It is planned to offer wildcard and range searching for maps, for instance #m['a*'],

but this has not been implemented yet. For such wildcards, the same logic as
databank search will be used (special handling of %, # and ! characters).

686 Gekko 3.1.x help system

T-T Analyse

6.6 Data tracing

Performance and memory/file considerations
Data tracing is activated per default in Gekko >= 3.1.16. This tracing has some
performance costs, and execution time used on data tracing is shown as a
percentage after each Gekko job (often, this percentage is quite low). The .gbk
databanks become larger, depending upon the number of data traces. You may
look into a .gbk databank file if you open it as a .zip file: the trace.data file

inside stores all traces. If you prefer, you can just remove this file manually from
the gbk .zip file to get rid of all traces. Alternatively, use READ/WRITE/OPEN with

option <trace = no>.

NOTE: When running the same series statements again and again iteratively (for
instance, iterating over rows and columns in an input-output table until
convergence), you may consider switching off data tracing with option databank

trace = no;. For such solver-like scenarios, data tracing may slow down the

calculations needlessly.

To switch off data tracing, set this option: option databank trace = no;

Data tracing uses time-shadowing, that is, a trace may be deleted if the time periods
it covers are completely "shadowed" (replaced) by one or more newer traces. For
instance with x <2021 2022> = 1; x <2022 2022> = 2;, the series x contains two

traces: trace t1 is defined for 2021, and trace t2 is defined for 2022. In that sense,

trace t2 "shadows" parts of trace t1. If now a third statement x <2021 2021> = 3; is

added, trace t1 is removed completely since only trace t2 and t3 are relevant. Cf this:

reset;
x <2021 2022> = 1; //trace t1
x <2022 2022> = 2; //trace t2
x <2021 2021> = 3; //trace t3 (trace t1 is now irrelevant)
trace2 x;

The trace x <2021 2022> = 1; has been "time-shadowed" and thus removed. For

each trace, the "Active" field describes which periods out of the original period have
not been "shadowed" by subsequent traces.

687Appendix

T-T Analyse

Traces are a graph

Nested data traces may seem like a tree structure, but they are really a graph.
Consider this example:

reset;
x1 = 1;
x2 = 2;
x3 = x1 + x2;
x4 = x3 + 100;
tracestats2();
trace2 x4;

When unfolding the traces of x4, it is seen that x4 depends upon x3, which in turn

depends upon x1 and x2. If we depict the timeseries objects as dotted boxes and the

traces a solid boxes, we can depict the traces as follows:

Starting from the series x1, this will only show the trace x1 = 1;. Similarly regarding

series x2. Then series x3 has the trace x3 = x1 + x2;, but also the sub-traces x1 =

1; and x2 = 2;. The series x4 has the trace x4 = x3 + 100;, the sub-trace x3 = x1

+ x2; and the sub-sub-traces x1 = 1; and x2 = 2;. Thus, for instance, the trace x1

= 1; can be reached in three ways: from series x1 itself, from series x3 (sub-trace)

and from series x4 (sub-sub-trace).

https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

688 Gekko 3.1.x help system

T-T Analyse

All the four traces have depth 0, because they are all directly connected to a
timeseries, cf. the result of tracestats2();:

Now we can try to delete the first three series before showing traces:

reset;
x1 = 1;
x2 = 2;
x3 = x1 + x2;
x4 = x3 + 100;
delete x1, x2, x3;
tracestats2();
trace2 x4;

The trace viewer shows the same contents, but tracestats2() shows something

different:

There are still 4 reachable traces, but only 1 at depth 0. This is because the traces
now looks like this:

The series objects x1, x2 and x3 are removed, but their traces live on because of

their "historical" impacts on series x4. In general, it pays off to think of traces as an

interconnected graph structure, where many "paths" may lead to the same trace
object.

Data traces typically accumulate. If the data trace parts of .gbk databanks become
too large when running Gekko jobs, pruning/discarding some of these or alternatively
sending them off to long-term storage may become an option. Such a feature is not
built into the current Gekko version (3.1.16), but the building blocks are ready. Each

689Appendix

T-T Analyse

Gekko data trace is universally unique, since it has an ID consisting of a time stamp
(to millisecond precision) and a large random number (this is what is shown in the
"Stamp" section of the data trace viewer). Because of this uniqueness, data traces
can be removed from one databank and sent off to some other storage/backup
databank, with the option of always being able to restore the traces again if needed.

When pruning or storing data traces, criteria for doing this could be depth (as defined
above, since it depicts the level of indirection), time stamp (newer traces are often
most important) or active periods (if the remaining active period for a trace is old, it
may not be too important to keep).

Archive databank

Traces may make a gbk databank large and/or slow to read/write.

TODO: Write about how traces can be pruned off gbk databanks and stored in a

"archive" trace databank.

6.7 GAMS details

Gekko implements syntax that resembles GAMS, in order to facilitate interoperability
between the two languages. This section will be augmented, for now only the basics
are described.

Translate from GAMS to Gekko

When using MODEL<gms>, Gekko will try to translate the raw (unfolded) GAMS
equations into equivalent Gekko statements. The translated equations are shown
when using e.g. DISP or DECOMP.

But you may also use this translator more interactively. Simply mark some GAMS
code (statement or equation) in your editor, copy it (Ctrl+C), and then in the Gekko
main window right-click and select Paste special followed by Paste GAMS -->

Gekko. For instance, if the GAMS code is y(i, t) = sum(i, x(i, j, t)), Gekko will

paste the corresponding Gekko code y[#i] = sum(#i, x[#i, #j]).

Using a GAMS scalar model

The above-mentioned translation from GAMS to Gekko was straightforward enough,
but GAMS statement or equation syntax may become complicated, and for
performance reasons, and to ensure that the "true" GAMS equations are used, Gekko
offers to use a so-called GAMS scalar model as an interface between GAMS and
Gekko. See more about GAMS scalar models under MODEL.

690 Gekko 3.1.x help system

T-T Analyse

Getting GAMS to produce a scalar model is in principle easy. If you have, for
instance, the GAMS statement solve mymodel using mcp;, (solving the model

'mymodel' with the solver MCP), you may simply add this line just before the solve
statement: option mcp = convert;. Then, instead of solving the model, GAMS will

output two files gams.gms and dict.txt. These files contain the scalar model that

Gekko can use for SIM<res>, DECOMP and other things (the files need to be zipped
into for instance mymodel.zip, followed by a MODEL<gms> mymodel.zip; in Gekko).

Inside mymodel.zip, you may also add a file raw.gms, containing the 'raw' GAMS

equations).

Producing the mymodel.zip is a bit of work, but worse is the problem that when using

the GAMS holdfixed=1 option, fixed exogenous simply disappear from the scalar

model, being replaced by their fixed numerical values. To mitigate this problem, and
to make packing a mymodel.zip file easier, Gekko offers the gamsscalar('pack')

function.

When using this function, start up Gekko and set the working folder where you
normally run your GAMS model. Then make a gamsscalar.json file like the

following:

Finish this section!

6.8 Gekko 2.4 to 3.0 cheat sheet

The following "cheat sheet" shows syntax differences between Gekko 2.4 and 3.0,
focusing on some of the most oft-used parts of Gekko 2.4. Regarding 3.0 syntax, the
short elevator pitch is a useful read, and besides there is the guide. Among other
thinds, the syntax changes in 3.0 have to do with (a) how the symbols % and # are

interpreted, (b) databanks now contain all kinds of variables not just series, and (c)
lists now contain all kinds of variables not just strings (more on this here). Beware
that "2.4" covers all versions 2.x.x, and "3.0" covers all versions 3.x.x. A two-page
printing-ready pdf version of the cheat sheet is available here.

Gekko 2.4 to 3.0 cheat sheet

Series Gekko 2.4 Gekko 3.0

definition
local period
blanks separation
dynamic series
element access
name-composition
name-composition
list of names

operators

series x = 1, 2, m,
3;
series <2020 2021> y
= x;
series x = 1 2 m 3;
series x = x[-1] + 1;
series y[2021] =
x[2020];
series y{i}a = x{i}b;
series y%i|a = x%i|b;

x = 1, 2, m(), 3;
y <2020 2021> = x;
x = data('1 2 m 3');
x <dyn> = x[-1] + 1;
y[2021] = x[2020];
y{%i}a = x{%i}b;
y%i|a = x%i|b;
{#m} = 100;

y ^= 5; y %= 5;

http://www.t-t.dk/gekko/Gekko_cheat_sheet.pdf

691Appendix

T-T Analyse

operators
operators

frequency symbol

series #m = 100;

series y ^ 5; series
y % 5;
series y + 5; series
y +$ 5;
series y * 5; series
y # 5;

collapse x.a = x.q;

y += 5; y <keep=p> +=
5;
y *= 5; y #= 5;

collapse x!a = x!q;

Lists Gekko 2.4 Gekko 3.0

list of strings
singleton list
'funny' strings
mix strings and lists

listfile f.lst out
listfile f.lst in

union
intersection
difference
concatenate

prefix (and suffix)
remove element text
sort/trim

element access
print list elements
print series

list m1 = a, b, c;
list m1 = a;
list <direct> m2 =
007, 7z;
list m3 = x, #m1, y,
#m2;

list listfile f = a,
b, c;
list m = #(listfile
f);

list m3 = #m1 &+ #m2;
list m3 = #m1 &* #m2;
list m3 = #m1 &- #m2;
list m3 = #m1, #m2;

list m = #m2 prefix =
 'p';
list m = #m2 strip =
'z';
list m = #m2 sort
trim;

string s = #m3[2];
list ? #m;
prt #m;

#m1 = a, b, c;
#m1 = a,;
#m2 = 007, 7z;
#m3 = x, {#m1}, y,
{#m2};

#(listfile f) = a, b,
c;
#m = #(listfile f);

#m3 = #m1 || #m2;
#m3 = #m1 && #m2;
#m3 = #m1 - #m2;
#m3 = #m1 + #m2;

#m = #m2.prefix('p');
#m =
#m2
.replaceinside('z',
'');
#m =
#m2.sort().unique();

%s = #m3[2];
prt #m;
prt {#m};

Scalars Gekko 2.4 Gekko 3.0

value definition
date definition
string definition
string concatenate
print string
print series

val v = 1.23;
date d = 2021q1;
string s = 'xy5';
string s2 = 'a' + %s
+ 'b';
string ? %s;
prt {%s};

%v = 1.23;
%d = 2021q1;
%s = 'xy5';
%s2 = 'a{%s}b'; //or
like 2.4
prt %s;
prt {%s};

Wildcards Gekko 2.4 Gekko 3.0

692 Gekko 3.1.x help system

T-T Analyse

index with wildcard
index with range
search inside
databank
search inside list
print matching series

index x* m;
index a..d m;
list m2 = [x*],
[a..d];
list m2 = #m1[x*],
#m1[a..d];
prt [x*], [a..d];

index x* to #m;
index a..d to #m;
#m2 = ['x*'] +
['a'..'d'];
#m2 = #m1['x*'] +
#m1['a'..'d'];
prt {'x*'},
{'a'..'d'};

Loops Gekko 2.4 Gekko 3.0

date loop
value loop
string loop

for date d = %d1 to %
d2; ...
for val i = %i1 to %
i2; ...
for s = #m; ...

for date %d = %d1 to
%d2; ...
for val %i = %i1 to %
i2; ...
for string %s =
#m; ...

Matrix Gekko 2.4 Gekko 3.0

matrix definition
element access
print matrix
print matrix

matrix m = [1, 2 ||
3, 4];
matrix m[1, 2] =
#m[2, 1];
matrix ? #m;
show #m * #m;

#m = [1, 2; 3, 4];
#m[1, 2] = #m[2, 1];
prt #m;
prt #m * #m;

Miscellaneous Gekko 2.4 Gekko 3.0

import for all
periods
export for all
periods
use {} for path parts
use {} for sum
value to survive read
list to survive read

import <csv> data;
export <csv> data;
read c:\gekko\%
path\data;
series y = sum(#m);
val v = 1.23;
list m1 = a, b, c;

import <csv all>
data;
export <csv all>
data;
read c:\gekko\{%path}
\data;
y = sum({#m});
global:%v = 1.23;
global:#m1 = a, b, c;

Model/sim example Gekko 2.4 Gekko 3.0

The model/sim syntax
is very similar. In
3.0, lists and
scalars that must
survive read
statements must be
placed in the Global
databank. Series
operators include a
"=" symbol. And you
must use more {}-

reset;
mode sim;
list fx = fxnx, fxqx;
string path = 'c:
\models';
model %path\model2;
read bank2;
time 2021 2025;
sim;
clone;
series tg + 0.01;

reset;
mode sim;
global:#fx = fxnx,
fxqx;
global:%path = 'c:
\models';
model {%path}\model2;
read bank2;
time 2021 2025;
sim;
clone;

693Appendix

T-T Analyse

curlies when
referring to scalars
and lists.

sim;
mulprt #fx;
read bank2;
endo tg;
exo fy;
sim;
mulprt tg, fy, #fx;

tg += 0.01;
sim;
mulprt {#fx};
read bank2;
endo tg;
exo fy;
sim;
mulprt tg, fy, {#fx};

About {}-curlies in Gekko 3.0

In Gekko 3.0, it is more often required to enclose a string %s or a list of strings #m

in curlies, that is, {%s} or {#m}. This applies to the following statements:

assignments, analyze, checkoff, collapse, compare, copy, disp, doc, endo,

exo, export, findmissingdata, import, interpolate, itershow, ols,

prt/mulprt/plot/sheet, read, rebase, rename, smooth, splice, truncate,

write, x12a, where assignments refer to series/scalar/list etc. statements.

Consider this difference:

 delete {%s}, {#m};
 delete %s, #m;

If the string %s contains 'x1' and the list #m contains the strings 'x2', 'x3',

'x4', the first statement deletes the series x1, x2, x3, x4 (4 in all). In the next

statement, it is the string and list objects %s and #m themselves that are deleted

(2 in all). Understanding this conceptual difference is important!

6.9 Gekko 2.4 to 3.0 reasons

Migrating from Gekko 2.4 to 3.0 can be frustrating syntax-wise, because both
versions have their syntax peculiarities. Existing Gekko 2.4 users therefore have to
unlearn some peculiarities, and learn other peculiarities, in order to migrate to Gekko
3.0.

There are the following points to note about Gekko 2.4 vs. 3.0:

1. In Gekko 3.0, the symbols % and # in variable names (for scalars and collections)

are interpreted is if they were just normal characters alongside the normal a ... z

alphabet, and the "characters" % and # are interpreted as an integrated part of the

variable name. In Gekko 2.4, the % and # parts of variable names worked more

like a kind of operators.
2. Databanks in Gekko 3.0 can contain any kinds of variables, not just timeseries.
3. Lists in Gekko 3.0 can contain any kinds of variables, not just strings.

The flexibilities of (2) and (3) imply a lot of advantages. Databanks can store all kinds
of stuff, and lists can represent a lot of different things. For instance, you can import
spreadsheet cells into a nested Gekko list (list of lists), where each cell is represented
as a Gekko value, date, or string. Lists in Gekko 2.4 can only contain simple strings.

694 Gekko 3.1.x help system

T-T Analyse

There are some drawbacks to the flexibility, too. For instance, more {}-curlies are

needed in Gekko 3.0 than in 2.4, but this has to do with point (2) and (3). To
understand the use of {}-curlies more, let us envision a completely different Python-

like language:

//"Python"
a = 1
b = ('x', 'y')
c = 'y';
x = 2
y = 3
print a, b, c

In this language, variable names cannot contain the special symbols % or #, and the

code above defines three numerical values (variables a, x, y), a list of strings

(variable b), and a string (c). When printing a, b, c, you would expect 1, ('x',

'y'), and 'y' to show up on the screen (a value, a list of strings, and a string).

But what if you intended print a, b, c to mean "print a", then "print the variables

referred to by b", and finally "print the variable referred to by c"? In that case, "the

variables in b" should be understood as the variables x and y, and "the variable in c"

should be understood as the variable y. And if that was the intention, Gekko should

print out the four values 1, 2, 3 and 3 (corresponding to a, x, y and y). But how

would Gekko know that you intended this, and not the printing of raw strings?

To get 1, 2, 3, 3 printed, Gekko operates with {}-curlies, which in this case would

look like the following:

//"Python"
print a, {b}, {c}

This would print 1, 2, 3, 3, because the {}-curlies tell the program that the inside of

the curlies is to be understood as a reference to other variables. Now, let us return to
Gekko syntax. Consider this statement in Gekko:

//Gekko
print a, #b, %c;

Here, a is a timeseries, #b is a list of strings containing ('x', 'y'), and %c is a

string 'y'. Here, Gekko 3.0 will print out the data of the series a, followed by the list

('x', 'y'), followed by the string 'y'. If you intend to print out the variables that

the list #b and the string %c refer to, you must use {}-curlies:

//Gekko
print a, {#b}, {%c};

695Appendix

T-T Analyse

In Gekko 3.0, this prints out the data of the timeseries a, x, y, y. A second example is

copying. In Gekko 3.0, we can do the following:

//Gekko 3.0
copy #b to #b2;

This means make a copy of the list #b, and call this copy #b2 (if #b contains the two

strings 'x' and 'y', so will the #b2 list). The following does something very different:

//Gekko 3.0
copy {#b} to {#b2};

Here, Gekko looks for the two existing lists #b and #b2 and uses the string names

inside them as variable references. If #b contains the strings ('x', 'y'), and #b2

contains the strings ('z', 'w'), the statement amounts to copying the series x into

z, and the series y into w. Again, the user might think that when using copy #b to

#b2; it is obvious that it is the two series x and y that are to be copied into

something else, but when databanks may contain lists, how can Gekko know that this
is the intention, without the user indicating it somehow?

This is different in Gekko 2.4, because in 2.4, databanks cannot contain anything
besides timeseries, and therefore, in Gekko 2.4, the statement copy #b to #b2;

actually copies the two timeseries x and y, into z and w, because Gekko "knows" it

does not make sense to talk about copying a list in a databank. Is the 2.4 syntax
easier to write in this case? Absolutely, but the databanks are also much less flexible.

A third example regarding differences is list construction. Consider this example in
Gekko 3.0:

//Gekko 3.0
#b = x, y;
#b2 = a, {#b}, c;

Here, #b = x, y; is a so-called naked list definition, avoiding the more tedious #b =

('x', 'y');. After the second statement is executed, the list #b2 will contain the

four strings ('a', 'x', 'y', 'c'), because the {}-curlies look inside #b and

fetches its contents. But then what about this?:

//Gekko 3.0
#b = x, y;
#b2 = a, #b, c; //fails

In Gekko 2.4, #b2 = a, {#b}, c; creates the list #b2 as the four strings ('a', 'x',

 'y', 'c'), whereas #b2 = a, #b, c; fails. This is intentional, to avoid too much

696 Gekko 3.1.x help system

T-T Analyse

confusion (in principle it could produce the list of three strings ('a', '#b', 'c'),

but the confusion would outweigh the advantages).

As the fourth and final example, consider this syntax in Gekko 3.0:

//Gekko 3.0
#b = x, y;
{#b} = 100;

This sets the two series x and y to the constant value 100. In Gekko 2.4, you can

omit the curlies:

//Gekko 2.4
list b = x, y;
series #b = 100;

Again, this syntax may seem more simple, because the {}-curlies can be omitted. We

may try to do something similar in Gekko 3.0:

//Gekko 3.0
#b = x, y;
#b = 100;
series #b = 100;

In the second statement, #b on the left-hand side is just interpreted as a variable

name consisting of two characters from the special "Gekko alphabet". So Gekko first
calculates the right-hand side (= scalar value 100) and next tries to assign the scalar
to the variable name #b. This fails with a type error, since variables starting with # in

Gekko can only be a list, a matrix, or a map. The last statement fails, too, but from a
different reason. Here, it is stated explicitly that the variable #b must be of series

type, but Gekko refuses to construct a series name that starts with # (which is not

legal).

Now, why does Gekko 3.0 not just "know" that the intention of #b = 100; or series

#b = 100; is to define the two timeseries variables corresponding to the two strings

inside #b? In principle, this could be done, but unfortunate side-effects would creep

in. When a variable name like #b can also be for instance a matrix, couldn't the

intention of #b = 100; rather be a simplified way to define a 1x1 matrix? Also, when

using the type indicator, series #b = 100; could make more sense, but then we

have the problem of series #b = 100; working, but #b = 100; not working, which

seems inconsistent.

Omitting the {}-curlies around lists names on the left-hand side opens up other

ambiguities, too. In Gekko 3.0, you can for instance do the following:

//Gekko 3.0

697Appendix

T-T Analyse

time 2001 2003;
#m1 = a, b, c;
#m2 = 1, 2, 3;
{#m1} = #m2;
print <n> a, b, c;
// a b c
// 2001 1.0000 1.0000 1.0000
// 2002 2.0000 2.0000 2.0000
// 2003 3.0000 3.0000 3.0000

Here, #m1 is a list of three strings, and #m2 is a list of three values. The convenient

Gekko 3.0 statement {#m1} = #m2; assigns the three values to each of the three

series a, b, and c. This is practical in many cases, but what if we were instead using

the assignment #m1 = #m2;. Shouldn't Gekko just know that #m1 = #m2; intends to

update three timeseries? But how should it know? The statement #m1 = #m2; looks

much more like assigning the elements of the #m2 list into the list #m1, so that #m1 =

(1, 2, 3) afterwards.

But then what about a statement like series #m1 = #m2; in Gekko 3.0? This could

be rewired to produce three timeseries, instead of failing. But again, there would be
side-effects. What if someone removes the series type indicator, because series

type indicators are in general superfluous in Gekko 3.0? In that case, the statement
still runs, but does something altogether different (namely defining a list #m1). This is

bound to create confusion, and perhaps errors.

Note that simplified names like for instance x%i%j still work in Gekko 3.0, where %i

and %j are two strings that are in-substituted. In that case, you do not have to use

the more formal x{%i}{%j}. This former way of succinct writing is no longer officially

endorsed in Gekko 3.0, but it is still legal. One of the reasons why it is no longer
endorsed is that the string 'x{%i}{%j}' will perform the same in-substitution of %i

and %j (so-called string interpolation), whereas 'x%i%j' will not.

Wildcards

Another place where Gekko 3.0 differs from Gekko 2.4 syntax-wise is wildcards.
Gekko 2.4 allows a statement like index a*b m;, which will match timeseries in the

databank starting with 'a' and ending with 'b', and create a list #m to store the

results. Incidentally, this is a good case of a # character ambiguity in Gekko 2.4:

should the index statement end with m or #m? It ends with m because this corresponds

better with the statement list m = [a*b]; where the name is without #-symbol,

because it is on the left-hand side. That the legal statement is not index a*b #m; in

Gekko 2.4 is basically a quite arbitrary choice.

In places where the * can mean multiplication, Gekko 2.4 demands the use of []-

brackets, for instance print [a*b];. If omitted, Gekko 2.4 will just print the product

of the two timeseries a and b.

Gekko 3.0 takes a different approach to wildcards, demanding that these are in
principle quoted inside []-brackets, for instance print ['a*b'];. Adding the quotes

is a bit tedious, but omitting them like in Gekko 2.4. creates all sorts of syntax

698 Gekko 3.1.x help system

T-T Analyse

ambiguities for the parser, and also makes it next to impossible to compose a
wildcard from other strings (one problem about a wildcard like [a*b] is that it also

parser-wise looks like a 1x1 matrix definition).

The expression ['a*b'] returns a list of strings corresponding to the matching

timeseries, so print ['a*b'] prints strings, not timeseries. To print the data of the

matching timeseries, you should use print {'a*b'};, using curlies instead. So the

Gekko 3.0 statement print {'a*b'}; corresponds to the Gekko 2.4 statement print

[a*b];. This costs a couple of single quotes, but many statements in Gekko 3.0 allow

simplified wildcards (which is also the case for Gekko 2.4). So you can write for
instance the simple index a*b to #m; or copy a*b to x*; in Gekko 3.0, which is

very similar syntax-wise to Gekko 2.4.

There are some other differences between wildcard search in Gekko 2.4 and Gekko
3.0. But these are more semantic and are caused by the fact that Gekko 3.0
databanks can contain variables that contain % and # symbols (and ! for frequency for

that matter).

Miscellaneous annoyances

· In Gekko 2.4, you can write for instance exo #b; to exogenize the two variables

(series) x and y, presupposing that #b = ('x', 'y'). In Gekko 3.0, you have to

write exo {#b}; to indicate that you are referring to the elements of #b. Since you

cannot use a raw list of strings directly for exogenization, something like exo #b;

could be made legal in Gekko 3.0, too. But even though this saves some typing of
{}-curlies, it also affects the consistency of the language. The users may ask

themselves why they should write print {#b}; to print the variables that the

strings refer to, whereas exo #b; is enough?

· Gekko 3.0 demands a = symbol in any assignment statement. Therefore, it is no

longer possible to write something like the Gekko 2.4 syntax series x % 2; to

make the series x grow with 2% per period. In Gekko 3.0, this instead reads x %=

2;, which is also more in line with modern programming syntax. Omitting the =

symbol would be hard syntax-wise in Gekko, because it helps identifying
assignment statements, also for the human reader (remember that in Gekko 3.0, it
is no longer mandatory to decorate assignment statements with type indicators like
series, val, date, etc).

· In Gekko 3.0 series definitions, numerical values must in general be separated by
commas (blanks not allowed). However, you may use the data() function to handle

blank-separated data, for instance x = data('1 2 3'); instead of x = 1, 2, 3;.

· In Gekko 3.0, dynamic statements like x = x[-1] + 1; have to be decorated with

<dyn> tag, for instance x <dyn> = x[-1] + 1;. The reason for this is long-winded,

but newer Gekko 3.1.x versions will abort with an error if the tag is unintentionally
forgotten. And some users may even appreciate that dynamic statements are
clearly visible via the tag.

· As mentioned above, in Gekko 3.0, you cannot use for instance #b = 1; and expect

Gekko to understand that this means that you want to set the elements of #b (the

series x and y) to the value 1 (instead you must use {#b} = 1;).

· In Gekko 3.0, you have to use for instance x{%i}{%j} for a composed name using

the strings %i and %j, whereas you can no longer write it as x{i}{j}. The reason

699Appendix

T-T Analyse

for this (and for other syntax changes) is explained at the bottom of this page. On
the positive side, variable names like x{#i}{#j} can be used in Gekko 3.0, where

#i and #j are lists of strings (Gekko will automatically combine and unfold the two

lists into composed variable names).
· The READ statement and the Global databank. In Gekko 3.0 (as was the case for

Gekko 2.4), the READ statement first clears the first-position databank (typically
Work), before reading in a databank. READ is often used when modeling, but since
scalars and collections now live in databanks, this means that a READ statement
also wipes out all "settings"-variables that the user may have defined at the top of
his/her Gekko program file. This could be file paths, start/end dates, scale factors,
lists containing names of sectors, etc. It seems arbitrary to require that READ only
clears timeseries variables in the first-position databank, so instead, regarding
"settings"-variables, these can profitably be put into the so-called Global databank.
This databank is always open and always searched last, and survives READ, CLEAR,
etc. So at the top of your program file, you just define for instance global:%path =

 'c:\forecasts\bank1';, or global:#sectors = a, nz, qz, o;, and you can

subsequently refer to %path and #sectors without worrying about them being

wiped out by READ or CLEAR.

Preprocessor for simplifyed Gekko 3.0 syntax?

There is no denying that Gekko 3.0 in some statements introduces some {}-symbols

and other "extras" like single quotes, %-symbols and =-symbols (or the occasional

global:) compared to Gekko 2.4.

As explained above, this has much to do with a desire to treat the %- and #- symbols

in a more consistent and less arbitrary way than in Gekko 2.4, combined with the fact
that Gekko databanks and Gekko lists now allow all kinds of variables inside,
including %-variables (scalars) and #-variables (collections). On the contrary, Gekko

3.0 also allows quite a bit of "noise" to be removed, since type indicators like series,

val, date, etc. are no longer mandatory in assignment statements.

Could Gekko 3.0 support a simplified syntax like for instance the following, where it
is implicitly presupposed that all use of #-lists is to be interpreted as operating on the

elements of the lists (on the timeseries that these elements refer to)?

//Simplified 3.0 syntax
#b = x, y; //('x', 'y')
#b2 = a, #b, c; //('a', 'x', 'y', 'c')
copy #b to bank3:#b; //copy two series
#b % 2; //growth of two series set to 2%
exo #b2; //exogenize
print #b; //print two series
print [a*b]; //wildcard to print series
for i = x1, x2; //print x1
 print %i; //and x2 via
end; //a loop

This is how it would look in Gekko 3.0:

700 Gekko 3.1.x help system

T-T Analyse

//Gekko 3.0
#b = x, y;
#b2 = a, {#b}, c;
copy {#b} to bank3:{#b};
{#b} %= 2;
exo {#b2};
print {#b};
print {'a*b'};
for string %i = x1, x2;
 print {%i};
end;

Making the simplified syntax work directly in Gekko 3.0 would take some work, and it
would complicate both the parser and the code that transforms the parser output into
suitable C# code that is executed later on.

Since the above is to a large degree a question of {}-curlies, perhaps a kind of

preprocessor could be developed to handle such uses (for instance when doing
modeling), where lists always are expected to contain strings (of variables names),
and where scalar strings mostly represent variable names, too. Perhaps an option like
the following could be possible:

option syntax = simplified;

When Gekko encounteres this option, it performs a pure syntactical transformation of
the subsequent statements, where all the necessary {}-curlies (and possibly a few =

etc.) are simply added to the statements before they are sent to Gekko for parsing,
compilation and execution.

This translation would not be particularly difficult to do, using a so-called tokenizer
already built into Gekko and used for similar tasks like translating from AREMOS,
GAMS, etc. The advantage of this preprocessor/translator approach is that the Gekko
parser and compiler only "sees" strict Gekko 3.0 code, and the transformations that
the preprocessor performs would be well-defined and well-described.

Another way of doing this would be to optionally transform the syntax when hitting
[Enter] on a statement in the Gekko main window. Gekko already inserts an ending ;

is this is missing, so when in "simplified" mode and the user hits [Enter] on a
statement like print #b;, it will be transformed into print {#b};. This

transformation will actually happen in the lower part of the Gekko main window, just
like any missing ; are actually inserted "physically" into the text editor part of Gekko.

Perhaps the users can live with the {}-curlies (and are aware of when to use them),

but just find them annoying to write. If so, a function key like for instance F4 could
be wired to put {}-curlies around the variable that the cursor is currently resting at

in the text editor part of the main Gekko window (lower part). Again, this would
happen "physically" in the text editor, so hitting F4 when the cursor is at the variable
#b would transform it into {#b}. Hitting F4 again would remove the curlies. This is a

701Appendix

T-T Analyse

bit similar to what Excel does with the F4 function key when editing an Excel formula
(if the cursor is on for instance A1 in a formula, the F4 button circles through the

variants A1, A$1, $A1, and A1).

6.10 Gekko solvers

This is a short section on some of the solvers in Gekko. At the moment, only the
following is detailed here:

· Newton-Fair-Taylor

702 Gekko 3.1.x help system

T-T Analyse

6.10.1 Newton-Fair-Taylor

The Fair-Taylor (FT) algorithm can be perceived as performing Gauss-Seidel over

time, instead of over equations. If the model is simulated over the period t1 to t2,

this simulation is repeated again and again (where the values of any leaded variable

are simply taken from the databank), until the leaded variable(s) converge (that is,

do not move from iteration to iteration). The particular way each of the simulations

from t1 to t2 are performed is irrelevant here, as long as the simulations solve the

model.

Consider this one-equation model:

 y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] + 100

If the model is simulated from 2001 to 2004, the first simulation (2001) will take

y[+1] as the 2002 value, the second simulation (2002) will take y[+1] as the 2003

value, the third simulation (2003) will take y[+1] as the 2004 value, and the last

simulation (2004) will take y[+1] as the 2005 value. Regarding the 2005 value,

there is the question of terminal conditions, but we might imagine that option 'exo' is

used regarding terminals, so that the real (databank) value regarding y[2005] is

used. We might consider this the first FT-iteration, that produced new values

regarding y[2001], y[2002], y[2003] and y[2004].

In the next FT-iteration, consider the first sub-simulation, that is, the simulation of

the year 2001. In this simulation, y[+1] is taken as the y[2002] value that was

computed in the first FT-iteration. And likewise, regarding the simulation of the year

2002, y[+1] is taken as the y[2003] value that was computed in the first FT-

iteration, and so on. The last simulation (2004) will still use the fixed value of

y[2005], because we use the 'exo' option regarding terminals.

This process is repeated over and over, and in many cases it converges nicely. It can

also be damped, and in spirit, the method is very similar to the Gauss-Seidel

algorithm that solves the individual periods (hence, Fair-Taylor is also called Gauss-

Seidel over time). Still, the process is by no means guaranteed to converge, and in

cases with heavy intertemporal influences (for instance, if the parameter regarding

y[+1] were 0.9 instead of 0.3), the 'signals' from the leaded variables from FT-

iteration to FT-iteration may be slow to propagate from the last periods to first

periods. If the intertemporal influence is too heavy, for instance with 0.9*y[+1]

instead of 0.3*y[+1], the Fair-Taylor algorithm cannot solve the problem (no matter

how much damping is used etc.).

In such cases, a more robust Newton solver is often used. The most common way to

progress is typically to 'stack' the equations, eliminating all lags and leads. For

instance, the system regarding 2001-2004 could be written in the following way:

703Appendix

T-T Analyse

 y1 = 0.1*y0 + 0.2*y1 + 0.3*y2 + 100

 y2 = 0.1*y1 + 0.2*y2 + 0.3*y3 + 100

 y3 = 0.1*y2 + 0.2*y3 + 0.3*y4 + 100

 y4 = 0.1*y3 + 0.2*y4 + 0.3*y5 + 100

This system is time-less (or static) in the sense that there are no lags or leads, but

only variables with names that indicate the period. Provided that some values

regarding y0 (= y[2000]) and y5 (= y[2005]) are provided, the system can be solved

with a 'normal' solver (that is, a solver that solves one period at a time).

Now, such a system can become quite large, because the equations are unfolded

(stacked) like in the example above. For a 100 year simulation period, the model

becomes 100 times larger than a normal model, and the Jacobi matrix obtains

100*100 = 10.000 times more elements. There are a lot of tricks and methods to

alleviate this explosion of variables, but implementing such tricks (for instance sparse

matrices) is a time-consuming process.

Gekko implements such a stacked time solver, but it is mostly suited for smaller

models, or for limited time periods. For larger models solved over long time periods,

an alternative solver can be used. Provided that there are not too many variables

with leads, this solver is quite powerful. The solver is called Newton-Fair-Taylor, and

the basic principles of this solver is presented in the following section.

Newton-Fair-Taylor

This solver is activated by means of the following option:

option solve forward method = nfair; //default is 'fair'

The underlying idea is to view Fair-Taylor as an iterated process, where the goal is to

find a fixed point in this process. If we limit the problem to one variable (y)

containing leads, the process can be stated as follows:

ynew = F(yold)

So yold is a nx1 vector of initial values for y regarding the simulation period (with n

observations), and this is fed to the normal solution algorithm, where leaded

variables are just used at face value. The normal solution algorithm simulates the n

periods, which produces n new values for y. The process is repeated over and over,

and as soon as ynew = yold, the problem is solved.

This system can be linearized around some particular vector yold, by performing a

small perturbation ε on one of the elements of yold, simulating the model over n

periods, and observing the effects on ynew, compared to a simulation without ε. These

704 Gekko 3.1.x help system

T-T Analyse

perturbations are performed for each period, and produce n effects (for each of the

periods contained in ynew). All in all, we obtain a n x n matrix of effects. For example,

if the model y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] is simulated over 4 periods, we

obtain the following matrix:

 1 2 3 4

 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0007
 3 0.0000 0.3750 0.0469 0.0059
 4 0.0000 0.0000 0.3750 0.0469

The first row shows what happens to y[2001], y[2002], y[2003] and y[2004], if
y[2001] is changed by one unit. In 2001, here is no effect of changing y[2001], since
this only affects the starting values. As there are no effects in 2001, there are no
effects in 2002-2004 either, so the first row is full of zeroes. The second row shows
what happens, if y[2002] is changed by one unit. In 2001 this affects y, via the
leaded variable. The effect is 0.3/(1-0.2) = 0.375. This in turn affects y in 2002 via
the lag 0.1*y[-1]. This effect is 0.375*0.1/(1-0.2) = 0.0469, and so on.

This matrix is used to transform the error (ynew-yold) into a new guess regarding y. In

order to do this, the 4x4 identity matrix is subtracted, and the resulting matrix is

inverted. This matrix can then be combined with the error, to produce a new guess.

With option 'const' (option solve forward terminal = const) regarding terminal values,
the idea is that regarding the terminal value y[2005], this value is set equal to
y[2004]. Hence, the terminal value is assumed constant ('const') in relation to the
y[2004] value, and in a stacked system, this would amount to the following:

 y1 = 0.1*y0 + 0.2*y1 + 0.3*y2 + 100

 y2 = 0.1*y1 + 0.2*y2 + 0.3*y3 + 100

 y3 = 0.1*y2 + 0.2*y3 + 0.3*y4 + 100

 y4 = 0.1*y3 + 0.2*y4 + 0.3*y4 + 100

Note the last equation, where y4 is used instead of y5. Using the 'const' option
changes the incidence matrix, which would now be the following:

 1 2 3 4
 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0012
 3 0.0000 0.3750 0.0469 0.0094
 4 0.0000 0.0000 0.3750 0.0750

This changes the last column, for instance the element (4, 4) is changed from 0.0469
to 0.0750, that is a factor (1-0.2)/(1-0.2-0.3) = 1.6. With "OPTION solve forward
terminal feed = internal", the incidence matrix will look like the matrix above,
whereas with this option set to 'feed = external', the incidence matrix will look like
the first one shown (with element (4, 4) = 0.0469).

With 'feed = internal', a linear model with leads will solve in one Fair-Taylor iteration,
regardless of the coefficients (provided that the model is solvable). Using 'feed =
external', more Fair-Taylor iterations are needed.

705Appendix

T-T Analyse

It would be tempting to provide a 'growth' option regarding terminal values,
corresponding to this stacked system:

 y1 = 0.1*y0 + 0.2*y1 + 0.3*y2 + 100

 y2 = 0.1*y1 + 0.2*y2 + 0.3*y3 + 100

 y3 = 0.1*y2 + 0.2*y3 + 0.3*y4 + 100

 y4 = 0.1*y3 + 0.2*y4 + 0.3*y4*y4/y3 + 100

The last equation corresponds to y5/y4 = y4/y3, and the problem is that this

equation may be hard to solve when solved on its own (because the right-hand side

contains a term with y4 squared). Because of this, a 'growth' option regarding

terminal values is not provided at the moment.

All in all, the Newton-Fair-Taylor solver ('nfair') is quite powerful regarding forward-

looking models. If the number of variables with leads is limited, the incidence matrix

does not become too large, and filling it up with coefficients does not become too time

consuming. With k lead variables, the incidence matrix becomes (k*n) x (k*n)

instead of n x n, and the matrix will contain cross-effects from one lead-variable to

another. Such a matrix may be time-consuming to compute, since in principle k*n

simulations are needed to fill it (not all simulations need to solve the full period, but

there is still a lot of work to be done).

Looking at the original incidence matrix, an obvious idea springs to mind:

 1 2 3 4

 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0007
 3 0.0000 0.3750 0.0469 0.0059
 4 0.0000 0.0000 0.3750 0.0469

It is clear that the matrix is repetitive, with the same number (cf. the colors) running

diagonally downwards. Using this idea, and assuming that the coefficients do not

change too much over time in non-linear models, only k simulations are needed to fill

the matrix (k being the number of leaded variables).

Some care must be taken regarding the coefficients corresponding to terminal values

(if 'const' terminal condition is used), but a quite good approximation of the real

matrix can probably be produced with little effort using this idea.

Newton-Fair-Taylor example

Provided the following model file:

------------- y.frm -----------------------------------

frml _i y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] + 100;

706 Gekko 3.1.x help system

T-T Analyse

You may try the following statements:

RESET;
OPTION solve forward method = nfair;
OPTION solve forward dump = yes;
TIME 2001 2004;
MODEL y;
CREATE y;
SERIES <2000 2000> y = 200;
SIM;
PRT y;
PRT #ft_1;

Option 'nfair' is set regarding forward solving (default regarding terminals is always

'const'). Option 'dump' is set, so that the gradient matrix can be shown afterwards

(#ft_1). The result is the following:

 +++ NOTE: There are 1 variable(s) with leads: Fair-Taylor algorithm is used
 #1: Gauss simulation 2001-2004 took 0.00 sec -- 10/14/8.8 iterations (min/max/avg)
 Gradient 1 of 4 (var 1 per 2001)
 Gradient 2 of 4 (var 1 per 2002)
 Gradient 3 of 4 (var 1 per 2003)
 Gradient 4 of 4 (var 1 per 2004)
 #2: Gauss simulation 2001-2004 took 0.01 sec -- 10/14/43.4 iterations
(min/max/avg)
 Newton-Fair-Taylor (leads) algorithm converged in 3 NFT-iterations (1.34 sec)

 y %
 2001 243.4254 21.71
 2002 249.1343 2.35
 2003 249.8830 0.30
 2004 249.9766 0.04

 #ft_1
 1 2 3 4
 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0012
 3 0.0000 0.3750 0.0469 0.0094
 4 0.0000 0.0000 0.3750 0.0750

The gradient matrix uses four simulations (one for each period), and the algorithm

converges in 3 Newton-Fair-Taylor iterations, which is always the case for a linear

model. Note that in this simulation, the actual databank value of y in 2005 is not

used at any point (it is missing value anyway). From the results, it is seen that y is

developing towards it's equilibrium value 250. This value can be found by removing

all lags/leads in the equation y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] + 100, so that it

becomes y = 0.1*y + 0.2*y + 0.3*y + 100 (which has y = 250 as solution).

Setting "OPTION solve forward terminal = exo", and setting y[2005] = 200 would

change the solution completely:

 2001 242.2783 21.14
 2002 246.0754 1.57
 2003 242.1082 -1.61
 2004 230.2635 -4.89

In this case, the y[2004] is 'attracted' to y[2005] = 200, and hence cannot attain a

707Appendix

T-T Analyse

value close to 250 anymore. So the choice of terminal condition should not be taken

too lightly, and the 'const' option makes much more sense than the 'exo' option in

most cases.

708 Gekko 3.1.x help system

T-T Analyse

6.11 Comparison with similar software

In this section, Gekko is compared to other similar software packages, so that
potential user can more easily judge whether Gekko suits their needs. The
comparison is done regarding the older Gekko 2.0 version (Gekko 3.0 has a lot more
capabilities).

· AREMOS (version 5.4.1)
· EViews (version 8)

709Appendix

T-T Analyse

6.11.1 Compare with AREMOS

This section compares AREMOS (version 5.4.1) modules and functionality with Gekko

2.0 (as of December 2015). The comparison is focused on overall functionality, and

not so much on particular details. So this is not a command-by-command comparison.

The following two comparisons are provided:

· Checking which AREMOS components are available/missing in Gekko

· Describing Gekko components not available in AREMOS

Conclusion: Gekko implements almost all relevant features regarding datarevision

projects. Regarding modeling and solving models, Gekko is superior. And regarding

econometrics, Gekko lacks a lot of these features, but these features are not the

main point of the software (for the time being at least).

Note in general that econometrics is skipped in the comparison. AREMOS contains

quite a lot of econometrics functionality, but it is not the intention to emulate this

part of AREMOS in Gekko (but instead provide good interfaces to econometrics

packages like R etc.).

AREMOS
component

Status
in
Gekko
2.0

Comment

Program
structure

ok Like AREMOS, Gekko is timeseries and databank oriented,
allowing any number of open databanks containing
timeseries with any frequency. Since OPEN<prim>, local
time settings like <2010 2020>, etc. are implemented
similarly, the overall structure of a Gekko program will
typically be very similar to the structure of a
corresponding AREMOS program.

Syntax ok Related to program structure, the basic Gekko syntax
(abstracting from concrete command names) is also
basically similar to AREMOS syntax, albeit with some
differences.

· Lists of items are separated by commas (','), for instance
"PRINT x1, x2 x3;"

· All lines end with semicolon (';')
· Indexing uses square brackets ('[' and ']'), including

lags. For instance gdp[-1], gdp[2020], #m[2, 3]. Ranges
are '..' instead of '-' in Gekko: #m[2..3, 1..5].

· Lists use '#' prefix, for instance #m. Contrary to
AREMOS, Gekko matrices also use '#' prefix to
distinguish them from timeseries.

https://en.wikipedia.org/wiki/AREMOS

710 Gekko 3.1.x help system

T-T Analyse

· Scalars STRING, NAME, DATE and VAL use '%' as prefix,
to distinguish them from lists. These scalars correspond
to the equivalent ASSIGN variables in AREMOS.

· Timeseries are without prefix as in AREMOS.
Name/string scalars can be used for name composition,
including the use of the '|' concatenator.

· Banks are referred to by colon (':'), as in AREMOS.
· Local options are set inside a '<' and '>' braces, for

instance "PRT <2010 2020> gdp;". This complies with
AREMOS.

· Loops (FOR) and conditionals (IF) work more or less in
the same way as AREMOS. REPEAT and WHILE will be
added.

· Comments use '//' instead of '!'
· Strings use single quotes (') only, AREMOS accepts

double quotes too (")
· Dot (.) can be used for frequencies, to distinguish gdp.q

from gdp.a. Dots will probably be possible in variable
names, but are not allowed at the moment. Dots can
also be used for lags, for instance x.2 = x[-2].

· Mathematical and logical operators work like in
AREMOS. Many of the same in-built functions are
provided.

Databanks ok Gekko provides the same functionality, with a list of open
databanks, searchable for timeseries. The concept of the
first-position databank is extended with a 'reference'
databank concept. This makes many kinds of comparisons
much easier. Databanks are closed with CLOSE and
written to automatically if changed, and protected banks
are supported. Banks are referred to with single colon, and
all AREMOS functionality regarding timeseries copying,
clearing, indexing, renaming, counting etc. is available.

Gekko does not have a support bank, but it is intended to
put procedures/functions into a general 'support' folder
instead.

Gekko includes READ/WRITE for dealing with databanks.
This is often practical. IMPORT/EXPORT is also supported.

At the moment, Gekko databanks contain series only
(annual, quarterly, monthly or undated). It is considered
to allow scalars, matrices and lists into databanks,
whereas procedures/functions and equations/models are
kept outside.

711Appendix

T-T Analyse

Advanced structures and documents are not supported,
but there is a DOC statement to handle label and source
for timeseries.

Contrary to AREMOS, searching for a name in a Gekko
databank always takes the same amount of time,
regardless of the databank size (Gekko uses hash tables
internally).

Speed ok Gekko runs models and program files much quicker than
AREMOS. For program files, AREMOS uses interpretation
on a line-by-line basis, whereas Gekko compiles the
statements into machine code.

Timeseries
and
frequencies

partial Gekko supports annual, quarterly, monthly or undated
frequencies, with the same codes (A, Q, M, U). Higher
frequencies could be added if necessary. Gekko does not
use colon for dates, for instance 2015:3. Instead the more
informative 2015q3 notation is used (which AREMOS also
uses).

Like AREMOS, the time period and frequency can be set
globally, and is used implicitly in many commands. Gekko
timeseries can have any number of observations, and
Gekko uses missings to avoid the dreaded "** Observation
outside current period" message in AREMOS.

COLLAPSE, SMOOTH, SPLICE, TRUNCATE and ANALYZE
are supported. Seasonal adjustment (X12A) is provided.

Transformation series are not supported.

Lists ok Gekko supports almost precisely the same components for
list manipulation, including listfiles.

Wildcards ok Gekko also uses '*' and '?' for wildcards, but uses '..' for
ranges instead of '-'.

Matrices ok Basically all of AREMOS' matrix functions are provided,
including indexing of sub-matrices etc. The syntax is a
little bit different, since Gekko refers to matrices with '#'
prefix, and matrix construction uses the [1, 2 || 3, 4]
pattern rather than [1, 2]||[3, 4]. In addition, ranges are
'..', not '-'.

Pack/unpack regarding timeseries is provided.

A matrix editor is not provided, but copy/pasting a matrix
to Excel is easy (just use the copy-button in the Gekko
interface).

712 Gekko 3.1.x help system

T-T Analyse

Scalars ok STRING, NAME, VAL and DATE provide most of the
functionality of the ASSIGN command. In Gekko, STRING
corresponds to ASSIGN ... STRING ..., whereas NAME
corresponds to ASSIGN ... LITERAL Note that Gekko
scalars are referred to by '%' prefix, not '#' like AREMOS.
There are quite a lot of string functions available.

Models ok Models and equations are done a bit differently from
AREMOS. In Gekko, only one model can be loaded at the
time, but on the other hand models solve much faster.
Gekko's solvers and modeling facilities are more powerful
than AREMOS', and Gekko also solves with leads. The
Gekko concept of a 'reference' databank alongside the
first-position databank eases comparisons of scenarios.

Econometrics limited Only simple OLS (and ANALYZE) is implemented in Gekko.
It is not the intention to provide advanced econometrics in
Gekko, but rater focus on interfaces to R, TSP, etc. (cf.
R_RUN).

Graphs partial Gekko implements graphs via the gnuplot engine.
Compared to AREMOS graphs with large template files
(.gra), Gekko graphs are lacking. But still, normal graphs
work fine in Gekko, and exporting data to Excel for further
graphing possibilities is easy.
Gekko 2.2 has improved PLOT.

Reports almost Printing of timeseries, lists, matrices, scalars, etc. is
implemented, including TELL. TABULATE is not
implemented.

Tables differen
t

Gekko has rich features regarding the production of
timeseries tables and menus from config files (including
html tables). But Gekko does not have an Excel-like TABLE
editor like AREMOS, and some of the advanced features
like mixing frequencies in tables are missing in Gekko
(Gekko tables are mostly used for annual data).

File transfer ok Besides Gekko's own open gbk format, Gekko supports
formats like tsd, csv, prn, xlsx, etc. for data interchange.

Options ok Gekko operates with globals option settings in the same
way as AREMOS. The syntax is OPTION rather than SET,
however.

Functions/pro
cedures

almost User defined functions are supported in Gekko. Library
logic regarding functions/procedures will soon be added.

Store/restore
settings

ok Settings can be stored in gekko.ini similar to aremos.opt,
and will be loaded when using RESTART rather than
RESET. The content of the Work bank, sample, frequency,
etc., is not automatically stored from session to session

713Appendix

T-T Analyse

(this can be done manually if needed). Local options inside
<...> angle brackets are implemented like in AREMOS.

Client/server no Gekko is one component, and there is one main window.
Gekko can be called silently in batch mode if needed.

Editor no Gekko does not contain an inbuilt editor for program files
or procedures, but the EDIT statement calls Notepad.
External editors like VS Code, Sublime or Notepad work
fine with the RUN statement.
There is a XEDIT statement for Gekko 2.2.

Structure/doc
ument/write

no This is not implemented in general (only label/source, see
DOC), but Gekko stores the last SERIES statement inside
the source field of individual timeseries. Some AREMOS
users are happy to use custom designed documentation
fields in AREMOS, and something similar (and perhaps a
bit more modern) will be added to Gekko.

INTERPOLAT
E

no This command is missing in Gekko (creating a higher-
frequency timeseries from a lower-frequency one).
Implemented in Gekko 2.2

RANK no This command is missing in Gekko (sorting timeseries).

REBASE no Rebasing a timeseries = 1 in a particular period, missing
as a statement in Gekko.
Implemented in Gekko 2.2

REPEAT/WHI
LE

no You can use FOR loops with IF instead, but REPEAT/WHILE
will be added.

UNASSIGN no There is actually no way to delete scalars in Gekko. This
will be done.

The following section highlights some of the functionality that Gekko provides, but

AREMOS does not.

Gekko component Comment

Open source Gekko is open source, and hence free to download (including
all source code files), use and alter (under the GNU GPL
license). Everything in Gekko is C#.NET + external modules
like gnuplot, 7zip and x12a. Easy installation of Gekko with
all-inclusive installer. The only thing to worry about is
wheather one should install R, too - this can be done
separately, before or after the Gekko installation.

http://www.r-project.org

714 Gekko 3.1.x help system

T-T Analyse

Databanks Gekko 2.0 introduces the concept of a 'reference' databank,
opening up all the advantages of statements/operators like
PRT<m>, PRT<q>, MULPRT<pch> etc. The default databank
format (gbk) is a fast and open/nonproprietary format
(zipped protobuf files). All data and internal representations
are in double-precision (64 bit, around 15 significant digits).

Reading READ/WRITE for easier data loading into the first-position or
reference databank. This can be cumbersome in AREMOS via
OPEN, COPY, etc.

Models Gekko has better and faster solvers, including solvers for
goals-means, and solvers for leaded endogenous variables.
Models can be signed, and you can use dlog() etc. in the
equations (also on the left hand side). Automatic handling of
add-factors, exogenization etc. Model signatures
implemented.

Translators Gekko can translate from the older Gekko 1.8, and from
AREMOS (see the TRANSLATE statement). The translators
are pretty advanced, using a parser internally, so they do
much more than simple search & replace.

Statistikbanken AREMOS has a QuickData component for linking up to
Global Insight's databases. Gekko has a similar component
for linking up to the Danish 'Statistikbanken' database, via
its new API. Meta-data regarding the timeseries is imported
as labels.

R interface Easy interface to R, so that you can manipulate your
timeseries in R and get them back again.

Tables/menus The Gekko menu and table generator is actually quite
powerful, using xml and html. You can use html menus to
organize the tables.

Suggestions Suggestions pop up when the user types OPTION values.
There will also be syntax suggestions from the translators, if
the statement entered looks like Gekko 1.8 or AREMOS
syntax.

String/name Gekko provides a cleaner string/name distinction, and
conversion possibilities (name to string: '%n' or $n, and
string to name: {%s} or {s}).

HP-Filter In-built HP-Filter function

Run status
window

(Double-click the green/yellow/red light in the lower bottom
of the main window.) This window tracks the progression of
Gekko jobs = .gcm files running. It is practical for larger
time-consuming jobs, and to see which jobs have finished.

https://en.wikipedia.org/wiki/Protocol_Buffers

715Appendix

T-T Analyse

Databank window (Click F2). In this window, you can change the position of
Gekko databanks in the search list via drag and drop.

Decomposition The DECOMP statement has no equivalent in AREMOS. Used
to track effects from equation to equation in models, and
decompose these effects into contributions from precedents.
User-defined informative labels for the timeseries are
supported.

Equation browser The equation browser has no equivalent in AREMOS. It is
used to click through and show the equations and data in
the model (via precedents and dependents). User-defined
informative labels for the timeseries are supported.

MULPRT and
operators

Using the concept of first-position and reference databanks,
a lot of comparisons are easy to perform. "MULPRT y;" will
print the difference between y in the two databanks, but
more complicated transformations are possible via so-called
print codes. You may for instance use "PRINT <p> x, y, z
<m q>;", where the first <p> tells Gekko to print out x, y in
growth percentages (<p>), whereas z is treated individually
and is printed out as absolute and relative multiplier (<m
q>). This way, you avoid tedious expressions like "PRINT
100*(x/x[-1]-1), 100*(y/y[-1]-1), z - ref:z, 100*(z/ref:z-
1);". The operator transformations also work on expressions
and lists. There are even 'long' and 'short' print codes, to
suit different purposes. The SERIES statement also supports
the 'short' operators, so you may state, for instance,
"SERIES <p> x = 15;" to set the growth rate of x to 15%.
The operators work for tables, too.

Time filters Gekko supports time filters (see TIMEFILTER). Using these,
observations may be skipped or aggregated when reported.
This is useful regarding long samples.

Modes Via the MODE statement, Gekko can run in sim-, data-, or
mixed mode. For instance, databank searching is switched
off in simulation mode, but active in databank mode. Mixed
mode synthesizes sim- and data-mode, that is, mixes model
simulation and data handling.

Unlimited There are no limits on any datastructures in Gekko, other
than what available RAM permits.

716 Gekko 3.1.x help system

T-T Analyse

6.11.2 Compare with EViews

This section compares EViews (version 8) modules and functionality with Gekko 2.0

(as of December 2015).

The comparison is limited to data revision purposes, where the following questions

can be raised.

EViews is indeed a polished and professional software product. It is not the intention

here to judge the EViews capabilities regarding model solving or econometrics, but

instead we will take a look at EViews for data revision purposes (on timeseries data).

The following points may be biased, or even wrong (comments are appreciated), but

they reflect an honest attempt to perform some timeseries related tasks in EViews, as

compared to running them in Gekko.

· When you open up EViews with a new 'workfile', it seems a bit cumbersome that

the user always as the first thing has to pick out a sample (period) for the work file.

Workfiles can have 'pages' (a bit like tabs in Excel), and for each page there seems

to be a global sample period (defined once and for all) and fixed frequency. So if

there are several frequencies, these seem to have to live on separate pages in the

workfile. The databank/workfile format seems proprietary and undocumented, in

contrast to the open-format Gekko databanks (protobuffers).

· It does not seem possible to refer directly to objects on other pages or workfiles.

These have to be copied/cloned first, before use. For instance "copy

wf1::page1\ser1", but it does not seem possible to use "wf1::page1\ser1" in

expressions (in contrast to Gekko's use of colon). This will result in quite a lot of

copying, and then the user must remember to delete these objects afterwards.

· It does not seem possible to obtain a line-by-line execution of statements (like in

Gekko or AREMOS or other packages). The EViews user can run a whole file 'batch',

or a block of statements can be marked and executed by right-clicking and choosing

in the menu. The only way to run a single statement line seems to be to mark it,

right-click it, and choose 'Run selected' (for which there is no short-cut). But even

if the user does this, there is for instance a problem with executing the lines "%s =

"hello"" and "show %s" one by one. After the first line is executed, %s no longer

exists in memory when it is to be shown in the second line (this variable only

seems to live while the first line is executing). So these two lines must be executed

as one block, and cannot be tried out separately.

· Apparently, EViews does not provide the line number, when errors occur, neither

for marked blocks of statements (run from the command window), or from

batch/program files run with EXEC. This is not very user-friendly when running

larger files/systems. The user can see the file involved, and how the offending line

looks. But EViews inserts concrete values from control variables, so the user may

https://en.wikipedia.org/wiki/AREMOS

717Appendix

T-T Analyse

receive an error like "!m is not defined or is an illegal command in '!m = 0 + 0'", in

stead of a raw depiction of the line ("!m = !m + !k"). Sometimes it can be

convenient to see the concrete value of control variables in a line, but this does not

make it easier to locate the line in a program file...

· In the main window, there does not seem to be a dedicated output window (like the

upper part of the main window in Gekko, or the main window in AREMOS). Instead,

there are floating sub-windows. If, as an example, the user wants to print out a

scalar or timeseries, it only seems possible by means of opening up a sub-window

with that content (in a kind of mini-spreadsheet). Maybe there are other ways to do

it, but if not, quite a lot of sub-windows may clutter the working area (and these,

by the way, do not seem to be closeable with the Escape key). As an consequence,

back-browsing/looking in the output window like in Gekko or AREMOS does not

seem possible. Related to this, it seems a bit odd that printing out a text string via

"show %s" opens up a whole new sub-window and shows the result in a mini-

spreadsheet with the value of the string shown for each observation in the sample.

Isn't it possible to use a TELL statement like in Gekko or AREMOS? Using "print %s"

seems to send the results to the printer...

· User-defined functions do not seem possible in EViews. It is possible to design

userdefined procedures, and these can return stuff via their ingoing arguments. But

it is not possible to have a function that returns something that can be used

directly as an argument in other places/functions. So it does not seem possible to

design a user-defined function product(x, y), where product(2, 3) = 6, and

product(product(2,3), 4) = 24. This seems like a serious limitation, and such

functions do not seem to be underway according the the EViews user forums.

· Dates seem to be internally represented as strings in EViews. In order to 'calculate'

on such dates, it seems necessary to use the functions @dtoo() og @otod(), that is,

date-to-observationindex and observationindex-to-date, respectively. These

functions obtain the number of observations from the start period of the workfile

itself, relative to some date written as a text string. But if you need an 'offset' of

dates (for instance, adding five periods to some date %t), it seems necessary to use

something like this: %tt = @otod(@dtoo(%t)+5); !x = @elem(y1, %tt). Of if you

need to find the timeseries observations that in Gekko would be VAL x = y1[%

t+5], in EViews it seems necessary to write something like this: !x = @elem(y1,

@otod(@dtoo(@str(!t))+5)). Since EViews does not have user-defined functions,

this is proabably not something that could be hidden/wrappted inside a function.

Correspondingly, refererence like for instance y1[2010] seem a bit cumbersome to

write in EViews, since it seems to involve writing @elem(fy, "2010:1"). Normal lags

in timeseries, however, are non-problematic and are written like y1(-1) etc.

· In a similar vein, it seems involved to set some observation of a timeseries to some

particular value. In order to do what in Gekko would be "SERIES <2010m1

2010m1> fy = fx[2000m1];" seems to involve the following in EViews: "smpl

718 Gekko 3.1.x help system

T-T Analyse

2010m1 2010m1; fy = @elem(fx, "2000m1"); smpl @all;". It seems necessary to

alter the globals sample period to do this in EViews.

· The EViews syntax originally origins from TSP, since EViews origins from MicroTSP,

which again stems from TSP. It is probably a matter of taste, but somehow the

syntax of EViews seems a little bit old-fashioned, for instance with its use of blanks

instead of commads to separate items.

· It seems a bit strange that the EViews user can operate with both string-

replacement variables (%s) on the one hand, and simultaneously on the other

hand operate with string-objects (that can live in a workfile). These have almost

the same functionality, so why two types? The same goes for scalars, where you

can either use the control variable !x, or a corresponding scalar object. The reasons

are probably historical, but it is a bit confusing.

· EViews does not seem to compile program files into executable code, but seems to

use a so-called interpreter instead. This hampers the execution speed of EViews

program files, even though EViews itself is written in (speedy) C++. The speed of

model simulations has not been tested, since this is not the focus of the present

section.

719Appendix

T-T Analyse

Gekko 3.1.x help system720

T-T Analyse

Index

- . -
.NET 158

- A -
ACCEPT 191, 427

ANALYZE 193, 195

Appendix 667

AREMOS 576, 668, 709

- B -
Basic concepts 125, 133, 137, 143

- C -
C# 158

CHECKOFF 198

CLEAR 200

Clear screen 207

CLIP 202

Clipboard 202

CLONE 203

CLOSE 204, 206

CLS 207

Cmd prompt 551

COLLAPSE 208

Combine timeseries 535

Command file 495

Command overview 180, 184, 187

Commands in Gekko 179

COMPARE 212

Compare Gekko software 708

Conditional 259, 260, 262, 300

COPY 216

Correlation 193, 195

COUNT 221

CREATE 224

- D -
Data 204, 206, 269, 304, 401, 482, 587

Databank 200, 204, 206, 269, 297, 304, 401, 482,
487, 587

Databank copy 203

Databanks 354, 581

DATE 226

DECOMP 234, 239

Decompose 234, 239

DELETE 243

DISP 246

Display equation 246

DOC 249

Documentation 249

Dos prompt 551

DOWNLOAD 252

- E -
EDIT 257

Editor 257, 593

END 259, 260, 262

ENDO 263, 580

Environment 318

Equation 463

Equations 378, 525

EViews 716

Excel 516

Execute 495

EXIT 267

EXO 268, 580

EXPORT 269, 304, 587

External file 204, 206, 269, 304, 401, 482, 587

- F -
F1 156, 298

File 428

Filenames 154

Files 154

FIND 184

FINDMISSINGDATA 274

FOR 279, 493

Forward-looking model 702

Index 721

T-T Analyse

Frequency 208, 319, 590

Function 286, 445, 493, 595, 596

Function keys 17

Functions 595, 596

- G -
Gekko 1.8 576, 671, 674, 675

Gekko software 158

Gekko.ini 318, 407, 490

Global time 566

Goals and means 263, 268

GOTO 292, 295, 352, 562

Graph 431

Graphics 431

- H -
HDG 297

HELP 156, 298

Hlp 156, 298

- I -
i 161

IF 300, 493

IMPORT 304

in-built 286

Index 313, 479

INI 15, 318, 495

Interface 17

INTERPOLATE 319

Introduction to Gekko 125

ITERSHOW 324

- L -
Leads 702

Linear algebra 359

LIST 326, 333

LOCK 354, 581

Loop 259, 260, 262, 279

- M -
map 355, 499, 585

maps 286

MATRIX 359

MEM 370

MENU 372, 553

Meta-information 249

Missing value 274, 532

MODE 184, 187, 375

Mode: data 375

Mode: sim 375

Mode: universal 375

MODEL 277, 378, 525, 527

MULPRT 390, 451

- N -
NAME 543

New features 8, 19

Notepad 257

- O -
OLS 19, 396

Online databank 252

On-line help 156

OPEN 204, 206, 401

Open source 158

OPTION 407

Options 407

Ordinary least squares 396

- P -
Path 154

PAUSE 191, 427

Period 226

PIPE 428

PLOT 431

Print 246, 390, 451

PROCEDURE 286, 445

Program 286, 445, 495

PRT 390, 451

PYTHON 472

PYTHON_RUN 472

Gekko 3.1.x help system722

T-T Analyse

- R -
R 465

R_RUN 465

READ 482

REBASE 479

Rebase timeseries 479

Redirect 428

RENAME 487

RESET 489

RESTART 490

RETURN 493

RUN 495

- S -
Scalar 543

Scalar variable 226, 370, 543, 582

Script 495

Search 313

Seasonal correction 590

SERIES 499, 585

Set period 566

Setup of Gekko 15

SHEET 516

SIGN 525

SIM 198, 263, 268, 324, 378, 527, 701, 702

Simulation 198, 263, 268, 324, 527, 580, 701, 702

SMOOTH 532

Solve 527, 701, 702

SPLICE 535, 596

Spreadsheet 516

Start-up 318

STOP 541

Stop Gekko 267, 493, 541

STRING 543, 563

Syntax basics 160

Syntax rules 161

SYS 551

System shell 551

- T -
TABLE 372, 553

TARGET 562

TELL 553, 563

TIME 566, 569

TIMEFILTER 569

Timeseries 499, 579, 585

Timeseries functionality 193, 195, 208, 274, 319,
479, 499, 532, 535, 579, 585

Translate 576, 668, 671, 674, 675

TRUNCATE 579

- U -
UNFIX 580

UNLOCK 354, 581

User defined function 286, 445

User defined procedure 286, 445

User input 191

User manual introduction 125

- V -
VAL 582

Value 582

- W -
Wait 427

Wildcard 313, 326, 333, 355

WRITE 269, 482, 587

- X -
X12A 590

XEDIT 593

XmlNotepad 593

