
Gekko Timeseries & Modeling

Gekko 3.0 user manual

T-T Analyse

Gekko 3.0 user manual2

T-T Analyse

Table of Contents

Part I Gekko 3.0 user manual

 6

1 New features .. 9

2 Note about Gekko 3.0 ... 14

3 Setup .. 17

4 Basic concepts ... 19

5 Time periods .. 26

6 Databank search .. 26

7 Wildcards ... 30

8 Naked list ... 36

9 Filenames ... 39

10 Function keys, etc. ... 40

11 Help system .. 41

12 Under the hood .. 42

13 Guided tour .. 44

Part II Gekko syntax basics

 46

1 Basic syntax rules .. 48

2 More about syntax ... 53

3 Indexing: list, matrix, map .. 58

4 Syntax diagrams ... 61

Part III Gekko commands

 66

1 Reading guide .. 68

2 Command overview .. 69

Sim-mode command overview ... 74

Data-mode command overview .. 77

3 ACCEPT .. 81

4 ANALYZE .. 83

5 BLOCK ... 85

6 CHECKOFF ... 87

7 CLEAR .. 89

8 CLIP .. 91

9 CLONE ... 92

10 CLOSE .. 93

11 CLS .. 95

12 COLLAPSE ... 96

3Contents

T-T Analyse

13 COMPARE .. 98

14 COPY .. 102

15 COUNT ... 107

16 CUT .. 109

17 CREATE .. 110

18 DATE .. 112

19 DECOMP ... 117

20 DELETE .. 121

21 DISP .. 123

22 DOC .. 126

23 DOWNLOAD ... 128

24 EDIT .. 132

25 ELSE ... 134

26 END .. 135

27 ENDO .. 136

28 EXIT .. 140

29 EXO .. 141

30 EXPORT ... 142

31 FINDMISSINGDATA ... 147

32 FOR .. 150

33 FUNCTION .. 156

34 GLOBAL ... 162

35 GOTO ... 165

36 HDG .. 167

37 HELP .. 168

38 IF .. 170

39 IMPORT .. 174

40 INDEX ... 181

41 INI ... 186

42 INTERPOLATE .. 187

43 ITERSHOW ... 189

44 LIST .. 191

45 LOCAL .. 209

46 LOCK .. 211

47 MAP .. 212

48 MATRIX ... 216

49 MEM ... 226

50 MENU ... 228

51 MODE ... 231

Gekko 3.0 user manual4

T-T Analyse

52 MODEL ... 234

53 MULPRT ... 241

54 OLS .. 247

55 OPEN .. 251

56 OPTION .. 257

57 PAUSE .. 273

58 PIPE .. 274

59 PLOT .. 277

60 PROCEDURE .. 288

61 PRT .. 295

62 R_EXPORT ... 307

63 R_FILE .. 309

64 R_RUN .. 310

65 REBASE .. 314

66 READ .. 316

67 RENAME ... 320

68 RESET .. 322

69 RESTART .. 323

70 RETURN ... 326

71 RUN .. 327

72 SERIES ... 331

73 SHEET .. 346

74 SIGN ... 354

75 SIM ... 356

76 SMOOTH .. 360

77 SPLICE ... 363

78 STOP .. 365

79 STRING ... 366

80 SYS ... 373

81 TABLE .. 375

82 TARGET ... 384

83 TELL ... 385

84 TIME ... 387

85 TIMEFILTER .. 390

86 TRANSLATE ... 393

87 TRUNCATE ... 395

88 UNFIX ... 396

89 UNLOCK ... 397

90 VAL ... 398

5Contents

T-T Analyse

91 VAR .. 401

92 WRITE .. 403

93 X12A ... 406

94 XEDIT ... 409

Part IV Gekko functions

 412

1 Functions ... 414

Part V Gekko solvers

 447

1 Newton-Fair-Taylor ... 449

Part VI Guided tours

 456

1 Guided tour: modeling .. 457

1. Installation and download ... 457

2. Graphical interface etc. ... 458

3. Historical simulation ... 461

4. Multiplier analysis (shocks) ... 469

5. Add-factors etc. .. 474

6. Goal-search etc. ... 477

7. Forward-looking ... 481

Part VII Comparison with similar software

 485

1 Compare with AREMOS .. 487

2 Compare with EViews ... 494

Part VIII Appendix

 498

1 AREMOS translator details ... 500

2 Gekko 1.8 translator details .. 502

3 Gekko 2.0 translator details .. 504

4 Assignments ... 505

5 Missings ... 506

Index 515

Part I

7Gekko 3.0 user manual

T-T Analyse

1 Gekko 3.0 user manual

Last modified: 5/12 2019

Gekko 3.0 was released in April 2019 as a stable version, but some glitches are still
to be expected. Note that in some sections on the help pages, there is a "[New in
3.0.x]" marker, which indicates that the functionality is new in that particular Gekko
version in the 3.0 series. There are still some known issues regarding DECOMP and
TIMEFILTER (regarding issues and stability, see this page).

Gekko Timeseries and Modeling Software is an open-source software system for
handling and analyzing timeseries data, and for solving and analyzing large-scale
economic models. See the Gekko homepage: www.t-t.dk/gekko. The current 3.0
version is a release version (stable version). See the page www.t-
t.dk/gekko/gekkoversions regarding the different Gekko versions available at the
moment, and how to choose between them.

The user manual contains the following chapters:

· Introduction. Introductory chapter.
· Gekko syntax basics. In this chapter, the syntax is described.
· Gekko commands. This chapter describes in detail the purpose of the different

Gekko commands, the syntax to be used, the results produced, together with
examples etc.

· Gekko functions. Gekko functions can be used in expressions. The input
parameters and the output type is described. The functions are divided into
categories.

· Gekko solvers. A description of some of the Gekko solvers.
· Guided tours. Step-by-step examples with screenshots etc.
· Comparison with similar software. Gekko is compared to AREMOS and EViews.
· Appendix. More info on automatic translation.

The present introductory chapter contains the following sections:

· New features. A list of changes in Gekko since the previous version.
· Setup. How to setup Gekko on a pc.
· Basic concepts. An overview of some of the main capabilities and concepts of

Gekko.
· Time periods. Explaining how global time and local time works.
· Databank search. Describes how databanks are searched for variables in Gekko.
· Wildcards. Explains the special rules concerning wildcards and type/frequency

symbols.
· Naked list. Explains the logic of naked lists.
· Filenames. How filenames and paths are handled in Gekko.
· Function keys. A list of function keys like F1, F2, etc. in Gekko.
· Help system. Description of the in-built help system.
· Under the hood. A short section on some of the main technologies/components

used in Gekko.
· Guided tour. Some step-by-step examples of doing stuff with Gekko (mostly how to

solve models).

http://www.t-t.dk/gekko
http://www.t-t.dk/gekko/gekkoversions
http://www.t-t.dk/gekko/gekkoversions

8 Gekko 3.0 user manual

T-T Analyse

9Gekko 3.0 user manual

T-T Analyse

1.1 New features

The current version of Gekko 3.0 is a release version. This means that it is stable,
has been tested thoroughly, and that the syntax and functionalities are fixed. Users
of the Gekko 3.0 stable version are in general advised to upgrade to the 3.1.x series.
The 3.1.x series is a kind of "stable" development series, where care is taken not to
break anything relative to the 3.0 version. The 3.1.x versions contain some extra
functionality, but also improved error messages, improved graphical interface, etc.
Read more about Gekko versions her: www.t-t.dk/gekko/gekkoversions.

Gekko is under continuous development, so the features are augmented on a regular
basis in the development versions (versions with an uneven second number, for
instance 3.1.x). You can find more detailed descriptions here (development versions),
or even more detailed in the changelog. Regarding Gekko 2.0 and earlier, see this
page.

Gekko 3.0

Syntax-wise the syntax changes from 2.0/2.2/2.4 to 3.0 are not quite as dramatic as
the changes from 1.8 to 2.0. Version 3.0 is more a question of new capabilities,
improving upon existing capabilities, cleaning up the syntax, and providing general
consistency. Regarding model solving and the way databanks are opened and closed,
nothing has been changed from 2.4 to 3.0, in order to keep these parts of Gekko
stable. There is an automatic translator from 2.0/2.2/2.4 available, cf. TRANSLATE.
The most significant changes from 2.4 to 3.0 are the following:

· All variables types, series, value, string, date, list, map, and matrix, now reside in
databanks, and all variable types can be stored in .gbk databank files.

· Assignment of variables no longer needs to include type. So SERIES x = 5; VAL %

v = 100; MATRIX #m = [1, 2]; can now be written more compactly x = 5; %v =

100; #m = [1, 2];. To be completely sure of the type of for instance %v, you can

still use for instance VAL %v = 100;. Note also that in Gekko 3.0, you must use %

or # type symbols on the left-hand side, so for instance VAL v = 100; must be VAL

%v = 100; in Gekko 3.0.

· Series variables all use frequency indicator !a (annual), !q (quarterly), !m

(monthly) or !u (undated). These indicators can often be omitted, for instance PRT

x; to print out x of the current frequency. Use the indicators to access a series of

another frequency than the current, or for mixed frequency use.
· Map is a new variable type that stores variables by name. Maps are like mini-

databanks and are among other things handy for bundling variables together, for
instance when getting variables in and out of user-defined functions.

· Lists may now store any type of variables, not just strings. The list functionalities
have been augmented, including list functions. Two-dimensional listfiles (lists of
lists) are supported, using a .csv-like format. Note that list definitions in Gekko 3.0
generally include parentheses, for instance ('a', 'b') for a list of two strings.

However, in the LIST and FOR commands, you may use a 'naked' list definition, for
instance #m = a, b; being equivalent to #m = ('a', 'b'), or #m = 1, 2; being

http://www.t-t.dk/gekko/gekkoversions
http://t-t.dk/gekko/devel
http://t-t.dk/gekko/changelog
https://t-t.dk/gekko/whats-new/
https://t-t.dk/gekko/whats-new/

10 Gekko 3.0 user manual

T-T Analyse

equivalent to #m = (1, 2);. Instead of LIST<direct> from Gekko 2.4, the user can

just use a naked list in Gekko 3.0. See more on naked lists.
· Introduction of local and global databanks. The local databank is used for

temporary/discardable variables (for instance inside functions/procedures), and the
global databank can be used for permanent storage of settings etc. that are
intended to survive for instance READ and CLEAR statements. In combination with
these banks, there are the new commands LOCAL and GLOBAL to denote such
variables. Apart from that, the databank logic is exactly the same as in Gekko 2.4.
The local databank is searched first, and the global databank last (also in sim-
mode).

· BLOCK ... END is a new structure to set time period and/or other options
temporarily, setting them back after the block is finished.

· Since series calculations are treated more like vector operations in Gekko 3.0, lags
no longer accumulate period-for-period, if the left-hand side variable is present
with lags on the right-hand side (so-called "lagged endogenous"). So a series
expression like x = x[-1] + 1; no longer accumulates automatically (augments x

with 1 for each period); instead the alternatives x ^= 1; or x <d>= 1; could be

used. If accumulating behavior is needed, the <dyn> option can be set, for instance

x <dyn> = x[-1] + 1;, or for several series statements a block structure can be

used: BLOCK series dyn = yes; ... ; END;. Setting dynamic mode affects speed

negatively, and should therefore not be set unless needed.
· Wildcard lists are syntactically changed from for instance [a*x] to ['a*x'] to

obtain a list of strings matching the wildcard, or {'a*x'} if the matched strings are

going to be used as variable names (for instance in PRT, etc.). In commands that do
not accept expressions, for instance COPY, INDEX, DISP, etc., the shorter 'naked'
wildcard a*x is legal too.

· PRT and PLOT now handle mixed frequencies in the same plot/print.
· PRT/PLOT works on non-indexed array-series, for instance PRT x; instead of PRT

x[#i, #j]; (where x is an array-series).

· User-defined functions and procedures have been reworked for Gekko 3.0: they can
be accessed from anywhere, as long as they have been defined chronologically
before the call. The old option library file is now obsolete. A command file with

user functions/procedures can just be loaded with RUN in gekko.ini, and
subsequently the functions/procedures will be available until the next
RESET/RESTART (functions/procedures are not stored in databanks).
Functions/procedures support default values and prompting.

· User-defined functions and procedures may use a <>-field to indicate time
parameters. Hence, a user-defined function scale() may be called like

scale(<2010 2020>, x), and a procedure scale may be called like scale <2010

2020> x;. Inside the functions/procedures, these time parameters can be accessed

as dates, and if they are omitted in the call, the time parameters are set to
correspond to the the local/global Gekko time period. The new <>-field is also used
in some of the inbuilt functions: avgt(), sumt(), hpfilter(), laspchain(), laspfixed(),
pack(), unpack(), time().

· All functions (including user-defined functions) can be called as object functions on
the first argument (not counting time parameters): this is called Uniform Function
Call Syntax (UFCS). So a function like for instance f(x, y) can generally be

written as x.f(y). Therefore, instead of for instance f(#m, %s), you may use

#m.f(%s). Such functions can be chained, for instance

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

11Gekko 3.0 user manual

T-T Analyse

#m.extend(#m1).remove('a').sort(), providing a more fluent syntax than the

equivalent and 'backwards' sort(remove(extend(#m, #m1), 'a')).

· A new name type is introduced for function and procedure arguments, in order to
avoid unnecessary single quotes. You may define for instance PROCEDURE f name %

x; PRT ref:{%x}; END; f a1;. After this, f a1; will print out a1 from the Ref

databank, which is more convenient than having to type f 'a1';. Inside the

function/procedure, the name %x works just like a string %x.

· The NAME command is obsolete, so for instance NAME %s = 'a'; is not legal.

Instead, use STRING and refer to the string with {}-curlies. For instance %s =

'bvat'; PRT {%s};. Note that there is a name-type for functions/procedures in

order to avoid quoted argument strings.
· A lot of new in-built functions are added to deal with variable names represented as

strings, for instance the string 'b2:x[a, y]'. There are functions to

add/set/get/remove the databank, frequency, index, etc. part of such a string.
· Faster gdx read/write. Optional equation browser for GAMS equations. In OPTION

model type = gams mode, ENDO/EXO has been reworked to interface with GAMS.

· Alias names may be used, for instance providing a mapping from old to new
variable names. See option interface alias.

· Better abort red button that should work in all cases where Gekko needs to be
stopped.

· PLOT can export to pdf.
· m() can be used instead of miss() to indicate missing value.
· OLS<dump> can dump results as FRML equation for use in models.
· Enhanced format() function that can control width and alignment, and {}-curlies

inside strings can be formatted.
· New commands: BLOCK, CUT, LOCAL, GLOBAL, MAP, VAR.
· Removed commands: NAME (use strings and {}-curlies), SHOW (use PRT),

UNSWAP.
· New functions: addbank(), addfreq(), append(), contains(), count(), data(), dates(),

except(), extend(), flatten(), getbank(), getdomains(), getendoexo(), getfreq(),
getfullname(), getindex(), getmonth(), getname(), getnameandfreq(), getquarter(),
getsubper(), getyear(), index(), isopen(), map(), pop(), preextend(), prefix(),
prepend(), readfile(), remove(), removebank(), removefreq(), removeindex(),
replacebank(), replacefreq(), replaceinside(), rotate(), seq(), series(), setbank(),
setdomains(), setfreq(), setname(), setnameprefix(), setnamesuffix(), sort(),
strings(), stripend(), stripstart(), substring(), suffix(), timeless(), unique(), vals(),
writefile().

· Removed (renamed) functions: difference() is now except(), piece() is now
substring(), search() is now index(), strip() is now replace(), trim() is now strip().
The following functions have reordered parameters regarding dates: avgt(), sumt(),
 hpfilter(), fromseries(), unpack().

· New options: option decomp maxlag, option decomp maxlead, option gams time
freq, option interface alias, option interface remote file, option interface table
operators (renamed from 'printcodes'), option model type, option plot elements
max, option plot using, option print elements max, option print split, option series
array calc missing, option series array print missing, option series dyn, option
series normal calc missing, option series normal print missing, option series normal
table missing.

· Removed options: option databank logic, option interface table printcodes (renamed
to 'operators'), option library file, option series array ignoremissing (renamed).

12 Gekko 3.0 user manual

T-T Analyse

Gekko 2.4

Gekko 2.4 is a relatively small update on the top of Gekko 2.2, and 2.4 should be just
as stable as 2.2. The main focus of development is the upcoming Gekko 3.0, but still
2.4 contains the following augmentations:

· PROCEDURE implemented. User-defined functions and procedures can be put in a
general library file (lib.gcm), so they can be stored in a central place.

· IMPORT<collapse> for collapsing high-frequency data (for instance daily
observations) into monthly, quarterly or annual Gekko-timeseries. The data must
reside in an Excel spreadsheet, more formats will be supported later on.

· Array-series, with $-conditionals, summing etc, cf. under the SERIES command.
Array-series are further developed in the upcoming Gekko 3.0.

· Robust Newton (better handling of illegal starting values). This is managed by
means of OPTION solve newton robust = yes|no, and with robust = yes (default),
Gekko will handle illegal stating values (like the logarithm of a negative number)
much better.

· Read/write of GAMS datafiles (gdx-files): IMPORT<gdx> and EXPORT<gdx>. See
also the OPTIONs under OPTION gams ... regarding how gams files are handled.

· Reading of PC-Axis files: IMPORT<px>.
· Export of R-datasets: EXPORT<r>.
· New 'ser' (series) files format: IMPORT<ser>. This entails fast reading of flat

SERIES-like lines like "x 2020 2023 100.0 210.0 150.5 200.7".
· Better engine regarding IMPORT and EXPORT of xlsx-files. The new system

(default) does not depend upon Excel being installed on the pc, and should be more
stable and leak less memory.

· MATRIX definition with row/colnames.
· Remote control of Gekko is made possible via using a remote.gcm command file, cf.

OPTION interface remote = yes|no.
· EXPORT<cols> implemented for .csv and .prn files.
· Some new functions: avgt(), sumt(), time(). The two first handle sums and

averages over time (for timeseries).
· Stand-alone html equation browser generator (DOC<browser>).
· OLS<dump> can dump results as FRML equation for use in models.

Gekko 2.2

Gekko 2.2 most notably adds a lot of new graphing capabilities (PLOT) to Gekko.

· PLOT command completely overhauled, see demo graphs here. Graphs can be
controlled in a lot of new ways, either as options in the PLOT command, or in a
template file (.gpt), or both. Histograms/bars/boxes are supported, too. There is a
special handy option to separate boxes and lines vertically: PLOT<separate>, and
many other possibilities.

· OPEN<edit> should be used instead of OPEN<prim>, and LOCK/UNLOCK commands
can lock/unlock already opened databanks. Opened databanks (OPEN without

http://www.t-t.dk/gekko/gallery/g.html

13Gekko 3.0 user manual

T-T Analyse

options) are now opened last in the list of databanks. Opened databanks are now
protected (non-editable) per default.

· OLS command improved, including linear restrictions on parameters.
· INTERPOLATE and REBASE commands implemented.
· XEDIT command to open up a dedicated and in-built xml editor (for graph and table

templates).
· MATRIX command allows all kinds of indexers on left-hand side.
· SHEET<import matrix> imports a matrix from an Excel sheet.
· IMPORT accepts dates.
· PIPE improvements.
· Functions: random number functions, see rseed(), runif() and rnorm(). Functions

pchy(), dify() and dlogy() to handle yearly differences. Functions movavg(),
movsum() for moving averages/sums, and lag() for lags. Function chol() for
Cholesky decomposition of matrices. See here.

· Some new table options: 'mdateformat', 'decimalseparator', 'thousandsseparator'
and 'stamp'. See under OPTION, in the OPTION table ... section. With these options,
a number like 12345.67 can be printed as 12,345.67 or 12.345,67, and this may
be combined with negative decimal places (for instance "f9.-2", to produce 12,300
or 12.300). Monthly dates can be formatted as for instance 'Jan. 2020' instead of
'2020m1'. Menu files accept links to .gcm files.

· The .gbk databank file format now uses a datafile called 'databank.data' internally
(instead of 'databank.bin'). The old name caused problems when sending databank
files over email. To produce a databank file suitable for Gekko 2.0 or 1.8, see the
note in the WRITE help file.

· Options: see the end of the OPTION command regarding new options in Gekko 2.2.

Regarding Gekko 2.0 and earlier, see this page.

https://t-t.dk/gekko/whats-new/

14 Gekko 3.0 user manual

T-T Analyse

1.2 Note about Gekko 3.0

Gekko 3.0 contains quite a lot of new features, and a cleaned up syntax. The syntax
is hopefully more logical and consistent than version 2.0/2.2/2.4, and some of the
most important changes regarding syntax are listed below. At the end of this page,
you will also find a list of components or commands that do not work. These minor
issues will be fixed in the form of patches to version 3.0.

Regarding lists of new commands, new built-in functions and new options, see the
new features page, under Gekko 3.0. It is probably beneficial to read that section
first, before reading the rest of the current page.

Beware

There is an automatic translator from Gekko 2.0 (or 2.2/2.4) to Gekko 3.0. See
TRANSLATE, or more info here. The syntax changes compared to Gekko 2.0/2.2/2.4
programs are not too dramatic, the most important are the following:

· Since series calculations are treated more like vector operations in Gekko 3.0, lags
no longer accumulate period-for-period, if the left-hand side variable is present
with lags on the right-hand side (so-called "lagged endogenous"). So a series
expression like x = x[-1] + 1; no longer accumulates automatically (augments x

with 1 for each period); instead the alternatives x ^= 1; or x <d>= 1; could be

used. If accumulating behavior is needed, the <dyn> option can be set, for instance

x <dyn> = x[-1] + 1;, or for several series statements a block structure can be

used: BLOCK series dyn = yes; ... ; END;. Setting dynamic mode affects speed

negatively, and should therefore not be set unless needed.
· Symbols on scalars and collections must appear on the left-hand side too, for

instance VAL %v = 100;, where VAL v = 100; is no longer legal. Note that

assignment commands SERIES, VAL, DATE, STRING, LIST, MAP, MATRIX may be
omitted, so you can use %v = 100; too.

· In general, when defining a list, the elements are enclosed in parentheses, but the
'naked' form #m = a, b, c; is allowed as short-hand for #m = ('a', 'b', 'c');.

For lists of simple numbers, naked lists can be used, too, for instance #m = 1, 2,

3; or y = 1, 2, 3;.

· Beware that FOR %i = #m; is no longer legal, you must indicate type: FOR string

%i = #m;.

· The NAME command is deprecated, and in many places {}-curlies must now be
used where they could be omitted in Gekko 2.0. For instance you must use PRT

{#m}; or PRT {%s}; to print the variables corresponding to the the list of strings #m

or the string %s (without the {}-curlies, the list elements or the string itself would

be printed).
· Name compositions like a{i}b must now be a{%i}b: the %-symbol can no longer be

omitted here (or anywhere else).
· Name concatenation like a%i|b is no longer endorsed, but will still work. It is

generally better to use a{%i}b, for readability and consistency.

· #m[0] cannot be used to get the length of a list, use #m.length().

15Gekko 3.0 user manual

T-T Analyse

· Using #m[%s] to check if the string %s is a member of the list of strings #m will be

deprecated, and the expression %s in #m or #m.contains(%s) should be used

instead.
· Series operators like +, *, %, etc. are now +=, *=, %=, etc., so assignments always

contain the = symbol.

· List operators: &+ is changed to ||, &* is changed to &&, and &- is changed to -.

· Scalars inside quoted strings should use {}-curlies, for instance %s = 'car'; TELL

'The {%s} is red';. Alternatively, you can use TELL 'The ' + %s + is red';,

which is harder to read. Beware that TELL 'The %s is red'; will no longer in-

substitute %s. Inside a quoted string, any expression can be used inside {}-curlies,

as long as it evaluates to a string or value type.
· IMPORT and EXPORT statements from Gekko 2.0 without time indication should be

changed into IMPORT<all> and EXPORT<all>, respectively. In Gekko 3.0, IMPORT
and EXPORT without time indication will use the global time period, potentially
truncating the data.

· The following functions have been changed (see details here): avgt(), sumt(),
piece(), search(), strip(), trim(), difference(), hpfilter(), fromseries().

Issues list

The following is a list of commands etc. that are known to be defunct in in Gekko 3.0:

· DECOMP. DECOMP works for expressions and equations. There are still issues
regarding DECOMP of equations if the left-hand side is not equal to the right-hand
side. Therefore: DECOMP of equations is ok if performed on simulated equations,
but not on non-simulated equations.

· TIMEFILTER only works for annual frequency.
· User-defined procedures and functions have a problem with samples and composed

series arguments, if these are later on lagged. For instance: function series
plus(series x1, series x2); return x1 + x2[-20]; end; time 2001 2003;

y1 = 3; y2 <1981 1983> = 2; print y1, y2, plus(y1, y2+0); This will print

missings for the result of plus(y1, y2+0) whereas plus(y1, y2) will be fine. This

is being looked into.

As noted above, some in-built functions have been changed regarding "signature".

Stability

Gekko 3.0 has been tested quite a lot by now, and the first users of the preliminary
pre-alpha versions of 3.0 started in December 2017. Hence, many of the main
components are well-tested, and in this sense, Gekko 3.0 should not feel unstable.
Still, some glitches are still to be expected, though, and such glitches will be fixed in
patches to Gekko 3.0. Gekko 3.0 validates a large number of test-cases taken from
(and translated from) Gekko 2.4.

Unstability reasons

16 Gekko 3.0 user manual

T-T Analyse

A major source of potential instability is the fact the the parser has been completely
rewritten from version 2.4 to 3.0. In addition to this, databanks are now a lot more
flexible, allowing all kinds of objects to be stored and retrieved, and this may produce
glitches, too. The internals of array-series objects have been completely reworked,
but this is well-tested.

Series objects are handled very differently in version 3.0 compared to 2.4. In 2.4 and
all previous versions, series operations were implemented very differently from, say,
scalar operations. In Gekko 3.0, series operations treat series more like vectors, so in
a sense, the series addition x + y is performed in one operation in Gekko 3.0, an

operation that resembles the addition of two vectors in linear algebra. This difference
has many ramifications in the Gekko source code, but the advantages are large, too.

Printing and plotting components have been rewritten from scratch, among other
things in order to accommodate mixed frequencies and array-series. Still, PRT and
PLOT are well-tested.

User functions and procedures are implemented in a different and better way, so
these should work more as expected than the case was regarding Gekko 2.4.

The graphical interface is more or less untouched from 2.4. Also, databank handling
(opening and closing databanks, search order etc.) has not been touched, except for
the introduction of the new Local and Global databanks.

The internals of the solving facilitites (sim-mode and SIM) have not been altered
since Gekko 2.4 and should therefore be stable.

17Gekko 3.0 user manual

T-T Analyse

1.3 Setup

Installation

In order to install Gekko as a standalone package for economic analysis, go to www.t-
t.dk/gekko, and choose 'Download' --> 'Installer (stable version)', or go directly to
www.t-t.dk/gekko/installer. If you have problems installing, please consult the
trouble shooting guide: www.t-t.dk/gekko/troubleshooting. After installation and
starting up Gekko, it might be convenient to create a .bat file to start up the program
in the future (see more in the 'Setup and environment' section below).

For ADAM users, please use the setup facilities supplied by Economic Modelling,
Statistics Denmark, in order to install ADAM+Gekko (in order to uninstall
ADAM+Gekko, use the uninstall facilities supplied by Economic Modelling, Statistics
Denmark). Please note that Gekko is not tied to ADAM in any way, and is being used
for other models, too.

Uninstallation

Uninstalling Gekko as standalone package can be done from the Windows Control
Panel. Close Gekko, start the Control Panel and choose Add/remove programs, then
select Gekko and uninstall it.

Setup and environment

Gekko uses the concept of a working folder from which files are read and written.
This may be chosen in two ways:

· If Gekko is started up from the 'Programs' menu in Windows, Gekko will open up
the last-opened working folder. You may change this by means of 'File' --> 'Set
Working Folder...' in the Gekko menu.

· If Gekko is started up from the Windows command prompt (for instance by typing
'gekko' in the Total Commander command line), Gekko will use that particular
folder as its starting folder. Typing 'gekko' only works if a gekko.bat file is available,
see 'Utilities' --> 'Make .bat file for easy Gekko startup...'. (This gekko.bat file
should be put somewhere in your Windows path -- Gekko will try to put it into your
Windows folder).

If a file with the name 'gekko.ini' is present in the program folder (where gekko.exe
is located) or in the working folder, this file will be executed at Gekko startup.
Typically such a file contains OPTION, TIME, MODEL and READ commands setting up
the environment for different kinds of analyses. The gekko.ini file will be rerun when
issuing a RESTART statement (or an INI statement to just run gekko.ini), so this
statement is in effect equivalent to closing and reopening Gekko (in contrast, the
RESET statement omits loading the gekko.ini file).

http://www.t-t.dk/gekko
http://www.t-t.dk/gekko
http://www.t-t.dk/gekko/installer
http://www.t-t.dk/gekko/troubleshooting

18 Gekko 3.0 user manual

T-T Analyse

For more advanced users, there is the possibility to indicate parameters when calling
the gekko.exe file at Gekko startup. See the RUN help file for more on this.

19Gekko 3.0 user manual

T-T Analyse

1.4 Basic concepts

This document describes some of the basic concepts used in Gekko.

Timeseries-oriented

Among other things, Gekko handles timeseries (often just called 'series' in this
documentation). Gekko is a timeseries-oriented software system, that is, it has easy
handling of timeseries as one of its main objectives. Because of this orientation, it is
often not necessary to indicate a time period when dealing with timeseries variables,
because the time dimension is implicitly understood. Gekko can operate on different
frequencies, at the moment annual ('a'), quarterly ('q'), monthly ('m') or undated
('u'). IMPORT can handle (collapse) higher frequencies than months, if needed.

Gekko handles other kinds of variable types, too, as described in the next section.

Databanks

Databanks are in-memory storage of variables types series, value, date, string, list,
map, and matrix. The names of values, dates and strings (scalars) always start with
the % symbol, whereas the names of lists, maps and matrices (collections) always

start with the # symbol. Databanks are opened in succession, where the first-position

databank has number 1 on the databank list (cf. the F2 window: click F2).

Gekko can READ/WRITE such databanks as external files (.gbk extension), or
IMPORT/EXPORT data from/to other file formats. Gekko always starts out with four
empty databanks (in memory): 'Work' (first-position bank), 'Ref' (reference bank),
'Local' (local variables), and 'Global' (global variables). At startup, the Work databank
has the number 1 in the list of open databanks, with the Ref (reference) databank
shown just below. In addition, more databanks with different names (so-called
'named' databanks) can be opened (OPEN), but note that the first-position and
reference databanks have special capabilities regarding printing/plotting/comparing
etc. The local and global databanks are used to store and access temporary variables
(local), or store settings etc. (global). See the LOCAL and GLOBAL commands for
more on this. See the F2 window regarding the list of open databanks (note that
reference, local and global databanks are only shown in that window when they
contains data).

You may open other databanks as first-position databank with
OPEN<first>/OPEN<edit>. You may use CLOSE to close a databank (and possibly
write it to file, if it is altered).

If you need to import data into an existing (opened) databank, you may use IMPORT
for non-Gekko data, or READ for Gekko databanks. For instance, "IMPORT <xlsx>
data.xlsx;" imports Excel-data into the first-position databank, but you could
alternatively use "IMPORT<ref xlsx> data.xlsx;" to import the data into the reference

https://en.wikipedia.org/wiki/Time_series

20 Gekko 3.0 user manual

T-T Analyse

databank. For simulation purposes, the READ command is often practical. You may
use WRITE to write the first-position databank to file.

As mentioned, in the F2 window, the first-position databank has number 1, whereas
other 'named' databanks have numbers 2, 3, etc. If the local databanks contains data,
it will show up in the list above the first-position databank, and if the global databank
has data, it will show up last in the databank list. When issuing a command like PRT

x; or y = 2 * x;, the way Gekko looks for x depends upon databank search options.

In sim-mode, Gekko will only look for x in the first-position and local/global

databank, whereas in data- and mixed mode, Gekko will look for x first in the local

databank (first bank in the databank list), then in the first-position databank (number
1 in the databank list), then in other open databanks (numbers 2, 3, ... etc. in the
databank list), and finally in the global databank (last bank in the databank list).
Note here that the reference databank is never searched for bankless variables, since
this databank is only used for comparison purposes, cf. MULPRT, PLOT<m>,
COMPARE, and similar commands. You may refer to a variable in the reference
databank with ref:x or the shorter @x;

Series

A timeseries (or just: series) can can have frequency annual, quarterly, monthly, or
undated, and it may contain any number of observations. If data has been read for
timeseries x regarding the period 2010-2015, printing out x for the period 2016 will
show a missing value ('M'). Series can be lagged and leaded, for instance x[-1] or

x[+1] in the sense that x corresponds to x(t) , x[-1] corresponds to x(t–1), and

x[+1] corresponds to x(t+1). Note that lags must start with the symbol -, and leads

with +. Individual observations can be picked out with for instance x[2020], or

x[2020q3], the latter being the third quarter of 2020, if x is a quarterly series. If you

need accumulating lags like x = x[-1] + 1, consider using x <dyn> = x[-1] + 1, or

a BLOCK with series dynamic = yes.

Array-series

An array-series is a special kind of multidimensional timeseries, where indexing with
for instance x[a] or y[b, c] is possible. You may use x['a'] or y['b', 'c'] as

synonyms in that case, and array-series are practical for many purposes, instead of
for instance using naming conventions like xa or ybc. In general, you can perform

the same operations with the array-series x[a] as you would be able to do with a

normal timeseries. Array-series must be defined before they are used, for instance x

= series(1); y = series(2); to state the dimensionality.

Scalars

21Gekko 3.0 user manual

T-T Analyse

Gekko scalars are the types value, date or string. Scalars names must begin with the
symbol %. Scalars can be thought of as containing just one element: the single value,

the single date, or the single string. Values are numeric values like 1.2 or 2e8, dates

are for instance 2020 or 2020q3, and strings use single quotes like 'dk'.

Collections

Gekko collections are of the type list, map or matrix. Collection names must begin
with the symbol #. Collections can be thought of as a number of elements bundled

together inside the collection. List stores variables in a sequence (by numbers 1, 2,
etc.), map stores variables by name (like 'dkk', 'eur', 'usd'), and matrices are 2-

dimensional structures of numeric values, also ordered by numbers 1, 2, etc. So for a
list, #x[2] refers to the second element. For a map, #x['dkk'] refers to the element

that has this name, and for a matrix, #x[2, 1] refers to the numeric value stored in

row 2, column 1. It should be mentioned that it is possible to write #x['dkk'] as

#x[dkk] or #x.dkk, too.

Lists and maps can store any other variable types as elements, whereas matrices only
store values (for the time being).

Banks, maps, and array-series

Note for advanced users: all these three datastructures look up elements by means of
names (also called look-up keys). For instance, b2:x looks up x in bank b2, #m['x']

looks up x in the map #m, whereas y['a', 'x'] looks up ('a', 'x') in the two-

dimensional array-series y. Inside Gekko, banks and maps are built in the same way,

whereas array-series are a bit differrent in that they (a) only store series inside, and
(b) allow several dimensions of look-up keys. But maps and array-series are in reality
not that different, it is mostly a question of syntax. For instance, y['a', 'x'] could

be emulated with the map call #y['#a']['x'], where #y is a map, #a is another map

stored inside #y, and x is a normal series stored inside #a. But the array-series

notation is more convenient, and array-series have special capabilities regarding
summing, printing, etc.

Strings as name references

Scalar strings (or a list of strings) may refer to other variables. Consider the string %s

= 'b2:x!m';. If you state PRT %s;, Gekko will just print out the raw string. But if

you use PRT {%s};, Gekko will instead print out the monthly series x from the b2

databank (in a sense performing a forwarding operation, forwarding from the variable

%s to the variable b2:x!m). Therefore, the curly {}-braces are handy regarding name

composition. Also, if %i = 'b', and %j = 'd', the variable a{%i}c{%j}e is equal to

abcde, and in general one should read the curly braces {} as if they are simply a

22 Gekko 3.0 user manual

T-T Analyse

sequence of unknown characters that are glued to other characters (or other {}-

braces). See more on strings, or see the syntax diagrams.

A list of strings may function in the same way. Consider the list #m = ('b2:x!m',

'y');. If you state PRT #m;, raw strings are printed out, whereas PRT {#m}; will

print out the variables corresponding to the strings (monthly series x from the b2

databank, and the series y, and again performing a forwarding operation). In general,

list definitions are enclosed in parentheses, like #m = ('a', 'b', 'c');, but for

simple strings, the equivalent 'naked' list #m = a, b, c; is legal. In the latter case

(naked list), it should be emphasized that the list elements are still three strings 'a',

 'b', 'c', not the variables themselves. If you need to put three series a, b, and c

into a list, you should use #m = (a, b, c);. So defining a list while omitting

parentheses on the right-hand side always produces a list of strings.

Sometimes the user may be in doubt whether he or she should use a normal string %

s, or a name-reference {%s}? In such cases, the "abc test" may be performed. Would

it be natural to use a quoted string like 'abc' in the command, or would it be natural

to use a name like abc instead? If the former is the case, use %s;if the latter is the

case, use {%s}.

Wildcards

In general, wildcards are stated with the ['...'] or {'...'} patterns, depending

upon the context. For instance, you can use #m = ['a*x'] to obtain a list of strings

of variables starting with 'a' and ending with 'x' (from the first-position databank,

with the current frequency). If you need to for instance print out the variables in this

list, PRT ['a*x'] will just print out the raw strings corresponding to the matched

wildcard. Instead, PRT {'a*x'} should be used to print out the variables themselves.

Ranges can be stated as for instance 'pxa..pxe', or 'bank:pxa..bank:pxe'.

In INDEX, COPY, RENAME, DISP and similar commands, you can omit the curlies and

single quotes, for instance INDEX a*x; (a*b will not be interpreted as a mathematical

product in that command). You can also use '?' to select a single character, and

wildcards can also be used to search for banks, frequencies, and indexes. See the

INDEX and COPY command for more on this.

Much more on wildcards on the wildcards page.

Analysis

In sim-mode, the reference databank is typically used for multiplier analysis (i.e.,

experiments). Say you read a databank and then perform some experiment. This

experiment will only alter timeseries in the first-position databank, so after the

23Gekko 3.0 user manual

T-T Analyse

experiment is finished, you can compare the timeseries in the first-position and

reference databanks (Gekko has a lot of commands to do such comparisons, for

instance MULPRT, DECOMP etc.). If, at some point, you wish to make sure that the

first-position and reference databanks are identical (for instance after a simulation),

you can use the CLONE command. This command clears the reference databank, and

copies the first-position databank into it (in memory). You may alternatively read a

file directly into the reference databank by means of READ<ref>. There is a cleanup-

command: RESTART. This command clears the first-position and reference databanks,

in addition to clearing models, variables, user functions, procedures, and other

things. The operation provides a clean state of Gekko, as if it had been closed and

reopened (if there is a file with the name 'gekko.ini' in the program and/or working

folder, this file will be re-read, so gekko.ini can be used to contain options and other

commands, for instance MODEL and READ commands, that the user wishes to

"survive" a RESTART). If you wish a clean state without any potential gekko.ini file,

use RESET.

Creation

In sim-mode you have to CREATE a series before you update its values/observations

with the SERIES commands (unless the timeseries starts with the letters 'xx',

indicating that it is to be thought of as a temporary variable). However, it should be

noted that when a databank is read (READ), after a model has been loaded previously

(MODEL), any model variables not present in the databank will be auto-created as

timeseries (with all observations set to missing values). Because of this, it may often

be convenient to put MODEL statements before READ statements. In data- and mixed

mode, timeseries are auto-created with the SERIES command.

Periods

Note that commands involving series variables can include a local time period, like for
instance PRT <2010 2020> x, y;. The local time period will overrule the global time

period, which can only be set via the TIME command. In assignments, the time period
may be stated before or after the left-hand side variable, so both <2020 2030> x =

100; and x <2020 2030> = 100; are legal.

There are some details regarding periods. Most commands that involve timeseries use
the global time period if no local time period is stated, for instance commands like
PRT, IMPORT, EXPORT, etc. For some of these commands, you may use local option
<all> to use all existing data points (observations). You cannot combine <all> with a
local time period.

But for the commands COPY, READ and WRITE, omitting a local time period does not
entail the use of the global time period. These commands will use all existing data
points (observations) for all series, if no local time period is stated. If a local time
period is stated, only the local sample is used, and if you need to observe the global

24 Gekko 3.0 user manual

T-T Analyse

time period, you can use the <respect> option. You cannot combine <respect> with a
local time period.

For some commands, you may use a time period with another frequency than the
series object used. In that case, Gekko will try to convert the frequency meaningfully.
For instance, PRT <2010q2 2010q3> x!q, x!m; will just use 2010q2-q3 for the

quarterly series x!q, whereas 2010q2-q3 is converted to 2010m4-m9 for the monthly

series x!m (covering from the start of q2 to the end of q3).

If you need to change the time period temporarily, you may use the BLOCK structure.
Also, user defined functions and procedures may use a <>-field to indicate time
period arguments.

Operators

The so-called operators are used in many places, in order to perform easy
transformations (for instance percentage growth rate, or multiplier difference
between first-position and reference databank values). The operators come in two
versions: 'long' and 'short'. The 'long' ones are used in the PRT and MULPRT
commands (for instance PRT<abs> var1; to only print the absolute level, and not

percentage growth), whereas the 'short' ones can be applied more generally (for
instance PLOT<p> var1; to graph the growth rate of var1). The most important of

the 'long' ones are dif and pch, and the most important of the 'short' ones are d, p, m,
q. The functionality of the 'long' and 'short' operators overlap: see PRT for more
details. The short operators will also show up in TABLEs and the DECOMP window,
and can also be used in SERIES, PLOT and SHEET.

Models

Regarding models, it should also be noted that the list of endogenous variables in a
model is simply the set of all the variables at the left-hand side of the equations. This
may be changed afterwards by means of the ENDO and EXO commands. Regarding
equation syntax, you may consult the latter part of the MODEL help file, if you need
more information on this. (Models are cached in binary form on the user's hard disk
in order to load faster next time).

Files

Regarding file names, you may use relative paths like '\subfolder\data.txt'. Using
relative paths makes it easier to move a system of command files to another
location/computer if needed. Special user-paths can also be given by means of the
OPTION folder ... settings. If the path or filename contains blanks or special

characters, you may enclose it in single quotes.

25Gekko 3.0 user manual

T-T Analyse

No blanks

Generally, sequences of elements are delimited by commas, not blanks. Gekko 3.0

has a number of capabilities regarding the transformation of such lists, for instance

setting or removing commas instead of blanks, setting or removing quotes, etc. See

the Gekko main window, under Edit --> Paste as.... [not done yet].

Command files/batch job

Gekko commands can either be run directly from the Gekko main window, or

assembled in a command file (script file) for later execution. Command files can be

run with the RUN command. This is also called a batch job (also possible by means of

calling gekko.exe with parameters, see more in the RUN help file). You may track the

execution of jobs via 'Utilities' --> 'Run status...' in the Gekko menu (or double-click

on the traffic light in the lower right corner of Gekko).

Gekko also provides user-defined functions and procedures to deal with repetitive

tasks.

26 Gekko 3.0 user manual

T-T Analyse

1.5 Time periods

Many Gekko commands accept a local time period stated inside the <>-brackets. For

such commands, omitting a local time period generally means that the global time

period (cf. TIME) is used instead. There are the following exceptions to that rule:

List of commands where lack of local period means all observations

COPY Handling variable objects

READ, WRITE External file storage

For instance, COPY x TO y; will copy the entire object, including all observations

(and not just the observations corresponding to the global time period), whereas
COPY <2010 2020> x TO y; will only copy the observations 2010-20. To copy only

the observations corresponding to the global time period, use COPY <respect> x TO

y;. Similarly, READ<respect> and WRITE<respect> can be used.

It should be noted that the similar commands IMPORT and EXPORT respect the global
time period, in contrast to READ and WRITE. To force IMPORT and EXPORT to use all
observations, IMPORT<all> and EXPORT<all> can be used.

Note

User defined functions and procedures may also use a <>-field to indicate time period
arguments. This can be used to define a local time period to be used inside the
function/procedure.

1.6 Databank search

Databank search is an important concept in Gekko, alleviating the burden of always
having to state the databank name when variables in other databanks than the first-
position databank are accessed.

Databanks search can be controlled with an option, or via the MODE command, cf.
the next section. In general, databank search can be practical, but the user should be
aware of the pitfalls, especially of several open databanks contain variables with the
same names.

27Gekko 3.0 user manual

T-T Analyse

The remainder of this page tries to answer the following question: In commands like
y = x; or PRT x;, where should Gekko look for the variable x, if it is not found in the

first-position databank?

The option and MODE

The option that controls databank searching is the following:

OPTION databank search = yes; //yes|no

Per default, this option is set to yes, since Gekko starts up in data mode. In sim-
mode, the option is set to 'no', so PRT x; will fail in sim-mode, if x is not found in the

first-position or local/global databank (in that case, Gekko will not look for x
elsewhere).

The mode can be switched like this:

MODE sim; //sim|data|mixed

Among other things, MODE controls 'OPTION databank search', and a few other
options.

How does databank searching work?

When databank searching is active (OPTION databank search = yes), Gekko will

look for a variable x in the list of open databanks (cf. the F2 window that is opened

when pressing the F2 key). As shown on the page about OPEN, Gekko operates with
the following databanks:

Number Searchable Non-searchable

Local

1. First Ref

2. Another databank

3. Another databank

... ...

28 Gekko 3.0 user manual

T-T Analyse

n'th Last databank

Global

So if databank searching is active, Gekko will first look for a variable x in the Local

databank. This is often empty, since it is only used for temporary (discardable)
variables. Next, Gekko looks in the first-position databank, which is often the Work
databank. If not found in any of these databanks, Gekko looks in any other databank
opened with the OPEN command. If not found in any of these, the Global databank is
queried at last. Note that the Ref databank is never searchable, so a bankless
variable x will never be looked for in the Ref databank.

The search hierarchy means that variables may shadow/mask each other. If
searching is active, the user may put a variable x in the Global databank for later use

in a system of command files (the Global databank is not affected by READ, CLEAR,
etc. and is therefore practical for long-term storage of global variables). But if the
system of command files creates a variable x, or opens a databank containing a

variable x, the x in the Global databank is masked. For instance, the user may state x

= 100;, creating a series x with the value 100 in the first-position databank. After

this, PRT x; will refer to this variable, not the variable in the Global databank (to

refer to that variable, global:x could be used). So when databank searching is

active, and databank identifiers are omitted, the user should keep name collisions in
mind.

There is another pitfall regarding databank searching, namely that deleting a variable
may bring back another variable from being masked. Consider this example:

RESET;
OPEN <edit> bk1; CLEAR bk1; x = 100; CLOSE bk1;
OPEN <edit> bk2; CLEAR bk2; x = 200; CLOSE bk2;
OPEN bk1, bk2; //press F2 to see the databank list
PRT x;
CLOSE bk1;
PRT x;

The first print prints x as 100, whereas the second print prints x as 200. The reason

is that in the first print, x is first found in the bk1 databank, whereas in the second

print, x is first found in the bk2 databank (because bk1 was closed). So closing a

databank, or deleting a variable may have the consequence that a variable with the
same name is unmasked in some databank lower in the search hierarchy.

If the variable names in the different databanks are distinct, this is not a problem,
and it is practical to be able to refer to variables without always having to write the
databank name. Also, in some circumstances, databank masking can be used for
selection. Consider two databanks, bk1 and bk2, where the quality of the data in bk2

is inferior to the quality of the data in bk1 (for instance because bk2 is an older

databank). In that case, if the databanks are opened with bk1 before bk2, databank

29Gekko 3.0 user manual

T-T Analyse

searching works as a quality filter. If a variable x exists in bk1, this version is always

used. If it does not exist in bk1, Gekko will look for it in bk2 instead. If it does not

exist in bk2 either, an error will be issued. In that way, the newest version of x is

always found (or an error occurs).

Commands without databank search

A few commands disallow databank searching completely in order to avoid

ambiguities. In these commands, bk1:x is still understood as x from the bk1

databank, but the bankless x will be understood as x from the first-position databank,

without looking elsewhere for the variable.

List of commands where bankless variables are never searched for

COPY, DELETE,

RENAME

Handling variable objects

COUNT, INDEX,

DISP

Finding and displaying variables.

EXPORT, WRITE External file storage

DOC, REBASE,
TRUNCATE

Similar to the left-hand side in assignments, therefore no
databank searching.

Note: Wildcards without databank indicator are never searched for in other databanks than the
first-position databank. So the table deals with 'normal' bankless variables. In some of these
commands, *:x can be used to indicate the occurrence of x in all databanks.

As an example, COPY x TO y; only looks for x in the first-position databank, and if it

is not found, an error is issued. If it is found, it is copied as a new variable y, also in

the first-position databank. If the COPY command allowed searching, the origin of y

would be unclear, since it could origin from some other open databank than the first-
position databank.

Note

Note that a bankless variable on the left-hand side of an expression is always
interpreted as residing in the first-position databank. For instance, x = 100; will

always put the series x into the first-position databank (implicitly using first:x =

100").

Note that the Local or Global databanks are always searchable, independent on MODE
etc.

30 Gekko 3.0 user manual

T-T Analyse

1.7 Wildcards

Wildcards are used to search for variables in one or more databanks. Internally i
Gekko, a wildcard search returns a list of variables in the form of strings, possibly
with databank names and frequencies. There are special rules present regarding how
these wildcards work regarding type and frequency symbols.

Wildcards can also be used to search for variables in a list

Basics

Wildcards for bank searching come in three flavors (here matching variables starting
with 'x' and ending with 'y'):

· String wildcards: ['x*y']. Returns matching strings

· Name wildcards: {'x*y'}. Returns matching names. Actually short for {['x*y']},

cf. the note at the end.
· Naked wildcards: x*y. Returns matching names, same as {'x*y'}.

Ranges and single character matches are possible too, for instance 'x1a..x2z' or

'x?y'.

The difference between returning strings or names can be seen in this example:

TIME 2010 2012;
CREATE x1y, x2y; //only necessary in sim-mode
x1y = 1; x2y = 2;
PRT ['x*y'];
PRT {'x*y'};
PRT x*y; //fails

Result:

 ['x*y']
 'x1y', 'x2y' [2 items]

 x1y % x1y %
 2010 1.0000 M 2.0000 M
 2011 1.0000 0.00 2.0000 0.00
 2012 1.0000 0.00 2.0000 0.00

So the first PRT prints out a list of strings equal to ('x1y', 'x2y'), whereas the

second PRT prints out the two timeseries x1y and x2y. The third PRT fails, since it

expects to multiply two timeseries x and y.

31Gekko 3.0 user manual

T-T Analyse

However, in some commands like COPY, RENAME, INDEX, DISP, etc., naked wildcards

are allowed, for instance INDEX x*y; to get a list of variables starting with 'x' and

ending with 'y'.

TIME 2010 2012; CREATE x1y, x2y; x1y = 1; x2y = 2;
INDEX {'x*y'};
INDEX x*y; //same: naked form

Both INDEX commands print out x1y, x2y as matching items, DISP would print the

two series.

Wildcards without bank indicator only search for the variables in the first-position

databank. To search in all databanks, use for instance INDEX *:x*y; or PRT

{'*:x*y'};. As an example, consider the case where there are the following

databanks present:

Databank Variables

1. Work x1y x2y

2. bk1 x1y x3y

3. bk2 x2y a3y

Note: the variables in red are the ones that are found first in a databank search

TIME 2010 2012;
x1y = 1; x2y = 2;
OPEN<edit>bk1; CLEAR bk1; x1y = 10; x3y = 30; CLOSE bk1;
OPEN<edit>bk2; CLEAR bk2; x2y = 200; x3y = 300; CLOSE bk2;
OPEN bk1, bk2;
PRT <n> {'x*y'};
PRT <n> {'*:x*y'};
PRT <n> x1y, x2y, x3y;

Examples:

· PRT {'x*y'}; prints Work:x1y, Work:x2y (only variables from the Work bank)

· PRT {'*:x*y'}; prints Work:x1y, Work:x2y, bk1:x1y, bk1:x3y, bk2:x2y, bk2:x3y

(all 6 variables in the table)

· PRT x1y, x2y, x3y; prints the variables Work:x1y, Work:x2y, bk1:x3y (shown in

red, provided that databank searching is active, else the command fails regarding

x3y).

32 Gekko 3.0 user manual

T-T Analyse

While databank searching has advantages regarding concrete variables like x1y, x2y,

x3y, using such a search logic regarding wildcards would be both confusing and error-

prone.

Use of '%', '#', '!', and stars

In their most strict form, wildcards for bank searching are stated like this:

#m = ['x*y'];

This particular wildcard will return a list of strings containing the names that match

the 'x*y' wildcard, that is, names that start with 'x' and end with 'y'. This wildcard

only matches variables from the first-position databank, with the current frequency.

So if the first-position databank is b1, and the current frequency is annual (!a), the

wildcard matches the same variables as ['b1:x*y!a']. If you need to match all

series of all frequencies (in all open databanks), you can use ['*:*!*']. All scalars

and collections are matched with ['*:%*] and ['*:#*], respectively, so to match

scalars or collections, you need to use '%' or '#' in the wildcard. However, to match

all variables in a given databank, you may use the special '**' wildcard, so ['*:**']

matches all variables in all databanks.

The following finds all variables in all banks (as a list of string names):

#a = ['*:*!*'] + ['*:%*'] + ['*:#*']; //+ operator concatenates
#a = ['*:**']; //same: '**' matches all
variables in a bank
#a = ['***']; //same: '***' matches all
variables in all banks

Similarly, the following will match all items in the first-position databank:

#w = ['*!*'] + ['%*'] + ['#*'];
#w = ['**'];

whereas

#ws = ['*'];

33Gekko 3.0 user manual

T-T Analyse

matches all series with the same frequency as the current frequency in the first-

position databank.

Bank ranges

Ranges work much like wildcards, using dots in a ['start' .. 'stop']-range. For instance:

#az1 = ['xa'..'xz'];

will match all series of the current frequency in the alphabetical range xa-xz in the

first-position databank. To match a range in another databank, use for instance:

#az2 = ['b1:xa'..'b1:xz'];

Note that you must state the bankname both before and after the dots.

List searching

You may use wildcards and ranges on lists of strings, for instance:

#m = xa, xay, xdy, xey; //or: #m = ('xa', 'xay', 'xdy', 'xey');
#m1 = #m['x*y']; //matches 'xay', 'xdy', 'xey'
#m2 = #m['xa'..'xe']; //matches 'xa', 'xay', 'xdy'

When used on lists, wildcards and ranges work normally, that is, there are no special

rules regarding bank colon (':'), frequency ('!') or type symbols ('%' and '#'). The

strings in the list are matched as they are.

Details: why the special logic?

The reader may wonder why wildcards have a special kind of logic regarding symbols

'%', '#', and '!'? This is explained below.

Imagine a databank containing these variables:

· fy!a, an annual series

· fy!q, a quarterly series

34 Gekko 3.0 user manual

T-T Analyse

· %y, a string

· #y, a list

If we use 'naive' wildcards without special rules, we get this:

['*'] --> fy!a, fy!q, %y, #y

Everything is matched. This may seem ok, but then what about this:

['f*y'] --> nothing

Here, the user may wonder why nothing is matched, but this is because of the

frequency symbols ('!'). If, instead, the search pattern ended on a start:

['f*'] --> fy!a, fy!q

Suddently the two series match again, because the star matches '!a' and '!q'. But if

the star is first, we get:

['*y'] --> %y, #y

Now '!a' and '!q' are not matched, but on the contrary, the star matches '%' og '#', so

the string and list are matched.

The reader might object that one could just end the wildcard with '!*', and the

timeseries would be matched as expected. But the user has become accustomed to

not having to write frequency indicators on timeseries of the same frequency as the

global frequency. This is one of the advantages of Gekko, being able to write PRT fy;

and imply fy!a (if the global frequency is annual), so there would be the risk of users

forgetting about frequencies when using wildcards (especially if they work in the

same frequency most of the time).

Therefore, in Gekko 3.0, the '!', '%' and '#' symbols are treated in a special manner

when matching wildcards. In Gekko 3.0, the following is the case:

['*'] --> fy!a

35Gekko 3.0 user manual

T-T Analyse

Only the active frequency is matched (we assume it is annual). No starting '%' or '#'

are matched.

['*!*'] --> fy!a, fy!q

Here, all frequencies are matched.

['%*'] --> %y

This is how to match scalars. Collections are ['#*'].

The rationale behind these rules is that much wildcard search takes places regarding

series of a given frequency, and it is therefore beneficial that such wildcard search

works as expected. The users would want to be able to write for instance PRT

{'f*'}; or PRT {'*y'}; without worrying about frequency indicators and

scalars/collection types.

Instead of the tedious ['*!*'] + ['%*'] + ['#*'], matching all series, scalars and

collections in a bank, ['**'] is offered as a shortcut to match all variables in a

databank. In the same vein, ['***'] is a shortcut to ['*:**'], matching all

variables in all databanks, that is, 'everything'.

Note

The form {'a*b'} is actually short for {['a*b']}. In the last version, the inside of {}

is seen to be a list of strings which is converted into a list of names, just like {#m}

converts a list of strings #m into a list of names. For example, #m = ['a*b']; PRT

{#m}; illustrates this, where PRT #m; would just print the list itself, not the variables

referred to by the list elements. Therefore, PRT {['a*b']} prints the variables, and

as noted, Gekko allows PRT {'a*b'}; as short for {['a*b']}.

36 Gekko 3.0 user manual

T-T Analyse

1.8 Naked list

Naked lists are used to avoid unnecessary typing of parentheses and single quotes,
for lists of strings or numbers. Naked lists can only be used on the right-hand side in
assignments (typically list or series definitions), or on the right-hand side in FOR loop
definitions. If a naked list contains only one element, it must contain a trailing
comma (see the 'singletons' section below).

Naked lists are naked in the sense that the normal list definition parentheses (...)

are omitted, and strings inside the naked list are stated without single quotes.
Therefore, the strict list definition #m = ('a', 'b', 'c'); may be replaced by the

'naked' #m = a, b, c;, and regarding lists of values, the parentheses may also be

omitted, so that y = (1, 2, 3); may be replaced by the 'naked' y = 1, 2, 3;,

where y is a series.

Important note: in many ways, a naked list definition is very similar to a normal

list definition with enclosing parentheses, but here is one difference to keep in

mind. In a naked list definition, if a list #m is present inside {}-curlies, it is the

elements of #m that are added, not the list #m itself. For instance:

#m1 = b, c; #m2 = a, {#m1}, d; //result: 'a', 'b', 'c', 'd'

Compare this with normal list definitions:

#m1 = ('b', 'c'); #m2 = ('a', #m2, 'd'); //result: 'a', ('b', 'c'),
'd'

Here, #m2 becomes a nested list (you could use the flatten() function to unnest

it).

Example: naked list for strings:

#m = a, b, c; //same as #m = ('a', 'b', 'c');
FOR string %i = a, b, c; //same as ... = ('a', 'b', 'c')
 TELL %i;
END;

Example: naked list for values:

y <2010 2012> = 1, 2, 3; //same as ... = (1, 2, 3)
#m = 1, 2, 3; //same as #m = (1, 2, 3);

The following elements are legal in naked lists:

37Gekko 3.0 user manual

T-T Analyse

· Normal names like a1, including underscore character (_).

· Normal names with bank, frequency and index, like b:a!q[i,j].

· Names/words starting with a digit, like 1a or 1e5.

· Normal integers like 123

· Integers starting with zero, like 007

· Floating point values like 1.2 or 1.2e5

· Any character(s) may be replaced by {}-curlies, for instance a{%s}b, where the

inside of {} may be any mathematical expression.
· If a list is present inside {}-curlies, the list items are added one by one, and

characters may be prefixed or suffixed. For instance: #m1 = b, c; #m2 = a,

{#m1}, d; will create the list 'a', 'b', 'c', 'd', whereas #m1 = b, c; #m2 =

a, x{#m1}y, d; will create the list 'a', 'xby', 'xcy', 'd'. (This will also work

if the list items are numbers, but the primary use is for strings).
· Any element may use a prepended with a minus (-), for instance -a1 or -123 or -

1.23.

· Any element may be repeated with rep, for instance 1, 2 rep 3, 3 or 1, 2, 3

rep *.

· Missings: use m() or miss().

Special rules:

· If all elements are either normal integers or contain a decimal point (.), the list

becomes a list of values. The elements may contain a minus sign (-). For instance,

1, 2 or 1.2, 3 or 1, 1.2e5 all become lists of values. But beware that a list like

12, 02 will become a list of the strings '12', '02', and a list like 12, 1e5

becomes a list of the strings '12', '1e5'. The reason for this is stated below.

· An integer starting with 0 (except the integer 0 itself) is not interpreted as a value

in a naked list. So for instance, 01 is not interpreted as the value 1, and 007 not as

the value 7.
· An element composed of integers + e/E + integers will be interpreted as a string,

for instance 1e5 is interpreted as the string '1e5', not the value 100000. On the

contrary, 1.0e5 is interpreted as 100000, not '1.0e5'.

· A list of integers like 1, 2, 3 will become a list of the values 1, 2, 3, not the

strings '1', '2', '3'. But you may easily and without loss transform such a list of

integers into the list of strings '1', '2', '3' via the strings() function. For

instance: #m = 1, 2, 3; #m = #m.strings();.

· Single-element naked lists can be defined with trailing comma, for instance #m =

a,;. See the 'singletons' section below.

The reason for the above rules is that naked lists are often used to define codes, for
instance sequences of 3-character words consisting of alphanumerical characters,
such as ab7, 7dy, 638, 02e, 058, 1e5. These are all three-character codes, and

may represent, for instance, commodity codes for a large number of commodities.
Regarding the last two codes, it would be unfortunate if a naked list consisting of
058, 1e5 was understood as a list of the values 58, 100000, because then it could

not be converted back into the list of strings '058', '1e5' via the strings() function.

This could lead to subtle hard-to-find bugs. So in a sense, the naked list logic is loss-
less. It may spring a surprise that for instance the naked list 483, 582, 3b5 becomes

a list of strings, whereas the naked list 483, 582, 385

38 Gekko 3.0 user manual

T-T Analyse

becomes a list of integers. But these integers can be converted back into
corresponding strings without loss or alteration of any kind.

To sum up, if you are dealing with lists of codes, you do not need to worry about
some codes losing leading zeroes, or some codes being interpreted as mathematical
exponents. If your list of codes contain digits only (without leading zeroes), it
becomes a list of values, and Gekko will abort with a type error, if you try to use the
elements as strings. In that case, you can just convert them into strings with the
strings() function.

Singletons

Beware that single-element lists (singletons) are special. The following will not work:

#m1 = a; //error
#m2 = 100; //error

In that case, you can use a trailing comma to indicate that you are defining a list.

#m1 = a,; //or: ('a',) or list('a')
#m2 = 100,; //or: (100,) or list(100)

Conclusion

Regarding naked lists, there are three important things to remember. (1) If an
element is an integer with leading superfluous zeroes (for instance 01 or 007), all

elements are interpreted as strings. (2) If an element is an integer followed by an e

or E followed by an integer (for instance 1e5), all elements are interpreted as strings.

These rules are to avoid potential loss of or scrambling of information, for instance if
the elements are codes. (3) If all elements are integers, these are transformed into
values. Sometimes codes look like this, for instance 123, 234, 345, but in that case,

they can be transformed back into strings (without information loss) via the strings()
function.

Note

Naked lists do not allow type symbols % or # (except if they are inside {}-curlies).

This is to avoid confusion.

A naked list cannot contain elements with differing types, for instance #m = a, 1.1;.

This will trigger an error, and again this is to avoid confusion.

39Gekko 3.0 user manual

T-T Analyse

1.9 Filenames

Gekko accepts relative paths, relative to the Gekko working folder. Consider, for
instance, that you have a command file 'job.gcm' with the following READ-statement
inside the 'job.gcm' file:

READ \banks\data;

Now, Gekko will add the sub-folder \banks to the Gekko working folder path. If the
Gekko working folder is "C:\Projects\Model1", the READ statement is translated into:

READ C:\Projects\Model1\banks\data.gbk;

The extension .gbk is automatically added if missing in the READ command.

You may use strings to compose file paths and names:

%s1 = 'Projects';
%s2 = 'Model1';
%s3 = 'banks';
%s4 = 'data';
READ C:\{%s1}\{%s2}\{%s3}\{%s4};
READ 'C:\{%s1}\{%s2}\{%s3}\{%s4}';

The two READ statements are equivalent: you may always use a string as a filename.
More on string in the section on the STRING command. Path’s must use the
'\' (backslash) or '/' (frontslash), and it is recommended to begin a relative path with
the '\' or '/' character for clarity. It may be omitted though: for instance "READ
banks\data;" is equivalent to "READ \banks\data;".

Frontslash is allowed too, for instance:

READ C:/Projects/Model1/banks/data.gbk;

Valid file names consist of alphanumeric characters or the '_' character. If the file
name contains blanks or special characters (for instance the Danish 'æ', 'ø' or 'å'),
you may enclose the file name in single quotes ("READ 'last year.gbk' ;").

At some point it may be preferable to add the sub-folder to the path of the executing
command file, rather than to the Gekko working folder. Choosing between the two
ways of interpreting relative path’s is not completely obvious, however.

40 Gekko 3.0 user manual

T-T Analyse

1.10 Function keys, etc.

Function keys are used for quick access to specific Gekko commands.At the moment,
only a few function keys are active.

F1 Opens up the help system. You can also type for instance 'HELP;' or
'HELP sim;' from the command line, in the latter case you will get
help on that particular command (SIM).

F2 Opens up the databanks window (close with Esc). Note that the Ref,
Local and Global databanks do not show up in this window if they
are empty. You may also use SERIES? to see what kinds of
timeseries the databanks contain.

Enter If you hit [Enter] on a line without trailing ';', Gekko will
automatically add the ';' for you. If you hit [Enter] in the middle of
a line not ending with ';', Gekko will complain and not add the ';'
automatically.

Ctrl+Enter New line in command prompt, without issuing the command line.

Mark+Ente
r

You may mark several lines in the Main window and execute them
as one block with [Enter]. This is functionally equivalent to putting
the lines in a command file (.gcm) and executing them with RUN.

Ctrl+M Jump to Main tab.

Ctrl+O Jump to Output tab.

Ctrl+U Jump to Menu tab.

You may double-click the 'traffic light' indicator in the lower right of the interface to
open up the 'Run status' window.

The left- and right arrow buttons below the menu are for browsing back and forth
when showing DISP (equation browser), or when showing tables by means of menus.
The 'home' button navigates back to the start.

The 'Stop current job' button tries to halt an executing job.

The 'Copy last ...' button/icon at the top of the main Gekko window copies the last
PRT/MULPRT, table, matrix, etc. as spreadsheet cells on the clipboard, for subsequent
pasting into a spreadsheet (similar to CLIP). This is convenient for copy-pasting to for
instance Excel, including matrices.

41Gekko 3.0 user manual

T-T Analyse

1.11 Help system

It may be difficult to remember all the commands and the exact syntax for each
command. The function key F1 (or typing 'HELP') accesses the Gekko help system. If
you cannot remember the exact syntax for a particular command, you can try typing
"HELP [commandname]", for instance "HELP sim;" (or you may search the help files
for particular phrases).

The help system is contained in a file gekko.chm. (Note: opening this file stand-alone
from a network drive may sometimes pose problems on Windows, due to security
reasons).

The help system is also available online here.

http://t-t.dk/gekko/docs/user-manual/index.html?introduction.htm

42 Gekko 3.0 user manual

T-T Analyse

1.12 Under the hood

Language, licence etc.

Gekko is written in C#.NET, which together with VB.NET and Java are among the
most used programming languages for pc's. Due to C# being object-oriented,
development and redesign is flexible and efficient. The software is written for
Windows .NET, so in order to run on Mac or Linux, the user has to use virtualization
software. Gekko is open-source (public domain, GNU GPL licence), implying that
anybody can use the code for free, but any enhancements must be put into the public
domain as well.

Parser, structure etc.

The databanks and timeseries in Gekko are object-oriented internally. There can be
any number of databanks, with any number of time series for any given periods
(including quarters and months), only constrained by working memory. All values and
calculations are double-precision (64-bit) internally, and missing values are handled
consistently. The timeseries can contain labels, source etc., and the underlying data
structures are dynamically resizing arrays, in order to keep the system fast. Models
and command-scripts (command files, .gcm) are parsed and dynamically translated
into C# code by means of ANTLR, providing fast and reliable parsing.

A model can be loaded dynamically without leaving Gekko. This means richer options
for using different models at the same time, if needed. It also permits for instance
optional fail-safe mode, where the model checks more strictly for illegal values while
running (at a small speed penalty).

Solvers

At the moment, four algorithms for solving a model are provided.:

· First, standard Gauss-Seidel, where damping is supported via the formula codes.
The program solves a large model like ADAM quite quickly with the Gauss-Seidel
algorithm.

· In addition, a Newton method with line-search is implemented. This method does
not depend upon the distinction between left- and right-hand side variables, and so
can be used to solve difficult models or goals/means problems. The Newton solver
uses a decomposition of the simultaneous block into a feedback set and the rest of
the simultaneous block, reducing the dimension of the jacobian matrix
considerably. The Newton solver can handle any number of means/goals simply by
changing the set of endogenous variables.

· The Fair-Taylor method ('fair') is used if the model contains leaded endogenous
variables

· Newton Fair-Taylor ('nfair') is used for harder problems, using the Newton method
to accelerate the Fair-Taylor iterations.

http://www.antlr.org/

43Gekko 3.0 user manual

T-T Analyse

Graphics, tables

Graphics (PLOT) are done with gnuplot as the underlying engine. Gnuplot is installed
together with the rest of the program. Printing and plotting uses the same
syntax/options and underlying code. Graphs can be exported to Word via the
clipboard, or saved to disk as for instance .emf or .svg files. Data tables can be
exported directly to Excel, or via the clipboard to any spreadsheet software accepting
tab-delimited input.

File formats and interfaces

Gekko databanks (.gbk) are zipped protobuffers, so the format is open, well-
documented and easy to interface. Protobuffers are also used internally for caching
models, so that they load faster.

Gekko 3.0 uses an internal Excel engine to read and write to Excel. This is fast and
reliable, but only works for the newer .xlsx format. To read/write the older .xls files,
an interface to Excel via COM Interop is possible, too.

The R interface is deliberately without COM Interop, but relies instead upon simple
file exchange, and the gnuplot and X12A interfaces are similar.

Name

Why was Gekko called Gekko? One of the first versions, from early 2008, was called
Echo. The intention was to find a suitable acronym afterwards, where 'ec' would be
'economic' or 'econometric'. However, Echo sounded a bit too much like the Danish
shoemaker Ecco. Thus, the similarly sounding Gekko was chosen, partly because a
gecko is a nice and helpful animal, and intentionally choosing the Danish spelling to
distinguish it from, among other things, the Gecko browser engine. The intention was
still to find a suitable acronym, with the 'e' being 'economic' or 'econometric', but the
search for a suitable acronym is still ongoing. Gekko supposedly means something
like 'moonlight' in Japanese (which gives better associations than, for instance,
Gordon Gekko, who did not inspire the name).

http://www.gnuplot.info/
http://www.ecco.com
https://en.wikipedia.org/wiki/Gecko
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Gordon_Gekko

44 Gekko 3.0 user manual

T-T Analyse

1.13 Guided tour

Instead of painstakingly reading through a lot of descriptions of commands etc., you
might prefer to jump right into simulating a model in Gekko, and analyzing the
results. For the purpose of this, a guided tour has been created (the tour will entail
some typing though), where each step is explained, but without delving into too
many details.

The guide can be seen here:

· Gekko Guided tour (external link, Gekko 2.0 simulation examples, not updated to
3.0 yet)

http://t-t.dk/gekko/guided-tour

45Gekko 3.0 user manual

T-T Analyse

Part II

47Gekko syntax basics

T-T Analyse

2 Gekko syntax basics

This chapter describes some of the syntax rules in Gekko 3.0, including the
differences relative to the 'older' syntax of Gekko 2.0 (2.4) and earlier. The chapter
contains the following sections:

· Basic syntax rules. A section on syntax basics.
· More about syntax. More details about how the syntax works.
· Syntax diagrams. Diagrams the explain the basic components of the syntax.

48 Gekko 3.0 user manual

T-T Analyse

2.1 Basic syntax rules

This section tries to explain some of the syntax basics.

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

Basic syntax

Almost all commands start with a command name, for instance PRT (for printing).

You can see the commands sorted into categories here, or the alphabetical list of

commands here. Beware that user-defined procedures may look similar to commands.

Assignments like SERIES, VAL, LIST, etc. may omit the command name.

Many commands accept an option field right after the command name, for instance

PRT <2015 2020>. The option field always uses angle brackets <>, and is often used

to state the local time period used in the particular command. But many other

options may be set, for instance PRT <pch> for percentage printing, or PRT <

filter=avg >. In PRT <filter = avg>, the option type is 'filter' and option value

is 'avg', whereas in PRT <pch>, the option type is 'pch', and the option should be

understood as short-hand for 'pch = yes'. Many of the options are of yes/no-type

(boolean), and instead of for instance 'pch = no', the user may use the shorter

'nopch'. In assignments, the option field may be stated before or after the left-hand

side variable, so both <2020 2030> x = 100; and x <2020 2030> = 100; are legal.

After the option field, some variables or expressions are typically stated, like for

instance PRT <2015 2020> x, y;. In this case, the timeseries x and y are printed. To

delimit elements, you typically use a comma (,).

All commands end with a semicolon (;), and the commands may span multiple lines.

(If you need a multi-line command in the user interface, use Ctrl+Enter to add

newlines, and then mark the whole block and press Enter).

You may sometimes add extra options at the end of the statement, for instance PRT

<2015 2020> x, y file = print.lst;. Such extra options use the equal sign (=),

similar to options in the <>-option field.

Gekko operates with seven types of variables: scalars (value, date or string),

collections (list, map, matrix), or series. When referring to a scalar, you must use the

%-symbol, for instance %v. When referring to a collection, you must use the #-

symbol, for instance #m, whereas timeseries do not use symbols. Using such symbols

is helpful when reading expressions like x + %y + #z[2], because x is known to be a

timeseries, %y is known to be a scalar (probably a value, else the expression will fail),

and #z is known to be a collection (from which the second item is selected, so in this

49Gekko syntax basics

T-T Analyse

case #z is probably a list). In Gekko 3.0, the symbols must also be stated on the left-

hand side of assigments like for instance %v = 100.

As anticipated above, you can use []-brackets to select items. For timeseries, []-

brackets can be used for lags/leads, for instance gdp[-1] or gdp[+1], or for picking

out an observation like gdp[2015] or gdp[2015q3]. For lists, []-brackets are used for

selecting items in the list, for instance #m[2] or #m[1..%n], and for maps, brackets

are used to select elements by name (for instance #m['d'] or the shorter #[d] or

#m.d). Matrices use two dimensions, for instance #a[2..3, 1..%n]. You can use

brackets for strings, selecting characters, for instance %s[3] or %s[3..5].

Wildcards either use the ['...'] or {'...'} pattern or are 'naked'. For instance,

PRT {'y*'}; will print all timeseries starting with 'y'. Such wildcards can also be used

with lists, for instance #m['y*'], selecting all elements starting with 'y'. In some

commands, the stand-alone brackets are not mandatory, for instance INDEX y*;

instead of the more tedious INDEX {'y*'};. The reason why for instance {'a*b'} is

used in PRT is that otherwise the expression PRT a*b; would be ambiguous (does it

mean the mathematical product of two timeseries, or is it a wildcard matching

variables starting with 'a' and ending with 'b'?). See more on the wildcard page.

The colon (:) is used to access open databanks, for instance PRT bk7:pxa;, where

'bk7' is the databank, and 'pxa' is the timeseries. When writing PRT pxa;, the first-

position databank is implicitly understood if databank searching is inactive, and if

databank searching is active, Gekko will first look for pxa in the first-position

databank, and afterwards in the other open databanks (except Ref). You may use PRT

bank2:pxa; to obtain the values from the bank2 databank. Alternatively, use the at

symbol (@) to indicate the reference databank, for instance: PRT @pxa;.

You may use dot ('.') to indicate lags, for instance PRT pxa.1; instead of PRT pxa[-

1];. Dots can also be used to select items from a MAP, for instance #m.x picks out

element 'x' in the map (alternatively, #m['x'] or #m[x] can be used).

Exclamation mark ('!') is used to indicate frequency, for instance PRT pxa!q,

pxa!m; refers to the quarterly or monthly versions of the series pxa.

Strings should always be stated inside single quotes ('), for instance %s = 'Hello

from Gekko.';. Double quotes (") are not used in Gekko, but may be put inside

Gekko strings (the string 'The name "Peter" har 5 characters' is legal). If you

need to insert a scalar or an expressions into a string, the most practical way is via

{}-braces, for instance 'the {%s} car', where %s = 'blue'. This is more readable

than the alternative: 'the ' + %s + ' car'. Note also that if %s is a string, there is

the equivalence '{%s}' = %s.

{}-braces are also used for name-composition. For instance PRT px{%s}; will be

equivalent to PRT pxa;, if %s = 'a'. When reading Gekko 3.0 code containing {}--

50 Gekko 3.0 user manual

T-T Analyse

curlies, these curlies can be thought of as some sequence of characters, for instance

abc123 (without quotes). So if in doubt regarding the use of {...}, for instance

whether some string %s must be put inside {...} or not, try to first consider whether

the command/expression would use a name like abc, or a string like 'abc'? If you

would use the former, you must correspondingly use {%s}, and if you would use the

latter, you must correspondingly use %s. Note that there is the following equivalence:

abc = {'abc'}, so in a way the {...}-curlies 'eat' the single quotes belonging to a

string, and inside the {...}-curlies, you may put any expression, as long as it

evaluates to a string. Another interpretation is that the {}-curlies perform a

forwarding operation. If %s = 'abc', the expression {%s} forwards from the variable

%s to the variable abc. See also the syntax diagrams.

Functions use normal parentheses, for instance movavg(x, 3). You may define your

own functions (see here). All functions, both in-built and user-defined, implement so-

called UFCS, so movavg(x, 3) can alternatively be written as x.movavg(3), putting

the first argument on the left.

Power operators are either '**' or '^', for instance PRT a**b; or PRT a^b;.

Logical operators use '<', '<=', '==', '>=', '>', '<>'; note in particular that the

equivalence operator is '==' and not '=', see also IF.

$-conditionals can be used in the same way as in the GAMS software package. So

you can write for instance %x = 1 $ (%x < 0); which sets %x = 1 if %x < 0. This is

equivalent to IF(%x < 0); %x = 1; END;. The $-conditionals are often used in

conjunction with lists, for instance y[#i] = 100 $ (#i in #i1); which sets the

array-timeseries y[#i] to 100 for the elements of #i that are part of the subset #i1.

Names (variable names) must start with '%', '#', a letter or an underscore, and are

subsequently composed of letters, underscore or digits, for instance f16, _temp, %f16,

%_temp, #f16, #_temp. Names may also contain {}-braces. Timeseries names starting

with 'xx' are often of temporary nature (see CREATE).

// and /* ... */ are used for out-commenting lines of code, or blocks of code.

Details

Some syntax from the 2.0 series has been deprecated, in order to clean up the

syntax.

· Using {i} as short-hand for {%i} is no longer possible, for instance in a name

like x{i} instead of x{%i}. First and foremost, using i instead of %i would go

against the Gekko 3.0 principle that the type symbol is a part of the name and

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

51Gekko syntax basics

T-T Analyse

hence cannot just be omitted. Next, a further problem with {i} is that any

expression is allowed inside {}-braces, and this fact makes the treatment of {i} as

{%i} somewhat confusing. For instance, consider this expression: x{i[2020]}. If,

for instance, i is a series with value 100 in the period 2020, the name x{i[2020]}

will be y100. Now, in contrast, the name x{i} will not try to use the series i, but

will instead look for the scalar %i. So just removing the []-index from i means that

i is suddenly understood as %i. Additionally, since using x[a] instead of x['a'] is

possible for array-series and in other indexes, the user may think that x{a} is be

short for x{'a'}, not x{%a}.

· Using x%i as short-hand for x{%i}, or x%i|y as short-hand for x{%i}y is no

longer endorsed. There are several reasons for this. First, strings do not support

this notation, so 'x%i' will not have %i in-substituted, whereas 'x{%i}' will

(hence, for instance, PRT {'x%i'}; will not work, whereas PRT {'x{%i}'}; will.

Because strings support x{%i} notation inside, it is easy to transform a name like

x{%i} into the corresponding string; just add quotes: 'x{%i}' (and vice versa).

Second, the notation is illogical (or at least complicated). For instance, if %i = 'a',

we have in the strict {}-notation that x{%i} = xa. Here, we can easily prepend a

sigil '%', for instance %x{%i} = %xa, and it is similarly easy to append a character,

for instance x{%i}b = xab. And if we wish to omit the 'x' and 'b' we just toss them:

{%i} = a. Now, with the short-hand notation it gets complicated. We have that x%i

= xa which is fine. But if we prepend a type symbol, we have to use %(x%i),

otherwise Gekko will issue an error (%x%i is illegal). If we append a character, we

have to use the concatenator: x%i|a, since x%ia will look for the scalar %ia. And if

we want to loose the 'x', we have to use {%i}, since a naked %i returns a scalar

string, not the series corresponding to this name. So to sum up, using the short

notation entails cases where the user has to using adding parentheses,

concatenator, or curly braces, which is error-prone, especially for less experienced

users. Finally, there is readability. Whereas x%i is simple enough to read, how

about x%i|a%i%k|b compared to x{%i}a{%i}{%k}b? Or %(x%i|a) compared to %

x{%i}a? For these reasons, the x%i|y notation has been deprecated in Gekko 3.0,

providing simpler logic and programs that are easier to read.

· Using #m[%s] as a logical condition is no longer possible. The idea is that

#m could be a list of strings, and #m['a'] could return 1 if 'a' is a member of #m,

and 0 otherwise. This syntax is used by GAMS, but the problem is that in Gekko

3.0, lists may contain values, so should #m[3] also mean a membership check (if

the number 3 is one of the list elements)? But this syntax collides with #m[3] being

used to fetch the element in position 3 in the list. Instead, the user can use %s in

#m, or #m.contains(%s).

· Omitting scalar or collection symbols on the left-hand side is no longer

possible, for instance using VAL v = 100; or LIST m = ('a', 'b', 'c'); is no

longer legal. In Gekko 3.0, the '%' or '#' symbol is considered part of the variable

52 Gekko 3.0 user manual

T-T Analyse

name, as if these symbols were just special characters alongside 'a', 'b', 'c', etc. In

order to comply with this logic, the symbols can never be omitted. Instead, the

correct assignments are VAL %v = 100; or LIST #m = ('a', 'b', 'c');, but in

Gekko 3.0 the types may be omitted, so %v = 100; or #m = ('a', 'b', 'c'); is

legal, too.

· List definitions are generally stated with parentheses, for instance ('a',

'b', 'c'). But for convenience reasons, you may use a 'naked' list definition,

for instance #m = a, b, c; to put the three strings 'a', 'b', and 'c' into the list #m or

y = 1, 2, 3; to put the three values 1, 2, and 3 into the series y. This also works

in FOR loops and is convenient in many cases (remember that a naked list with

only one element must have a trailing comma). For such naked lists, Gekko accepts

elements composed of letters and digits (and some symbols like _, -, :, !, [,]), so

FOR string %i = 38, 007, 1e10, 2001q1; is equivalent to FOR string %i =

('38', '007', '1e10', '2001q1');. See more about naked lists.

· Beware that "#m = (a, b, c);" is very different from "#m = a, b, c;". The

former finds the three timeseries a, b, and c, and puts them into the list as

individual objects (of series type). The latter just inserts three strings. In the

former case, you may use PRT #m;, whereas you must use PRT {#m}; in the latter

case, if you want to refer to the variables corresponding to the string names. Using

lists of strings to refer to variables is often more practical than using lists of series

objects. As an example, you can use the syntax PRT bank1:{#m}; to print bank1:a,

bank1:b, and bank1:c (that is, from the databank bank1), or the syntax PRT

{#m}!q; to print out the quarterly series a!q, b!q, and c!q. Gekko contains many

inbuilt functions to handle such lists of variable names represented as strings.

· Concatenating and inserting strings. When combining (contatenating) variables

into a string, there are generally two ways to do it. The first one is using the '+'

operator, for instance %s1 = 'blue'; %s2 = 'The ' + %s1 + ' car';. The other

way is to use {}-braces: %s1 = 'blue'; %s2 = 'The {%s1} car';. This is easier

to read, and has another advantage. If %s2 was for instance a value, the first

variant would demand an explicit string conversion, for instance %s2 = 'Number '

 + string(%s1) + ' car';, whereas this is not necessary regarding the last

variant: %s2 = 'Number {%s1} car';. The reason for this is that the {}-braces

already try to convert the inside into a string.

53Gekko syntax basics

T-T Analyse

2.2 More about syntax

Below, some of the main concepts of the Gekko 3.0 syntax are explained in more

detail.

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

Banks, symbols, names, frequencies, indexes

A variable may be stated in the following way:

[bank] [:] [symbol] [name] [!] [freq] [indexes]

For instance, b1:x!q refers to the quarterly (!q) series x in the b1 databank. If the

series is an array-series, b1:x!q['a', 'b'] would refer to the sub-series ['a',

'b'] (that is, with two-dimensional indices 'a', 'b') of x!q. Frequencies are not used

for non-series types.

The symbols are used in the following ways: series (including array-series) have no

symbol. Scalars (value, date, string) start with % symbol, and collections (list, map,

matrix) start with # symbol.

If the databank is omitted on a variable in a command or on the right-hand side of an

expression, the following will take place (depending upon mode, cf. also the databank

search page):

· sim-mode: If sim-mode is active, Gekko will look for the variable in the first-

position or local/global databank.

· data- and mixed mode: Gekko will first look for the variable in the local databank,

then in the first-position databank, then in subsequent open databanks, and finally

in the global databank. Gekko will never search for a bank-less variable in the

reference (Ref) databank.

In some cases, omitting the databank is silently interpreted as adding first: to the

name, independent of mode settings. for instance COPY x to y; is interpreted as

COPY first:x to first:y;, where first: refers to the first-position databank

(often Work).

If the frequency is omitted for variables of series type, the current frequency will be

silently added. So if the frequency is set to quarterly (option freq q;), you may use

x1 as short for x1!q.

For array-series, the array indexes may sometimes be omitted, so that you may write

PRINT x; instead of PRINT x[#i, #j];, printing out all the elements.

54 Gekko 3.0 user manual

T-T Analyse

Names and quotes

In general, a string is enclosed in single quotes, for instance: 'x', whereas a name is

not, for instance: x. Because of the use of type symbols in Gekko ('%' and '#' to start

scalar and collection names), the single quotes sometimes be omitted in those cases

where a series would not make sense as input. For instance, for array-series, using

the shorter x[a] instead of the more strict x['a'] is legal, because in the former

variant it would not make sense to use an index with a series argument. Using x[%a]

is another story, because %a could be a string, so the rule only applies to simple

names (sequences of characters that are either alphanumeric or '_').

In the same manner, a lot of options accept string arguments, for instance COMPARE

<sort=rel>;, where 'rel' is the argument (relative sorting). It would not make sense

for rel to be a timeseries, since a string is expected, and therefore the shorter

<sort=rel> can be used as short-cut for the more strict <sort='rel'>. If the type

needs to be controlled, you could use a string variable, so %s = 'rel'; COMPARE

<sort=%s>; would work fine. This is still work in progress.

Omitting single quotes is possible regarding list definitions and loops too, as seen in

the following section.

Names, lists and loops

In general, lists are defined as comma-separated variables, enclosed in parentheses.

For instance, #m may be a list of strings:

#m = ('a', 'b', 'c'); //strict
#m = a, b, c; //naked list, NOT equal to (a, b, c)

As seen, a naked list variant is allowed, in the special case where all of the list

elements are simple strings or simple values. Note that the syntax for a naked list of

strings is always without parentheses in the list definition. The list #m = a, b, c; is

interpreted as three strings 'a', 'b', 'c', whereas the list #m = (a, b, c); is

different, containing three series variables (objects): a, b, c. The list #m = 1, 2, 3;

becomes the three values 1, 2, and 3.

The same goes for FOR, so the two following are equivalent.

FOR string %i = ('a', 'b', 'c'); PRT {%i}; END; //strict
FOR string %i = a, b, c; PRT {%i}; END; //naked

A one-element list (singleton) is special:

#m = a,; //or: ('a',) or list('a')

55Gekko syntax basics

T-T Analyse

The empty list is special too:

#m = list(); //note: using () may become legal later on

For a one-element list with string element 'a', you cannot use #m = a; or #m =

('a');. In the first case, the right-hand side is interpreted as a series (a), and

assigning a series directly to a list will fail. In the second case the expression

evaluates to #m = 'a';, assigning a string directly to a list (which will fail). Using a

trailing comma like #m = a,; makes it a list.

Indexes [...]

Regarding indexes of array-series or other variables, single quotes on a string can in

general be omitted (both the following are valid):

PRINT x['a', 'b']; //strict
PRINT x[a, b]; //short

Indexes are often used on lists to pick out items (so-called slicing).

Name-substitution {...}

The {}-curlies are used for name-composition, and in general you may think of {...}

as simply a sequence of characters, like x22 or y_15_sum. When used, the inside of

{...} must evaluate to a string (or list of strings), for instance {%s} or {#m}, for

instance:

%s = 'x';
#m = ('y', 'z'); //or: #m = y, x;
PRT a{%s}, a{#m};

This is equivalent to "PRT ax, ay, az;". In a sense, {...} curly braces removes single

quotes, so that {'x'} = x, transforming the string 'x' into the variable/series x.

As seen, the {}-curlies can also be used together with other characters (or other

curly braces), for instance x{%i}a. If %i = 'e', this amounts to xea. Often, instead

of using array-series, normal series may be used to the same effect, so instead of the

56 Gekko 3.0 user manual

T-T Analyse

array-series x['i1', 'j1'], the user may use simply a series called xi1j1. If the

lists #i and #j contain the i- and j-elements, you may print the series: PRINT x[#i,

#j];, or with normal series: PRINT x{#i}{#j}.

Gekko 3.0 no longer allows omitting the %-symbols inside {}-curlies, so you cannot

use for instance x{i}a instead of x{%i}a. Using x%i|a as synonym for x{%i}a is no

longer endorsed in Gekko 3.0, but it still works.

See also the syntax diagrams.

More on indexes

Indexes can be used for:

· Array-series (mentioned above), for instance x[a, b] or x['a', 'b']. Integers

may be used, if the dimension is compatible with an integer, for instance age

dimension. Trailing zeroes are allowed, so for an array-series, x[007] is understood

as x['007'], not x['7'].

· Lags/leads, for instance x[-1] or x[+1]. Note that a lag or lead must contain a + or

- as the first character after the bracket. So if you define %i = 2, you may use x[-

%i] or x[+%i], but x[%i] will not work as a lag or lead (even is %i is negative).

Instead, if x is a normal series, x[%i] will be understood as x[2], which again is

understood as the year 2 (two years after the birth of Christ). If x is instead an

array-series, x[%i] will be understood as x['2'] which could, for instance,

represent 2-year olds (if x contains population data).

· Period reference: x[2020q1], first quarter of 2020.

· Positions in LISTs: #m[2] picks out the second element of the list #m.

· Names in MAPs: #m[a] or #m['a'] picks out the variable named a in the map #m.

For simple names, #m.a is equivalent to #m[a] or #m['a'] (the variable a is a

series).

· Matrix references (row/column), for instance #m[2, 1] picks out the numeric value

in row 2, column 1.

· Searching: #m['a*'] finds all elements matching the pattern 'a*'.

· Note that in Gekko 3.0, you cannot use #m[0] to get the number of elements of the

list #m. Use length(#m) or #m.length() instead.

· Ranges can be used for picking out elements, for instance #m[2..4] picks out

elements 2 to 4 (inclusive), or %s[2..4] takes characters 2 to 4 from the string %s.

57Gekko syntax basics

T-T Analyse

58 Gekko 3.0 user manual

T-T Analyse

2.3 Indexing: list, matrix, map

Gekko lists, matrices and maps are all containers of data, where the data is organized
in some structure.

· A Gekko list is one-dimensional, but can be nested (lists inside lists), and may
contain any Gekko variable type.

· A Gekko matrix is two-dimensional and can only contain values.
· A Gekko map is like a list where the elements are not ordered and hence not

accessed by number index (for instance #m[1], #m[2], etc.), but instead by name

(#m['gdp'], #m['vat'], etc.). In a map, the elements are not ordered sequentially,

but instead strings are used to look up the elements. A Gekko map can be thought
of as a mini-databank.

Lists are defined like for instance (1, 2), a two-element list. Note that a singleton

list must use a trailing comma, for instance (1,). The matrix equivalent would be [1,

2], which is a 1 x 2 matrix (row vector), or alternatively [1; 2], which would be a 2

x 1 matrix (a column vector). A nested list could be stated like ((1, 2), (3, 4)),

which for a matrix would be [1, 2; 3, 4]. A list like (1, 2) has no awareness of

being a row or a column or anything else; it is just a sequence of numbers that can
be indexed by position.

#m1 = ((1, 2), (3, 4));
#m2 = [1, 2; 3, 4];
PRT #m1, #m2;

//Result: -------------------------------------

#m1
(1, 2), (3, 4)

 #m2
 1 2
 1 1.0000 2.0000
 2 3.0000 4.0000

Regarding the list #m1, it contains two sub-lists. Each of these sub-lists contains two

values. So the list is nested, whereas the matrix #m2 is organized in a two-

dimensional structure of rows and columns.

In general, a nested list is indexed like #m1[2][1], picking out the value 3, and a

matrix is indexed like #m2[2, 1], also picking out the value 3. However, for nested

lists of lists like #m1, Gekko allows the alternatively syntax #m1[2, 1], too. So when

selecting an individual element in a nested list, there is no difference between #m1[%

i][%j] and #m1[%i, %j].

Things get more complicated when ranges are used:

// 1 2 3

59Gekko syntax basics

T-T Analyse

// 4 5 6
// 7 8 9
// 10 11 12
#m = ((1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12));
%v1 = #m[2, 3]; //6
%v2 = #m[2][3]; //6
#m1 = #m[2, 2..3]; //(5, 6)
#m2 = #m[2][2..3]; //(5, 6)
#m3 = #m[2..4, 2]; //(5, 8, 11)
#m4 = #m[2..4][2]; //(7, 8, 9)
#m5 = #m[2..4, 2..3]; //((5, 6), (8, 9), (11, 12))
#m6 = #m[2..4][2..3]; //((7, 8, 9), (10, 11, 12))

Here, #m is a four-element list, where each element is itself a three-element list. It

can be represented visually as the 2d matrix shown in the comments, but beware
that the nested list has no inherent notion of rows or columns. Both #m1 and #m2

amount to (5, 6). In both cases, the second row is singled out, and elements 2-3

(inclusive) are selected from this. But #m3 and #m4 are different: the former selects

rows 2-4 in column 2, which is (5, 8, 11), whereas #m4 evaluates to (7, 8, 9). To

understand #m4, we will split it up into #x = #m[2..4]; #m4 = #x[2];. Here, #x

evaluates to ((4, 5, 6), (7, 8, 9), (10, 11, 12)) since it picks out elements 2-

4 (inclusive) of the #m list. Next, from #x, the second element of this is selected,

which is (7, 8, 9). Perhaps not surprising, #m5 and #m6 are different, too. The

former selects rows 2-4 and columns 2-3, resulting in the nested list ((5, 6), (8,

9), (11, 12)), cutting out a part of the 2d matrix shown in the comments. In

contrast, #m6 evaluates to ((7, 8, 9), (10, 11, 12)) . We can reuse the #x

temporary list again: #x = #m[2..4]; #m6 = #x[2..3];. So this time, #x[2..3]

picks out elements 2-3 from #x, that is, ((7, 8, 9), (10, 11, 12)).

To sum up, for nested lists of lists, Gekko allows the indexing syntax [... , ...] in

addition to the standard [...][...] indexing. When the first part of the former kind

of indexing is a single value, there is no confusion. However, when the first part of
such indexing is a range, the [... , ...] syntax selects elements in the same

manner as matrix selection, whereas the [...][...] variant selects something

altogether different.

The reason why nested lists allow [... , ...] indexing syntax in Gekko is to make

it possible to select elements in a similar manner to matrices, making it easier to use
nested lists to represent for instance spreadsheet cells, tables or other 2d structures
with mixed contents (for instance text, dates, and values). Another reason is to
comply tightly with Python arrays (NumPy library), where such indexing is possible.
Python also has a matrix library, but this is being deprecated in favor of using NumPy
arrays instead (also for linear algebra calculations), among other things because
arrays generalize naturally to n dimensions ("tensors"), in contrast to 2-dimensional
matrices.

Arrays in Python

https://en.wikipedia.org/wiki/NumPy

60 Gekko 3.0 user manual

T-T Analyse

Since lists in Gekko follow most of Python's convention, the Python NumPy library
also inspires some of the intricacies of multidimensional objects. First, we will have a
look at the ndarray (n-dimensional array) variable type in Python.

import numpy as np
m = [[1, 2, 3],[4, 5, 6], [7, 8, 9], [10, 11, 12]]
a = np.array(m)

In the following code, m is a standard nested list, whereas a is an array. Here, m[0]

will pick out the list [1, 2, 3], and a[0] will pick out the array [1, 2, 3], note that

indices are 0-based in Python. Both m[0][0] and a[0][0] and a[0, 0] will pick out

1, but m[0, 0] will fail with an error Selecting one of the row elements and a range

of column elements produces this:

m1 = m[1, 1:3] #type error
m2 = m[1][1:3] #[5, 6]
a1 = a[1, 1:3] #[5, 6]
a2 = a[1][1:3] #[5, 6]

Again, the list does not allow [... , ...] notation, but apart from this, everything

is as expected (the range 1:3 means elements 2 and 3) . Now we try to select a

range of rows and a fixed column:

m3 = m[1:4, 1] #type error
m4 = m[1:4][1] #[7, 8, 9]
a3 = a[1:4, 1] #[5, 8, 11] <-- note!
a4 = a[1:4][1] #[7, 8, 9]

In this case, m4 and a4 still only obtain the second row, whereas a3 obtains the

second column (and m3 fails with an error).

Selecting several rows and columns at the same time:

m5 = m[1:4, 1:3] #type error
m6 = m[1:4][1:3] #[[7, 8, 9],[10, 11, 12]]
a5 = a[1:4, 1:3] #[[5,6],[8, 9],[11, 12]] <-- note!
a6 = a[1:4][1:3] #[[7, 8, 9],[10, 11, 12]]

In this case, there is no difference, apart from the expected type error regarding m5.

61Gekko syntax basics

T-T Analyse

2.4 Syntax diagrams

Gekko 3.0 has a more strict syntax than Gekko 2.x and earlier. The following
diagrams illustrate some of the fundamental building blocks of the syntax of 3.0. So
whenever Gekko refuses one of your expressions, and the syntax error does not
make sense, you may consult the following diagrams and perhaps understand the
issue by means of these. The blue boxes below provide examples.

One of the most fundamental building blocks of Gekko is the name.

Here, alphanum means alphanumerical characters: letters, digits, and underscore,

whereas expr is any legal Gekko expression. Gekko will evaluate whatever is inside

the {}-curlies, and will expect the inside to be a string or a list of strings. Note that
alphanum excludes %, #, !, : and other symbols.

To make it possible to write for instance x{%i} shorter as x%i, a "complicated

name" (cname) is introduced:

In many cases, such a cname can be used instead of a normal name. Note that the

name part of the cname may contain {}-curlies, not just alphanumeric characters. The

cname is mostly used to avoid typing too many {}-curlies, cf. the examples in the

blue box. In command files, procedures and functions, it is often best to use normal
name instead of cname, for readability and maintainability.

A variable name is a precise reference to an object residing in a particular Gekko
databank. It may include type symbols % or #, or frequency !. The upper part of the

diagram illustrates timeseries, which have no type symbols and may include a
frequency. The lower part of the diagram illustrates scalars and collections, starting
with a type symbol.

62 Gekko 3.0 user manual

T-T Analyse

Note that if you want to compose a scalar or collection name using a cname, you must

use parentheses. For instance, %(a%b) designates a scalar name, where the name

itself (excluding the %) is a%b. But in general it is much clearer to use the equivalent

name version %a{%b} instead of the cname version %(a%b). Note that %a%b is not legal

syntax, since it would be too confusing.

A varname can reside in any databank (or MAP), and a bankvarname is hence

designated as follows:

So either there is no bankname, else a colon (:) is used, or @ can be used to imply

the reference databank.

Indexing can be done with either []-brackets, or with a dot (.). You can use .. to

designate a sequence inside the []-brackets.

63Gekko syntax basics

T-T Analyse

The dot (.) is used in three ways. The expression #m.x picks out the series x from the

map #m (alternatively, #m['x'] does the same thing). The expression x.f(a) is

equivalent to f(x, a), because Gekko implements UFCS. Finally, an expression like

x.1 is equivalent to x[-1], that is, lagging one period.

The function syntax is completely standard:

Lists are defined in the following way:

Maps are defined in the following way:

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

64 Gekko 3.0 user manual

T-T Analyse

Matrices are defined in the following way:

A logical statement:

The keyword in checks if the first expr is a member of the second expr.

Dollar-conditionals:

65Gekko syntax basics

T-T Analyse

Note that parentheses are always used, and membership uses the in keyword. A

GAMS expression like x(i) $ i0(i) is thus translated into x[#i] $ (#i in #i0).

Using x[#i] $ #i0[#i] or x[#i] $ (#i0[#i]) will not work. See the "Details"

section of this page for an explanation.

Part III

67Gekko commands

T-T Analyse

3 Gekko commands

This chapter describes in detail the purpose of the different Gekko commands, the
syntax to be used, the results produced, together with examples etc. Please select a
command on the menu at the left.

Regarding general syntax, the reader may consult the short chapter on this here.

Apart from the command sections, the chapter contains an overview:

· Command overview. The commands are listed by category, and you may choose to
see MODE-specific versions of the this list: sim-mode or data-mode. See the
chapter 'Gekko commands' for an alphabetical list of commands, and the functions
section to see functions.

68 Gekko 3.0 user manual

T-T Analyse

3.1 Reading guide

The subjects in the chapter "Gekko commands" follow a general pattern similar to
layout below. Regarding general syntax, you may read a short description here.

Introduction A brief description of the command.

Syntax The general syntax for the command. Many of the commands can
use arguments or options.

The following conventions are used in the description of the
syntax:

· Commands are in capital letters (for instance: PRT).
· Predifined keywords are in capital letters (for instance: ROWS,

or ROWS=yesno)
· Elements that are defined elsewhere in the syntax definition

are in italics (for instance: period).

Many commands accept a period argument. When using the
period argument, the command will only be performed for the
local time period, for instance

COMMAND < period > ... ; //for instance SIM
<2015 2020>

Example The examples serve to illustrate the typical or common uses of
the command.

Note The notes concerns exceptions to the command and any specific
features of the command. These notes may also include
comparisons to other commands.

Related options A list of related options.

Related
commands

A list of commands with similar functions, or other commands
typically used together with the specific command

69Gekko commands

T-T Analyse

3.2 Command overview

Note: You may consult the specialized overviews regarding sim- and data-modes
here:
· Sim-mode commands overview
· Data-mode commands overview.

Introduction

Below, all Gekko commands are listed, grouped together by functionality (regarding
functions, see the chapter on these: 'Gekko functions'). Before delving into the
particular commands etc., you may prefer reading some introductory guides:

· Setup
· Basic concepts
· Guided tour

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference, baseline bank). There are the following commands related to
databanks:

READ Reads a databank file (typically gbk) into the first-position and
reference databanks.

WRITE Writes the first-position databank to a gbk file
IMPORT Merges a databank file (typically non-gbk) into the first-position

databank
EXPORT Writes the first-position databank to a non-gbk file
OPEN Opens a databank file (typically gbk). May use OPEN<edit> or

OPEN<ref>.
CLOSE Closes 'named' databanks (cf. OPEN)
CLONE Makes the reference databank an exact copy of the first-position

databank.
DOWNLOAD Retrieves timeseries from a web-based database
COPY Copies timeseries between banks (or inside the first-position

databank)
RENAME Renames timeseries.
INDEX Uses wildcards to search for timeseries in databanks.
COUNT Uses wildcards to count timeseries in databanks.
COMPARE Finds differences between the first-position and reference

databanks.
FINDMISSINGDA
TA

This command finds timeseries with missing values.

HDG Inserts a heading (description) into a gbk databank
UNLOCK Sets a databank editable
LOCK Sets a databank non-editable

Timeseries

70 Gekko 3.0 user manual

T-T Analyse

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly or undated.

TIME Sets global time for timeseries operations.
TIMEFILTER Omits or averages certain periods in output
CREATE Create a new timeseries
DELETE Delete an existing timeseries
SERIES Transform a timeseries using mathematical expressions or data

values
COLLAPSE Convert e.g. quarterly timeseries into annual timeseries etc.
INTERPOLATE Convert e.g. annual timeseries into quarterly timeseries etc.
SMOOTH Fills in missing values in a timeseries
SPLICE Splices two timeseries into one.
REBASE Calculates an index series
TRUNCATE Removes observations in a timeseries outside the stated sample.
ANALYZE Computes cross-correlations etc.
DOC Change meta information (label, source and date stamp)

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the command file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists
DATE Scalar variable of date type
STRING Scalar variable of string type
VAL Scalar variable of value type
MATRIX Define a matrix
MEM Shows a list of scalar variables and their values

Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP command also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference ('Ref')
databank, for instance @gdp. Or else use colon to indicate a databank, for instance
mybank:gdp.

PRT Prints timeseries or expressions in different ways
MULPRT Prints multipliers: differences between the first-position and

reference databanks.
DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)
SHEET Like PRT, but shows timeseries data in Excel
CLIP Like PRT, but puts timeseries data on the Windows clipboard
DECOMP Opens up the decomposition window
TELL Prints text strings on the screen

71Gekko commands

T-T Analyse

Model

A model can be loaded directly from a .frm file. After the model is loaded, a number
of commands can be used:

MODEL Load, parse and compile a model from file.
SIM Simulates the model (also if there are goals/means)
ENDO Endogenize variables (means)
EXO Exogenize variables (goals)
UNFIX Removes ENDO/EXO goals/means.
CHECKOFF Skip convergence check for chosen variables (Gauss)
ITERSHOW Show iterations in detail for chosen variable (Gauss)
SIGN For signing models with signatures.

Command files

Larger tasks can be run by means of command files (.gcm). There are the following
commands related to such files:

RUN Runs a .gcm command file. Use the EDIT command to edit these
files.

PIPE Direct output to an external file instead of screen
INI Runs gekko.ini if located in the program and/or working folder

Functions/procedures

You may use user-defined functions or procedures to avoid repetitive tasks and
encapsulate functionality.

FUNCTION Defines a user-defined function.
PROCEDURE Defines a user-defined procedure.

Cleanup

The principal cleanup-command is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.
CLEAR Clearing databanks
CLS Clears main window (short for 'clear screen')
CUT Closes all PLOT and DECOMP windows

Control flow

72 Gekko 3.0 user manual

T-T Analyse

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software
matures.

FOR For-loop over lists/strings, values or dates, parallel loops are
possible.

IF Conditional statement (IF-ELSE-END).
END Ends loop (FOR), conditional statement (IF) or

FUNCTION/PROCEDURE.
RETURN Returns from the command file or function defintion.
STOP Stops execution completely.
EXIT Stops execution completely, and terminates Gekko.
ACCEPT Input data interactively
PAUSE Waiting for the user to click [Enter]
GOTO Transfers execution to the corresponding TARGET
TARGET Receives execution from the corresponding GOTO

Tables/menus

TABLE Prints out a predefined table (xml)
MENU Opens up a menu (html)

Econometrics

OLS Single-equation linear regression

R integration

R_FILE Starts a R session, with a particular R file as starting point
R_EXPORT Decorates the R file with matrices from Gekko
R_RUN Runs the decorated R file, and returns matrices back to Gekko

Miscellaneous

The following commands did not fall into the above categories, and so are gathered
here:

MODE Set Gekko mode to sim/data/mixed
HELP Access the help system
OPTION Sets different options
EDIT Edit a file via Notepad
XEDIT Edit a xml file via XML Notepad.
SYS Access the system shell if needed
TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

73Gekko commands

T-T Analyse

74 Gekko 3.0 user manual

T-T Analyse

3.2.1 Sim-mode command overview

Note: You may consult the general overview regarding all commands here:
· General command overview

Introduction

Sim-mode (cf. MODE) is focused on solving models, comparing scenarios etc. Below,
the different Gekko simulation related commands are listed, grouped together by
functionality (regarding functions, see the chapter on these: 'Gekko functions'). The
commands listed below are the core commands regarding model simulation.

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference bank). There are the following commands related to databanks:

READ Reads a databank file (typically gbk) into the first-position and
reference databanks.

WRITE Writes the first-position databank to a gbk file
IMPORT Merges a databank file (typically non-gbk) into the first-position

databank
EXPORT Writes the first-position databank to a non-gbk file
CLONE Makes the reference databank an exact copy of the first-position

databank.
COMPARE Finds differences between the first-position and reference

databanks.
FINDMISSINGDA
TA

This command finds timeseries with missing values.

HDG Inserts a heading (description) into a gbk databank

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly or undated.

TIME Sets global time for timeseries operations.
TIMEFILTER Omits or averages certain periods in output
CREATE Create a new timeseries
DELETE Delete an existing timeseries
SERIES Transform a timeseries using mathematical expressions or data

values

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the command file easier to read). In addition, scalar variables like
strings, dates and values can be used.

75Gekko commands

T-T Analyse

LIST Create and delete lists
DATE Scalar variable of date type
STRING Scalar variable of string type
VAL Scalar variable of value type
MEM Shows a list of scalar variables and their values

Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP command also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference
(baseline) databank, for instance @gdp. Or else use colon to indicate a databank, for
instance mybank:gdp.

PRT Prints timeseries or expressions in different ways
MULPRT Prints multipliers: differences between the first-position and

reference databanks.
DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)
SHEET Like PRT, but shows timeseries data in Excel
CLIP Like PRT, but puts timeseries data on the Windows clipboard
DECOMP Opens up the decomposition window
TELL Prints text strings on the screen

Model

A model can be loaded directly from a .frm file. After the model is loaded, a number
of commands can be used:

MODEL Load, parse and compile a model from file.
SIM Simulates the model (also if there are goals/means)
ENDO Endogenize variables (means)
EXO Exogenize variables (goals)
UNFIX Removes ENDO/EXO goals/means.
CHECKOFF Skip convergence check for chosen variables (Gauss)
ITERSHOW Show iterations in detail for chosen variable (Gauss)
SIGN For signing models with signatures.

Command files

Larger tasks can be run by means of command files (.gcm). There are the following
commands related to such files:

RUN Runs a .gcm command file. Use the EDIT command to edit these
files.

PIPE Direct output to an external file instead of screen
INI Runs gekko.ini if located in the program and/or working folder

76 Gekko 3.0 user manual

T-T Analyse

Cleanup

The principal cleanup-command is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.
CLEAR Clearing databanks
CLS Clears main window (short for 'clear screen')
CUT Closes all PLOT or DECOMP windows

Control flow

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software
matures.

RETURN Returns from the command file.
STOP Stops execution completely.
EXIT Stops execution completely, and terminates Gekko.
ACCEPT Input data interactively
PAUSE Waiting for the user to click [Enter]

Tables/menus

TABLE Prints out a predefined table (xml)
MENU Opens up a menu (html)

Miscellaneous

The following commands did not fall into the above categories, and so are gathered
here:

MODE Set Gekko mode to sim/data/mixed
HELP Access the help system
OPTION Sets different options
EDIT Edit a file via Notepad
XEDIT Edit a xml file via XML Notepad.
SYS Access the system shell if needed
TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

77Gekko commands

T-T Analyse

3.2.2 Data-mode command overview

Note: You may consult the general overview regarding all commands here:
· General command overview

Introduction

Data-mode (cf. MODE) is focused on databanks, handling of timeseries, data revision
and similar purposes. Below, the different Gekko data related commands are listed,
grouped together by functionality (regarding functions, see the chapter on these:
'Gekko functions'). The commands listed below are the core commands regarding data
handling.

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference bank). There are the following commands related to databanks:

IMPORT Merges a databank file (typically non-gbk) into the first-position
databank

EXPORT Writes the first-position databank to a non-gbk file
OPEN Opens a databank file (typically gbk). May use OPEN<edit> or

OPEN<ref>.
CLOSE Closes 'named' databanks (cf. OPEN)
DOWNLOAD Retrieves timeseries from a web-based database
COPY Copies timeseries between banks (or inside the first-position

databank)
RENAME Renames timeseries.
INDEX Uses wildcards to search for timeseries in databanks.
COUNT Uses wildcards to count timeseries in databanks.
UNLOCK Sets a databank editable
LOCK Sets a databank non-editable

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly or undated.

TIME Sets global time for timeseries operations.
DELETE Delete an existing timeseries
SERIES Transform a timeseries using mathematical expressions or data

values
COLLAPSE Convert e.g. quarterly timeseries into annual timeseries etc.
INTERPOLATE Convert e.g. annual timeseries into quarterly timeseries etc.

SMOOTH Fills in missing values in a timeseries
SPLICE Splices two timeseries into one.
REBASE Calculates an index series
TRUNCATE Removes observations in a timeseries outside the stated sample.
ANALYZE Computes cross-correlations etc.

78 Gekko 3.0 user manual

T-T Analyse

DOC Change meta information (label, source and date stamp)

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the command file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists
DATE Scalar variable of date type
STRING Scalar variable of string type
VAL Scalar variable of value type
MATRIX Define a matrix
MEM Shows a list of scalar variables and their values

Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP command also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference
databank, for instance @gdp. Or else use colon to indicate a databank, for instance
mybank:gdp.

PRT Prints timeseries or expressions in different ways
DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)
SHEET Like PRT, but shows timeseries data in Excel
CLIP Like PRT, but puts timeseries data on the Windows clipboard
TELL Prints text strings on the screen

Command files

Larger tasks can be run by means of command files (.gcm). There are the following
commands related to such files:

RUN Runs a .gcm command file. Use the EDIT command to edit these
files.

PIPE Direct output to an external file instead of screen
INI Runs gekko.ini if located in the program and/or working folder

Functions/procedures

You may use user-defined functions or procedures to avoid repetitive tasks and
encapsulate functionality.

FUNCTION Defines a user-defined function.
PROCEDURE Defines a user-defined procedure.

79Gekko commands

T-T Analyse

Cleanup

The principal cleanup-command is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.
CLEAR Clearing databanks
CLS Clears main window (short for 'clear screen')
CUT Closes all PLOT or DECOMP windows

Control flow

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software
matures.

FOR For-loop over lists/strings, values or dates, parallel loops are
possible.

IF Conditional statement (IF-ELSE-END).
END Ends loop (FOR), conditional statement (IF) or

FUNCTION/PROCEDURE.
RETURN Returns from the command file or function defintion.
STOP Stops execution completely.
EXIT Stops execution completely, and terminates Gekko.
ACCEPT Input data interactively
PAUSE Waiting for the user to click [Enter]
GOTO Transfers execution to the corresponding TARGET
TARGET Receives execution from the corresponding GOTO

Tables/menus

TABLE Prints out a predefined table (xml)
MENU Opens up a menu (html)

Econometrics

OLS Single-equation linear regression

R integration

R_FILE Starts a R session, with a particular R file as starting point
R_EXPORT Decorates the R file with matrices from Gekko
R_RUN Runs the decorated R file, and returns matrices back to Gekko

80 Gekko 3.0 user manual

T-T Analyse

Miscellaneous

The following commands did not fall into the above categories, and so are gathered
here:

MODE Set Gekko mode to sim/data/mixed
HELP Access the help system
OPTION Sets different options
EDIT Edit a file via Notepad
XEDIT Edit a xml file via XML Notepad.
SYS Access the system shell if needed
TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

81Gekko commands

T-T Analyse

3.3 ACCEPT

ACCEPT is used to input data to Gekko, during a session. See also PAUSE.

Syntax

ACCEPT type variable message;

type Choose between val, date or string. For string type, you do not
need to enclose the input in quotes.

variable The name of the variable

message Text string to be displayed (please remember single quotes).
You can use '\n' to insert a new line.

Examples

The command may contain text inside single quotes:

ACCEPT string %n 'Variable name';
ACCEPT string %s 'Label';
ACCEPT date %d 'Date';
ACCEPT val %v 'Value';
CREATE {%n}; //if it does not exist
DOC {%n} label = %s;
SERIES {%n}[%d] = %v;
DISP <%d-1 %d+1> {%n};

The four ACCEPT-input might be the following:

'Input variable name' --> vat
'Input label --> Value added tax
'Input date' --> 2016
'Input value' --> 0.25

This will create the series vat, with the label 'Value added tax', and the value 0.25 in

2016.

If you need to accept list items, you may accept them as a comma-separated string,
and afterwards use the split() function to split the string into a list of strings.

82 Gekko 3.0 user manual

T-T Analyse

Related commands

RETURN, STOP, EXIT, PAUSE

83Gekko commands

T-T Analyse

3.4 ANALYZE

ANALYZE calculates statistics on timeseries (mean, standard deviation, etc), including
correlation coefficients between the variables.

For each variable (expression), Gekko prints out mean, standard deviation, and min
and max values. In addition, cross-correlations are computed, and put into the matrix
#corr.

Syntax

ANALYZE <period> variables;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

variables A list of variables (timeseries expressions)

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable without databank indication is not found in the first-position databank,
Gekko will look for it in other open databanks if databank search is active (cf.
MODE).

Examples

Analyze the growth rate of the three variables x, y, z:

ANALYZE <1980 2015> pch(x), pch(y), pch(z);

Note

The cross-correlations are computed as Pearson product-moment correlation
coefficients.

If you square the cross-correlation matrix (multiply(#corr, #corr)), these squared

values correspond to the R2 value you obtain by pairwise linear regression between
the variables, for instance OLS x2 = x1;.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

84 Gekko 3.0 user manual

T-T Analyse

Related commands

OLS

85Gekko commands

T-T Analyse

3.5 BLOCK

A BLOCK structure is used to set the time period and/or other options temporarily. A
block can for instance be used inside a function or procedure definition, where the
time period, frequency or other options may be changed, but where these changes
should be undone after leaving the function/procedure. A block could be used
together with LOCAL variables to avoid changing the state of the program when
calling a function/procedure.

Using a BLOCK series dyn = yes; ... ; END; is the only way to set the <dyn>

option on several expressions at the same time. This is because OPTION series dyn

should only be used when really needed, that is, for expressions like x = x[-1] + 1;

and similar. So using the option together with a BLOCK makes sure the option is
turned off again.

Syntax

BLOCK period, option1, option2, ...;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

The period must be first in the list of BLOCK options, and must
include the TIME keyword, for instance BLOCK time 2020
2030; ... ; END;

option A list of option settings (OPTION statements, without the 'OPTION'
keyword).

Examples

The following is an example of nested blocks that set the time period

TIME 2001 2003;
BLOCK time 2011 2013;
 y1 = 100; //y1: 2011-13
 BLOCK time 2021 2023;
 y2 = 100; //y2: 2021-23
 END;
 y3 = 100; //y3: 2011-13
 END;
y4 = 100; //y4: 2001-2003

86 Gekko 3.0 user manual

T-T Analyse

This is an example of setting two options for printing (corresponding to OPTION print

fields ndec = 1; OPTION print fields pdec = 1;).

TIME 2001 2003;
y1 = 1.17; y1 <2002 2003> %= 1.27, 1.37;
BLOCK print fields ndec = 1, print fields pdec = 1;
 PRT y1; //printed with 1 decimal
END;
PRT y1; //printed with default decimals

// Result:
// y1 %
// 2001 1.2 M
// 2002 1.2 1.3
// 2003 1.2 1.4
//
// y1 %
// 2001 1.1700 M
// 2002 1.1849 1.27
// 2003 1.2011 1.37

Note

BLOCK can also be used to change frequency temporarily, for instance TIME 2021

2023; BLOCK time 2021q1 2023q4, freq = q; y = 100; END;. This will create the

quarterly series y!q defined over 2001q1-2023q4. After the commands have been

run, the time period will be back to annual 2021-23.

You can use any OPTION setting together with BLOCK, just omit the 'OPTION'
keyword, and separate options with commas.

Related commands

LOCAL, OPTION, TIME

87Gekko commands

T-T Analyse

3.6 CHECKOFF

The command puts variables on an ignore-list, so that they do not influence
convergence using Gauss-Seidel iterations.

Syntax

CHECKOFF ;
CHECKOFF variables ;
CHECKOFF ? ;

[empty] If no variables are stated, i.e. a CHECKOFF without arguments,
the list of non-checked variables is cleared.

variables Variable names or list

? Prints the list of currently ignored variables concerning
convergence in Gauss-Seidel method.

Example

CHECKOFF accepts variable names or lists (including wildcards), for instance:

CHECKOFF x;
CHECKOFF {#m}; //where #m is a list of names (strings)

Currrently ignored variables can be seen with

CHECKOFF ?;

There is no CHECKON command. The CHECKOFF command is non-additive (like the
ENDO and EXO commands). To eliminate a CHECKOFF-variable, just remove it from
the list given to the CHECKOFF command. To clear the CHECKOFF-list, issue a
CHECKOFF command with no arguments. An alternative to this is setting "OPTION
solve gauss conv ignorevars = no". In that case the list will be ignored.

Note

In order for this command to work, "OPTION solve gauss conv ignorevars" must be
set to 'yes' (which is its default value).

88 Gekko 3.0 user manual

T-T Analyse

CHECKOFF is also the related to the ITERSHOW command. Sometimes a particular
variable, or a type of variables, may postpone the convergence of the Gauss-Seidel
algorithm. To avoid that, such variables may be put on the CHECKOFF list, and they
will be ignored regarding convergence check.

Related commands

SIM, OPTION, ITERSHOW

89Gekko commands

T-T Analyse

3.7 CLEAR

The CLEAR command is used to clear databanks in memory (that is, delete all
variables inside the databanks).

Syntax

CLEAR ;
CLEAR databank ;
CLEAR <FIRST REF> ;

databank The name of the databank (click F2 to see the list of databanks
-- note that the Ref databanks does not show up in the F2
window if it is empty).

FIRST Clears the first-position databank

REF Clears the reference databank

Examples (clearing databanks)

To clear a particular databank, use:

CLEAR mybank;

In particular, you may clear the Work and/or Ref databanks like this:

CLEAR work;
CLEAR ref;

To clear both the first-position and reference databanks, use CLEAR without
arguments:

CLEAR;

Alternatively, there are these local options:

CLEAR<first>;

Clears the first-position databank (which is often 'Work'), whereas

90 Gekko 3.0 user manual

T-T Analyse

CLEAR<ref>;

Clears the reference databank (which is always 'Ref').

Note

To delete individual variables, see the DELETE command. To clear the entire
workspace, see the RESET and RESTART commands.

Since user functions, procedures or models do not live in databanks, CLEAR does not
clear these. Use RESET/RESTART to that end. Also, CLEAR without arguments does
not clear the local or global databanks.

Related commands

DELETE, RESET, RESTART

91Gekko commands

T-T Analyse

3.8 CLIP

CLIP has the same syntax and functionality as SHEET, so please see this command.

Instead of sending the result to Excel as SHEET does, CLIP sends the result to the
clipboard. Thus, the cells can be pasted into any spreadsheet (or other applications)
accepting tab-delimited cells from the clipboard. Formatting of the cells is lost in
comparison with SHEET, but otherwise the cells are the same. The loss of formatting
may even be considered a benefit in some cases, for instance when pasting cells into
different locations in the same spreadsheet.

The functionality is very similar to the 'Copy' button in the Gekko user interface. This
button copies the last PRT/MULPRT or table to the clipboard (as tab-delimited cells).

CLIP uses the same internal component as PRT, so regarding operators and other
details, also see the PRT help page.

Syntax

Please see the SHEET command regarding syntax.

Note

The decimal separator used when copying to the clipboard can be changed by means
of the option shown below. (This option will also apply to the 'Copy' button).

Related options

OPTION interface excel decimalseparator = [comma|period].

Related commands

SHEET, PRT, PLOT

92 Gekko 3.0 user manual

T-T Analyse

3.9 CLONE

The CLONE command copies the first-position databank into the (cleared) reference
databank. After this, all variables in the two banks are identical, and all MULPRT,
PLOT<m>, COMPARE, etc. will show no differences.

Syntax

CLONE;

Example

You may use the CLONE command in the following way:

MODEL m;
READ data;
TIME 2015 2050;
SIM;
CLONE;
SERIES vat += 0.01;
SIM;
MULPRT gdp;

The CLONE statement makes sure that the first-position and reference databanks are
identical after the model is simulated for the first time. Hence, the differences (the
'multiplier') regarding the two scenarios can be printed with MULPRT command.

Note

The READ command always creates the reference databank as an exact copy of the
first-position databank after reading. You may use READ<first> or READ<ref> to
read data into the first-position or reference databank exclusively. The READ
command is equivalent to READ<first> followed by CLONE.

Related commands

READ, OPEN, MODEL, MULPRT, SIM, DECOMP

93Gekko commands

T-T Analyse

3.10 CLOSE

The CLOSE command is used to close databanks in memory.

If the contents of the databank have been altered, these changes are written back til
the databank file. This is often used in combination with OPEN <edit> databank;,

where the changes are later on saved to disk after a CLOSE databank;.

Syntax

CLOSE <SAVE=...> databanks;

SAVE= With CLOSE <save=no>, Gekko will not write the databank to

file, even if the databank contents has changed. See also OPEN

<save=no>.

databanks The databank(s) to be closed. A star (*) indicates all open

databanks opened by means of the OPEN command. You may
provide a list of banks like CLOSE db1, db2;

Example

Use this syntax to close a databank:

CLOSE mybank;

Closes databank 'mybank' (that has been opened by means of "OPEN mybank;" and
writes any changes to the databank back to the databank file).

CLOSE *;

Closes all databanks opened by means of the OPEN command (and writes any
changes to the databanks back to their databank files). After this, the Work databank
will be in first position (Work cannot be closed).

Closing of more than one databank (separate with commas):

CLOSE db1, db2;

94 Gekko 3.0 user manual

T-T Analyse

Note

CLOSE cannot close Work or Ref databanks, and neither the local or global
databanks. See the closely related OPEN command.

Related commands

OPEN, CLEAR, DELETE

95Gekko commands

T-T Analyse

3.11 CLS

CLS clears the output window.

Syntax

CLS;

Example

The RESTART (or RESET) statement will not clear the output window (but clears
everything else in the workspace), so you may use CLS before (or after) your
RESTART statement:

CLS; CUT; RESTART;

This clears the output window, closes any plot or decomp windows, and restarts
Gekko.

Related commands

CLEAR, RESTART, RESET, CUT

96 Gekko 3.0 user manual

T-T Analyse

3.12 COLLAPSE

COLLAPSE transform one higher-frequency timeseries to a lower-frequency
timeseries, for instance converting quarterly data to annual data. Use INTERPOLATE
to do the inverse transformation.

Syntax

COLLAPSE lf = hf method;

lf Lower frequency timeseries. Frequency can be indicated with
suffix !a, !q or !m. Banknames may be used.

hf Higher-frequencey timeseries. Frequency can be indicated with
suffix !a, !q or !m. Banknames may be used.

method (Optional). Choose between:

· total: The higher-freq observations are summed.
· avg: The higher-freq observations are averaged.
· first: The first higher-freq observation is used.
· last: The last higher-freq observation is used.

Note: default is 'total'.

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).

Example

Use this to convert frequency:

COLLAPSE fY!a = fY!q;

Since the method is 'total' as default, this will create the annual timeseries fY!a

where each annual observation is the sum of the corresponding quarters in fY!q.

COLLAPSE fY!a = qbank:fY!q first;

With option 'first', the first quarter of each year would be used instead of summing
the quarters. Here, the variable is taken from the databank qbank.

97Gekko commands

T-T Analyse

Note

If a frequency indicator is omitted, Gekko will use the current frequency.

You can also use PRT<collapse> to get similar transformations in prints.

See also IMPORT<collapse> regarding higher frequencies than quarters.

Related commands

INTERPOLATE, SERIES, CREATE, PRT

98 Gekko 3.0 user manual

T-T Analyse

3.13 COMPARE

COMPARE compares variables in the first-position and reference databanks. The
comparison is only done for timeseries of the same frequency as the global frequency
setting. The comparison is done over the given period (or the global period if a period
is not provided), and the user may provide a list of variables that are checked (if no
list is given, all variables are checked).

COMPARE will per default put the output in the file compare_databanks.txt (this
filename can be changed). You may set thresholds regarding absolute or relative
differences (options ABS, REL and PCH), and you may dump a list #dif with the

different series names (cf. DUMP).

The COMPARE command is an upgraded version of the same command in Gekko 2.4
and earlier. The Gekko 3.0 command fully replaces and improves the menu item
'Utilities' --> 'Compare two databanks...' in the Gekko user interface.

Syntax

COMPARE < period ABS=... DUMP REL=... SORT=... PCH=... > variables
 FILE=... ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

ABS= Absolute differences smaller than the value are not shown, for instance
<abs = 150>.

DUMP If this option is set, a list #dif will be constructed, containing the list of

different timeseries.

REL= Relative differences smaller than the value are not shown, for instance
<rel = 0.01> equivalent to 1%. You may alternatively use PCH for the
same purpose.

SORT= Choose between alpha (default), abs or rel. The first sorts
alphabetically (which is default), the next sorts after absolute
differences, and the last sorts after relative differences. The sorting
and the use of ABS=, REL=, and PCH= are independent of each other.

PCH= Percentage differences smaller than the value are not shown, for
instance <rel = 1.0> corresponding to 1%. You may alternatively use
REL for the same purpose.

99Gekko commands

T-T Analyse

variabl
es

A list of variable names. If no variables are given, the full databanks is
compared. The names are separated by comma (like x, y, z), and a

list #x of names should be used with {}-braces: {#x}. Regarding array-

series, you may either indicate the name of the array-series itself (x),

in which case all sub-series are checked, or you may state individual
elements (like x[a, k]).

FILE= Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk, or

be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Example

Compare all variables for the global period, or a given period:

COMPARE; //global period
COMPARE <2010 2020>; //for this given period

Do the same, with a user-chosen filename:

COMPARE <2010 2020> file=dif.txt;

Sort the result by relative differences:

COMPARE <sort=rel>;

Only compare series names from the list #x:

#x = x1, x2, x3;
COMPARE <2010 2020> {#x};
COMPARE <2010 2020> x1, x2, x3; //same as above

Do not show relative differences smaller than 0.02 (that is, 2%):

COMPARE <2010 2020 rel=0.02>;

You may 'dump' a list #dif containing the names of the timeseries that are different:

100 Gekko 3.0 user manual

T-T Analyse

COMPARE <dump>;
PLOT <q> {#dif}; //plots the percentage differences

Array-series are supported, consider this example:

reset;
time 2001 2002;
xx = series(2);
xx[a, x] = 100, 100;
xx[b, x] = 200, 200;
xx[a, y] = 300, 300;
xx[b, y] = 400, 400;
yy = series(1);
yy[i] = 1000, 1000;
#m1 = a, b;
#m2 = list('a'); //the easiest way to state a 1-element list
clone;
xx[b, y] = 400.4, 402;
yy[i] = 1000.2, 1004;
yy[j] = 2000;
compare <dump sort = rel>;
plot <q> {#dif};
prt #dif; //print out the names of the different timeseries as a
flat list.
compare xx[b, y]; //comparing only this particular element.

The file compare_databanks.txt will contain the following output:

Comparing first-position and reference databanks

There are the following 5 series in both banks:
xx[a, x], xx[a, y], xx[b, x], xx[b, y], yy[i]

There are the following 1 series in the first-position databank, but not
in Ref databank:
yy[j]

There are the following 0 series in the Ref databank, but not in the
first-position databank:
[none]

Out of the 5 common series, there are differences regarding 2 of them:

xx[b, y] WORK REFERENCE ABS DIFF % DIFF
 max = 0.50

2001 400.4000 400.0000 0.4000 0.10
2002 402.0000 400.0000 2.0000 0.50

yy[i] WORK REFERENCE ABS DIFF % DIFF
 max = 0.40

2001 1000.2000 1000.0000 0.2000 0.02
2002 1004.0000 1000.0000 4.0000 0.40

101Gekko commands

T-T Analyse

At the right of each comparison, the value that is sorted after is shown ('max') --
largest differences are shown first. In this case, max = 0.50 means that the maximal
percentage difference is 0.50% (in 2002) for the array-series xx[b, y].

Note

Note: local option <rel> and <pch> cannot be used at the same time. If <abs> and
<rel>/<pch> are used at the same time, series with differences less than the abs or
rel/pch criterion are not shown.

This functionality was previously only accessible from the Gekko menu, but is now
command-driven.

Related commands

MULPRT, PRT

102 Gekko 3.0 user manual

T-T Analyse

3.14 COPY

The command is used to copy variables, either inside a databank, or between
databanks.

Note that 'naked' wildcards are allowed in this command, so you may for instance use
the shorter a*b instead of {'a*b'}.

Syntax

COPY < period RESPECT FROMBANK=... TOBANK=... ERROR=... PRINT >
 names1 TO names2;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

RESPECT (Optional). With this option, if no period is given, the global period
is used.

FROMBAN
K=

(Optional). A databank name from where the list of timeseries are
copied from.

TOBANK= (Optional). A databank name to where the list of timeseries are
copied to. You may optionally use AS instead of TO.

ERROR= (Optional). With COPY<error=no>, Gekko will try to copy the items,
but will not fail with an error if some of the items cannot be found.

PRINT (Optional). With this option set, Gekko will print a list of which
variables are copied to where, but without actually copying
anything. The option can be practical for debugging.

names1 Variablename(s) or list(s) (wild-cards are allowed). You may
prepend a databank name as bank:variable.

TO (Optional). The TO part of the COPY command is optional. If
omitted, the variables will be copied to the first-position databank
(with the same names).

names2 (Optional). A corresponding list with the new names. You may
prepend a databank name as bank:variable (or use bank:* to keep
the same names).

· If no period is given inside the <...> angle brackets, no time period is used.
· If a variable is stated without databank, the databank is assumed to be the first-

position databank.

103Gekko commands

T-T Analyse

If the RESPECT option is active, and the new name exists as a timeseries beforehand,
it is only the observations inside the local time period that are copied into the
existing timeseries (and not any meta-information like labels, etc.).

Examples

Inside the first-position databank

To copy items inside the first-position databank, consider the following examples:

RESET;
a1 = 1; b1 = 2; c1 = 3;
COPY a1 TO a2;
COPY a1, b1, c1 TO a2, b2, c2;
#list1 = a1, b1, c1;
#list2 = a2, b2, c2;
COPY {#list1} TO {#list2}; //note that "COPY #list1 TO
#list2;" would copy the list itself

If you use the RESPECT option, only the observations inside the global time period
are used. For instance:

COPY <respect> a1 TO a2;

Else

COPY <2010 2020> a1 TO a2;

will copy observations belonging to that particular period.

Note that a list inside {}-curlies auto-expands if there is a name part before of after
the {}, so that the example could have been done like this instead:

RESET;
#m = a, b, c; //or: #m = ('a', 'b', 'c');
a1 = 1; b1 = 2; c1 = 3;
COPY {#m}1 TO {#m}2; //a1, b1, c1 to a2, b2, c2

From other databanks to the first-position databank

In these cases, you typically omit the TO keyword, if you are preserving the same
names.

104 Gekko 3.0 user manual

T-T Analyse

You may copy timeseries from other databanks (either the reference databank, or
databanks opened with the OPEN command), by using a colon:

COPY mybank:a1, mybank:a2;

This will copy the two variables a1 and a2 from the databank mybank to the first-

position databank (with the same names). For several items, using a list may be
easier:

#m = a1, a2;
COPY mybank:{#m}; //note that "COPY mybank:#m;" will try to
find a list #m in mybank

where #m is a list with the timeseries names. Or alternatively, you may use the

<from=...> option:

COPY <frombank=mybank> a1, a2; //this works too: COPY
<frombank=mybank> {#m};

If you are copying from the reference databank into the first-position databank, you
may use this:

COPY @{#m};

Between arbitrary databanks

In this case, the frombank= and tobank= options can be practical, for instance:

COPY <frombank=bank1 tobank=bank2> a1 TO a2;

This copies bank1:a1 to bank2:a2. You may use lists instead of these names. This will

do the same thing:

COPY bank1:a1 TO bank2:a2;

Or with lists:

COPY bank1:{#m1} TO bank2:{#m2};

105Gekko commands

T-T Analyse

where #m1 is the list of names to be copied, and #m2 is a list of the resulting names

(that is, a renaming list). If the names are the same, you can just use TO bank2:*.

Wildcards and ranges can be used, for instance:

COPY bank2:a* TO bank1:*;
COPY bank2:a1..bank2:a5 TO bank1:*;

The first command will copy all timeseries starting with a from bank2 to bank1 (you

could have used <frombank=... tobank=...> as well to denote the databanks. The

second line does the same thing, but only regarding the name range 'a1' to 'a5'.

Copying timeseries a1 from databank bank2 to the reference databank can be done

with:

COPY bank2:a1 TO @*; //or COPY bank2:a1 TO ref:*

Wildcards and ranges

It is often practical to use wildcards to copy items. You may for instance copy all the
items starting with 'fx' from the open bank mybank to the first-position databank with

this command:

COPY mybank1:fx*;
COPY mybank1:f?a; //single character wildcard
COPY mybank1:pxa..mybank1:pxqz; //a range of names

You may copy an entire databank into the first-position databank like this:

COPY mybank1:**; //double star matches all variable types and all
frequencies

If you for instance need to replace all the variables in the first-position databank with
the variables in the reference databank, you may use this:

CLEAR<first>;
COPY @**; //or "COPY ref:**"

Regarding syntax rules of wildcards, see more in the INDEX section. See also the
wildcards page.

Note

106 Gekko 3.0 user manual

T-T Analyse

If you use the 'from=' or 'to=' options together with explicit databank indicators
(colon), the explicit databank indicators will override the 'from=' or 'to=' options.

If preferred, you may use COPY ... AS ... instead of COPY ... TO

Related commands

CLONE, RENAME, INDEX, DELETE

107Gekko commands

T-T Analyse

3.15 COUNT

The command is used to search for variables in databanks, using wildcards.

The COUNT command is essentially a compact INDEX comnand without the output.

Note that 'naked' wildcards are allowed in this command, so you may for instance use
the shorter a*b instead of {'a*b'}.

A wildcard like '*' does not match everything in Gekko: it only matches (in the first-
position databank) variables with no '%' and '#' symbols, and only matches the
current frequency. You may use the special wildcard '**' to match all variables in a
databank, or '***' to match all variables in all databanks.

Syntax

COUNT <BANK=... > type wildcards ;

BANK= (Optional). A databank name indicating where the variables are to
be located.

type (Optional). Restrict the type of variables.

wildcard The variables to be searched for. You may use banknames to indicate
a particular bank, and you may separate the wildcards with commas.
In general, wildcards are of the form a*x to find all variables starting
with 'a' and ending with 'x', or a?x to match only one character.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The following provides a list of all variables in all databanks:

COUNT ***; //all variables in all banks
COUNT *:**; //same as above
COUNT *:%*, *:#*, *:*!*; //same as above

Example

The following COUNT command will look for timeseries beginning with 'f' in the first-
position databank (and with the current frequency):

108 Gekko 3.0 user manual

T-T Analyse

RESET;
fa = 1; fb = 2; fc = 3;
COUNT f*; //result: 3

Note

See the INDEX command for more examples.

If you use variable names without wildcards or ranges, an existence check is
performed (count = 1 if it exists, 0 otherwise).

See also the second half of this page regarding wildcards, syntax, etc.

Related commands

LIST, INDEX

109Gekko commands

T-T Analyse

3.16 CUT

Closes any open PLOT or DECOMP windows.

This can also be done via the button 'Close all PLOT and DECOMP windows' in the
Gekko main window. When using this button, and if the Gekko main window is out of
focus, you may have to click the button two times (the first time brings the Gekko
main window back in focus).

Syntax

CUT;

Related commands

CLS, RESET, RESTART

110 Gekko 3.0 user manual

T-T Analyse

3.17 CREATE

This command creates a new series in the first-position databank. The series contains
no data, but can be used afterwards.

If you use Gekko in a data revision setting, consider using "MODE data;", where
options are set so that you avoid a lot of CREATE statements ("MODE data" will set
"OPTION databank create auto = yes;", "OPTION databank search = yes;", and
others).

Syntax

CREATE variables ;
CREATE ? ;

variables Variablename(s) or list(s) (wild-cards is allowed)

? Prints a list of all created variables

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The reason for CREATE in sim-mode is to avoid accidentally creating a new variable
because of misspelling etc. Imagine a model with exogenous variable b_vat = 0.25.
The user thinks that the variable name is just vat (which might be what the VAT was
called in an older version of the model). Without mandatory CREATE, setting vat =
0.26 will just create a new series that has no relation to the model, and hence does
not affect any endogenous variables. With mandatory CREATE, setting vat = 0.26 will
result in an error, and the user will hopefully discover that the proper name is b_vat.

There is an exception to the create rule: names beginning with 'xx' can always be
auto-created (useful for temporary series variables).

Examples

In sim-mode, variables cannot be created on the fly, for instance:

RESET;
MODE sim;
x = 100; //fails

Here, x cannot be auto-created. The following will work:

111Gekko commands

T-T Analyse

RESET;
MODE sim;
CREATE x;
x = 100; //ok

Series beginning with 'xx' are always auto-created.

Related options

OPTION databank create auto = no; [yes|no]
OPTION databank create message = yes; [yes|no]

Related commands

SERIES, DELETE

112 Gekko 3.0 user manual

T-T Analyse

3.18 DATE

The DATE command is used to assign a date to a scalar variable of date type. Date
names always start with the symbol '%', like the other scalar types val and string.
Using the DATE keyword is no longer mandatory in Gekko 3.0.

Dates are used in combination with series variables, setting the periods over which
these are calculated, printed, etc. See also the TIME command.

Syntax

%d = expression;
DATE %d = expression;
DATE ?; //print string scalars

It is no longer legal to use for instance DATE d = 2020;, omitting the '%'. As the

right-hand side, quarterly, monthly and undated dates are supported with 'q', 'm', and
'u' indicators, for instance 2020q4 or 2020m12.

Normally, the DATE keyword can be omitted, if the right-hand side is a date like for
instance 2020q4. But in the case %d = 2020;, %d will actually become a value. To

avoid that, you can use DATE %d = 2020;, %d = date(2020);, or %d = 2020a;

(2020a1 will work, too). In most cases, %d = 2020; should work fine though, since

Gekko can auto-convert integers into annual dates.

There are a number of in-built date functions to compose and extract dates.

Date combining functions

Function
name

Description Examples

date(d, f,
opt)

Converts the date d into a
new date with frequency f
(string), and option opt
(string). The option can be
'start' or 'end'.

When converting from a
higher frequency to a lower
frequency, the result does
not depend upon the option
opt.

Returns: date

%d = 2020q2;
PRT %d.date('m',
'start'); //2020m4
PRT %d.date('m',
'end'); //2020m6
PRT %d.date('a',
'start'); //2020
PRT %d.date('a',
'end'); //2020

date(y, f, Constructs a new quarterly %d = date(2020, 'q',

113Gekko commands

T-T Analyse

sub) or monthly date from y
(integer), frequency
(string), and subperiod
(integer).

Note: you may also use
date(x), where x can be a
value or a string, and
Gekko will try to convert
the argument into a date.

Returns: date

2); //2020q2

fromExcelDa
te(v)

Converts an Excel date (the
val v, counting the number

of days since January 1,
1900) to year, month and
day (hours etc. are not
converted). The year,
month and day are returned
as a map with the values %
y, %m, %d.

WARNING: this function will
soon return a Gekko date
instead. See also
toExcelDate(). [New in
3.0.7]

Returns: map.

See examples regarding the
toExcelDate() function.

getFreq(d) Extracts the frequency of a
date
Returns: string

%d = 2020q2;
PRT %d.getfreq(); //'q'

getMonth(d) Extracts the month number
from a date. More specific
than getSubPer(), and will
fail if the date is not
monthly.
Returns: val

%d = 2020m2;
PRT %d.getmonth(); //2

getQuarter(d
)

Extracts the quarter
number from a date. More
specific than getSubPer(),
and will fail if the date is
not quarterly.
Returns: val

%d = 2020q2;
PRT %d.getquarter(); //2

114 Gekko 3.0 user manual

T-T Analyse

getSubPer(d
)

Extracts the sub-period
from a date (1 if annual or
undated, the quarter if
quarterly, and the month if
monthly).
Returns: val

%d = 2020q2;
PRT %d.getsubper(); //2

getYear(d) Extracts the year from a
date.
Returns: val

%d = 2020q2;
PRT %d.getyear(); //2020

toExcelDate(
y, m, d)

Converts year, month and
day (integers) into an Excel
date (counting the number
of days since January 1,
1900). See also
fromExcelDate(). Excel
dates can be subtracted to
obtain days. [New in 3.0.7]

Returns: val.

%v1 = toExcelDate(2019, 11,
12);
%v2 = toExcelDate(2019, 12,
3);
PRT %v1, %v2; //43781 and
43802
PRT %v2 - %v1; //21 days in
between
#x = fromExcelDate(%v1 +
100);
//100 days from %v1: Feb. 20,
2020.
PRT #x.%y, #x.%m, #x.%d;

Examples

Note that you may use expressions in the option field, when referring to dates. For
instance (where %per1 and %per2 are two dates):

PRT <%per1-2 %per1+1> fY;

You may wish to use dates to control the flow of your system of command files,
centralizing the assignment of dates in one place.

global:%per1 = 2012; //will actually become a value, not a date
global:%per2 = 2040;
READ bank2;
<%per1 %per1> x2 += 1000; //only 1 year
SIM <%per1 %per2>;
MULPRT <%per1-1 %per2> y2;

Note here the use of the Global databank for storing the two dates. The Global
databank is unaffected by READ statements, and is practical for storage of general
settings like such dates. Conversions are possible:

115Gekko commands

T-T Analyse

%s1 = '2010'; //string
%v1 = 2015; //value
%d1 = date(%s1);
%d2 = date(%v1);
TIME %d1 %d2;

Note that in order to convert the string %s1, you need an explicit conversion with the

date() function (on the contrary, the conversion from the value %v1 is automatic).

The conversion will fail if not possible, for instance the string '201x' or the val
2015.4).

You may convert a date into a val like this:

CREATE data; //only necessary in sim-mode
FOR date %d = 1990 to 2012;
 data[%d] = val(%d) - 2000;
END;

This will not work without the val() function. The result is this (for the last three
years):

 data
 2010 10.0000
 2011 11.0000
 2012 12.0000

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

If you need to convert a VAL or STRING scalar to a DATE type, use the date()
conversion function.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

Related commands

116 Gekko 3.0 user manual

T-T Analyse

STRING, VAL, FOR, IF, TIME

117Gekko commands

T-T Analyse

3.19 DECOMP

DECOMP of variables (equations) only works properly on simulated values, where the
left-hand sides and the right-hand sides are equal. So for simulated values, or for
comparing simulated values, DECOMP is ok. This restriction will be fixed in a patch to
Gekko 3.0.

DECOMP opens a special window with an Excel-like sheet showing the contributions
etc. The DECOMP command can decompose in two ways:

· Variable: an existing model equation can be decomposed, analyzing how the
changes in the left-hand side of the equation can be decomposed into contributions
from variables on the right-hand side of the equation. The decomposition is carried
out on on the differences between current and lagged values (time decomposition),
or on the differences between the first-position and reference databanks (multiplier
decomposition).

· Expression: DECOMP can decompose a user-provided expression. This can be
thought of as anything legal in a PRT statement (with some limitations).

In the DECOMP window, regarding the list of variables shown in the first column,
endogenous (left-hand side) variables are marked in blue. You may click on these to
track an effect further (in that case, a new DECOMP window opens). Cells can be
copy-pasted to Excel or other spreadsheets (use Ctrl-A til select all cells). If variable
labels are present/loaded (cf. MODEL), these will be shown when the mouse hovers
over variables in the first column.

There is an "Update table" button for updating the table if the underlying data
changes. For instance, after a new simulation or after a READ statement.

It should be noted that DECOMP only decomposes an expression into contributions
from series or values (VAL). So in a multiplier decomposition, do not expect Gekko to
calculate contributions from matrices or lists of values, if these are different between
the first-position and reference databanks (but contributions from VAL scalars will be
identified).

Syntax

DECOMP < period > variable;
DECOMP < period > expression;

period (Optional). Local period, for instance 2010 2020, 2010q1

2020q4 or %per1 %per2+1.

variable The name of the endogenous variable to be decomposed.

expression An expression: anything legal in for instance a PRT
statement.

118 Gekko 3.0 user manual

T-T Analyse

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Details

The DECOMP window consists basically of a selector at the top, a table in the middle,
and the equation/expression at the bottom. The selector consists of three parts: time-
change selector, multiplier selector, and some auxiliary options at the right.

In the time-change and multiplier selectors, you may choose to either see 'raw' (non-
decomposed) or 'decomp' (decomposed) values. The raw values are really just
tabelling the relevant variables, optionally transforming them via the operators n, d,
p, dp for time-changes, or n, m, q, mp for multipliers (see the PRT command for a list
of these so-called 'short' operators). Raw values seldom sum up, so the first row is
not usually equal to the sum of the rest of the rows (this only holds for simple sums
in levels).

In contrast, the decomposed values for time-change or multiplier will sum up, so that
the first row is equal to the sum of the rest of the rows. In that way, you may get an
idea of why the left-hand side (or expression) changes relative to the previous period
or relative to the reference databank.

In the auxiliary options at the upper right of the window, you may indicate that you
want to see values from the reference databank instead of the first-position
databank, or that you prefer the decomposition output scaled so that the first line is
100 (%) and the other lines sum up to 100. The number of decimals shown can be
changed, and the table can be updated by pressing the 'Update table' button (in case
you wish to have changes in the databanks reflected in the table).

The decomposition is done by means of linearizing the equation (for time-changes: in
the previous period, and for multiplier changes: for reference databank values) and
using this linearization to forecast how much the left-hand side is expected to change
due to the changes in the right-hand side (dy = β1 * dx1 + β2 * dx2 + ...). This may
be more or less precise, depending upon how non-linear the equation is. If there is an
error, that is, the contributions do not add up to 100% of the change in the left-hand
side, the contributions are adjusted proportionally so that they sum up anyway.

Regarding decomposition of model equations, there is a further source of potential
imprecision too, namely if the databank values of the first row (the dependent
variable) do not correspond to the equation. If this is so, for instance for historical
data, a further proportional adjustment is applied, so that the contributions sum up.
(This problem does not exist regarding decomposition of an expression).

Clicking 'Show errors' allows you to inspect possible decomposition and data errors.
If, for instance, you have selected 'Abs. time change' (row) and 'Decomp' (column),
you may click both 'Show as shares' and 'Show errors' at the same time. This gives a
good idea of any decomposition or data errors. If the decomposition error shows for

119Gekko commands

T-T Analyse

instance 2.50% for a particular period, this means that only 97.50% of the change in
the right hand side (or expression) can be explained by means of the linearization.
The smaller the decomposition error is, the more confidence can be put into the
decomposed contributions (for linear equations, the decomposition error would be 0
in the absence of rounding errors).

Examples

After performing a multiplier analysis, you may want to decompose an usercost
expression like the following:

DECOMP <2010 2020> (1-t)*i + b - (1-b)*rpi + 0.2*t;

If a model has been loaded with MODEL, and the usercost variable is called uc, you

may instead use:

DECOMP <2010 2020> uc;

This will look up the uc equation (the equation with uc on the left-hand side) and

decompose that equation.

Note

DISP has a similar functionality, allowing to trace variables through model equations.
If you need to decompose a long expression, you can mark the lines and hit [Enter]
to execute the lines as one block of code. (Or use a command file).

You can only indicate one variable or expression in the DECOMP command. This is to
avoid the command potentially opening up a lot of DECOMP windows at the same
time.

The 'decimalseparator' option listed below controls how the cells are copied to the
clipboard (for pasting in a spreadsheet), when the user uses copy-paste of cells in the
DECOMP window.

Related options

OPTION interface excel decimalseparator = period; [period, comma]

Related commands

120 Gekko 3.0 user manual

T-T Analyse

READ, CLONE, MULPRT, DISP, CUT

121Gekko commands

T-T Analyse

3.20 DELETE

DELETE is used to remove variables from databanks.

Syntax

DELETE variables;
DELETE < NONMODEL > ;

NONMODEL Removes superfluous timeseries in the first-position and
reference databanks (provided a model has been defined with
MODEL). The removal is only done for series of the same
frequency as the global frequency setting. For instance, you
might have a databank and model variable y for income. Now,

imagine that the definition and contents of the variable is
changed to y2 in both the databank and model. If the old

variable y still resides in the databank, this may create

confusion, and the NONMODEL option removes such non-model
variables. Cf. also the Gekko menu 'Utilities' --> 'Compare
model/databank/varlist...'.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

· Note that 'naked' wildcards are allowed in this command, so you may for instance
use the shorter a*b instead of {'a*b'}.

Examples

Delete a series x, a string %x, and a list #x:

x = 100;
%x = 'a';
#x = a, b;
DELETE x, %x, #x;

If, instead, you want to delete the series corresponding to the contents of %x and #x,

use {}-curlies:

a = 100;
b = 200;
c = 300;
%x = 'a';
#x = b, c; //or: #x = ('b', 'c')

122 Gekko 3.0 user manual

T-T Analyse

DELETE {%x}, {#x}; //deletes the series a, b, c
DELETE %x, #x; //deletes the string %x and the list #x

You may use wildcards like in COPY, INDEX, RENAME, etc.:

DELETE **;

This will delete all variables from the first-position databank. Alternatively (and
better):

CLEAR first; //or CLEAR work, if Work is the first-position
databank

Another example:

DELETE x*!q;

This will delete all quarterly series starting with x. You may also delete a variable

from a particular databank (provided that bank is opened with OPEN<edit> or
unlocked with UNLOCK), for instance:

DELETE bank2:x1!q;

Remove non-model variables with this special option:

DELETE <nonmodel>;

Note

To clear the entire workspace, including databanks, list, scalars, models, etc., see
RESTART or RESET. To delete the contents of databanks, see CLEAR.

Related commands

CREATE, SERIES, RESTART, RESET

123Gekko commands

T-T Analyse

3.21 DISP

The command is primarily used to print series or array-series, showing precedents
and dependents if a model is loaded, and showing meta-information (cf. DOC). If a
variable list is contained in the model file (.frm file) or as an external varlist.dat file
(cf. MODEL), this information is shown, too.

If a model is loaded, the DISP command starts the equation browser. This means that
linked variables can be clicked, and that you may browse forwards and backwards by
means of the arrow buttons in the user interface. The 'home' button will browse back
to the first DISP that started the equation browser.

When displaying an array-series, the dimensions, possible domains, etc. are shown.

DISP of other variable types than series works like PRINT.

If you have loaded a GAMS model with MODEL<gms>, you must set OPTION model

type = gams to DISP the equations properly. For GAMS models, there are special

options regarding how to identify which variable a given equation determines.

Syntax

DISP < period INFO > variables ;
DISP 'search string' ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

INFO (Optional). Used to print out right-hand side variables for a given
endogenous variable. Mostly used when a SIM breaks down,
together with OPTION solve failsafe = yes.

variables Variables or lists (wildcards and bank indicators may be used), and
items may be separated by commas.

'search
string'

A string in single quotes to search for in all labels. Gekko will
search for the string in both the variable list (if such a list is loaded
with the model), and in the labels of each timeseries (cf. DOC).

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

· Note that 'naked' wildcards are allowed in this command, so you may for instance
use the shorter a*b instead of {'a*b'}.

124 Gekko 3.0 user manual

T-T Analyse

Example

DISP the volume of GDP and private consumption for the (local) period 2000-2010:

DISP <2000 2010> fy, fcp;

If a model is loaded, you will be able to see which variables the given variable affect
(dependents). You will also see the equation (if the variable is endogenous), and
hence the variable’s precedents. These variables are clickable, so the DISP command
functions as an entrance to the equation browser.

If a variable list is put after a 'VARLIST;' or 'VARLIST$' in the model file (or is located
in an external varlist.dat file), this meta-information is shown. You may search these
labels in the following way:

DISP 'import';

This will list all variables with a label containing this search string.

Wildcards can be used:

DISP bank2:x*!q;

Displays quarterly series starting with 'x', from bank2.

Per default, only 3 lines of data is written when DISP'ing a variable. However, you
can click the link ('show') to see any hidden periods. This limitation is intended for
easier use of DISP as an equation browser.

Note

Regarding DISP of GAMS equations, see the description of the MODEL <dep = ...>

local option under MODEL.

You can use a TIMEFILTER to omit periods for a more readable output. (If a
TIMEFILTER is set, the print disp maxlines = 3 option is overruled, so that all

non-filtered periods are shown even if there are more than 3 of these).

The DISP<info> command can be used to print out right-hand side variables for a
given endogenous variable. It can only be used for a one-period time period. It is

125Gekko commands

T-T Analyse

called automatically if failsafe mode solving is set (OPTION solve failsafe yes) and

the simulation fails.

Related options

OPTION model type = default; //default | gams
OPTION print disp maxlines = 3;
OPTION model gams dep current = no;
OPTION model gams dep method = lhs; // lhs | eqname

Related commands

PRT, MULPRT, PLOT, DECOMP, TELL

126 Gekko 3.0 user manual

T-T Analyse

3.22 DOC

The command is used to 'manually' change meta information fields in a timeseries.

The meta information is shown in the DISP command.

Syntax

DOC variables LABEL=... SOURCE=... UNITS=... STAMP=... ;
DOC <browser>;

variables Variablename(s) or list(s) (wild-cards are allowed). You may
prepend a databank name as bank:variable.

LABEL= (Optional). Changes the label of the timeseries. You may use
LABEL='' to clear.

SOURCE= (Optional). Changes the source of the timeseries. You may use
SOURCE='' to clear.

UNITS= (Optional). Changes the units of the timeseries. You may use
UNITS='' to clear.

STAMP= (Optional). Changes the stamp of the timeseries. You may use
STAMP='' to clear.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

DOC <browser> produces a stand-alone equation browser in html, which can, for
instance, be put on a web server. The produces system is independent of Gekko and
shows variables, formulas, labels, graphs, estimation output, data, etc. This inner
workings of this system will be documented later on, if needed before then, please
contact the Gekko editor. Essentially the system replicates how DISP can show
equations etc. from inside Gekko.

Examples

To change label, source and stamp on the timeseries fY, use:

DOC fY label='Gdp' source='Statistics Denmark' stamp='11-01-2015';

127Gekko commands

T-T Analyse

To clear the label, use an empty string:

DOC fy label='';

Note

Meta information like this is read from and written to .gbk or .tsd files.

Regarding meta-information on timeseries, you may set these directly when defining
the series, for instance <label = 'Value added tax'> vat = 0.25;.

Related commands

READ, IMPORT, WRITE, EXPORT, DISP

128 Gekko 3.0 user manual

T-T Analyse

3.23 DOWNLOAD

At the moment, the command is used to interface to a particular Danish databank
containing among other things timeseries data. The downloaded file is in "px" format,
that is, PC-Axis. This is a format widely used by statistical offices.

It is the intention to augment the DOWNLOAD command regarding other online
databanks. Note that you can import a px file with IMPORT<px> or IMPORT<px
array>.

The data is downloaded into the first-position databank.

Syntax

DOWNLOAD < ARRAY > url filename DUMP=...;

ARRAY (Optional). If this is set, and DUMP is not used, Gekko will put the
data into array-timeseries rather than normal timeseries. If DUMP is
used, you may use IMPORT <px array> afterwards.

url Url (web address) to the databank. Note: the web address should be
in quotes.

filename Filename of the JSON file defining what data to download.

DUMP= (Optional). Name of the file in which to store the contents of the
download (in this case, a px-file).

Examples

Example:

RESET;
OPTION freq m;
TIME 2000 2016;
DOWNLOAD 'https://api.statbank.dk/v1/data' statbank.json;
PLOT {'*'};

This imports data from api.statbank.dk, with the file statbank.json file describing what
data to download.

http://www.scb.se/sv_/PC-Axis/Start/

129Gekko commands

T-T Analyse

----------------------- statbank.json

{
 "table": "pris6",
 "format": "px",
 "valuePresentation": "Value",
 "variables": [
 {
 "code": "VAREGR",
 "values": ["011200", "011100"]
 },
 {
 "code": "enhed",
 "values": ["100"]
 },
 {
 "code": "tid",
 "values": ["*"]
 }
]
}

You may use ["*"] to get all values of the field. The resulting series are called

pris6_VAREGR_011200_enhed_100 and pris6_VAREGR_011100_enhed_100.

After the DOWNLOAD command, these two timeseries are available in the first-
position (Work) databank. The above provedure can be split into two parts (first
dumping the download as data.px, and then importing that file):

RESET;
OPTION freq m;
TIME 2000 2016;
DOWNLOAD 'https://api.statbank.dk/v1/data' statbank.json dump =
data;
IMPORT <px> data;
PLOT {'*'};

If you prefer to use array-series, you may use that <array> option:

RESET;
OPTION freq m;
TIME 2000 2016;
DOWNLOAD <array> 'https://api.statbank.dk/v1/data' statbank.json;
PLOT {'*'};

or in two steps:

130 Gekko 3.0 user manual

T-T Analyse

RESET;
OPTION freq m;
TIME 2000 2016;
DOWNLOAD 'https://api.statbank.dk/v1/data' statbank.json dump =
data;
IMPORT <px array> data;
PLOT {'*'};

This produces array-series pris6['011200', '100'] and pris6['011100', '100'].

Because of the leading zero of the first element, you cannot use for instance
pris6[011200, 100]

to refer to the first array-series (it will be understood as pris6[11200, 100]).

Reading the px format

The PC-Axis px format is a flexible data format well suited for multidimensional data.
The format is used by many statistical offices in different countries to let their users
retrieve statistics. Gekko does not use all of the contents of a px file. The way Gekko
reads it is the following:

For instance, the timeseries name
"PROD01_saesonkorrigering_EJSAESON_brancheDB07_BC" may be composed from
the px file (and the timeseries may get the following label (metadata): "Ikke
sæsonkorrigeret, BC Råstofindvinding og industri"). The timeseries names and data
are extracted as follows:

· MATRIX= . Gets the table name from this (used in the timeseries names), for
instance "PROD01".

· CODES("tid"). Decodes the time periods used. The alternative CODES("time") is
allowed. [New in 3.0.3].

· CODES(...). Gets dimension names and dimension elements from this (*), for use
in the timeseries names. For instance, the name part "brancheDB07_BC", where
the first is the dimension name, and the last is the dimension element.

· VALUES(...). Only used for metadata in the timeseries (timeseries labels).
· DATA= . Read the data from here. If, for instance, there is one dimension with 3

elements, and another with 4 elements, Gekko expects 12 numbers in all. Gekko
will not accept if a number is split between lines, and numbers should preferably
always be followed by a blank also at the end of the line (this is recommended in
the px definition). Gekko will count the numbers, and a warning is issued if there
are too few numbers compared to the span of the dimensions. In that case, the
data may be scrambled/misaligned in Gekko, so take care! If there are too many
numbers, Gekko will fail with an error.

· STUB= . Is not used!

(*) If there is a .json file involved, the often shorter dimension names from the .json
are used instead.

131Gekko commands

T-T Analyse

Note that some sources of px files provide very long single lines of data (thousands of
characters). If such a file is opened in a text editor and saved afterwards, the editor
may insert line breaks that may render the file unreadable in Gekko (because
numbers become split between lines).

Note

For more advanced px reading, you may take a look at the pxr package in R.

Related commands

IMPORT, READ, OPEN

https://cran.r-project.org/web/packages/pxR/

132 Gekko 3.0 user manual

T-T Analyse

3.24 EDIT

The EDIT command uses Notepad to open up the designated file. The command is
practical for editing command files (.gcm), file lists, table or menu files, data files like
.csv, .prn, etc. See also XEDIT for xml files.

You may use remote control for command files, cf. OPTION interface remote =

yes|no;.

Syntax

EDIT filename ;

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,

or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.
The extension .gcm is automatically added, if it is missing. If the
filename is set to '*', you will be asked to choose the file in Windows
Explorer.

Examples

You may use this to open up the file forecst1.gcm from the working folder:

EDIT forecst1;

The .gcm extension is automatically inserted. You may select .gcm files like this:

EDIT *;

This will open up a file dialog with .gcm files to choose from.

Related options

OPTION interface remote = no; [yes|no]

133Gekko commands

T-T Analyse

Related commands

SYS, XEDIT

134 Gekko 3.0 user manual

T-T Analyse

3.25 ELSE

An ELSE statement is used in conjunction with an IF condition and an END statement.

Related commands

IF, ELSE

135Gekko commands

T-T Analyse

3.26 END

An END statement concludes a FOR (loop), IF (condition) or FUNCTION/PROCEDURE
statement. Gekko will fail if the END statement is missing.

To execute for instance a loop in the command window, it is often convenient to use
Ctrl+Enter for newlines, and then execute all the lines as a unified block by means of
marking all the relevant lines and hitting [Enter]. In that case, the lines are

executed in the same way as using a command file.

Related commands

FOR, IF, FUNCTION, PROCEDURE

136 Gekko 3.0 user manual

T-T Analyse

3.27 ENDO

ENDO and EXO are used for fixing, that is, setting variables to some values (goal),
and asking the system to solve this by means of other variables (means). The ENDO
command works differently depending upon OPTION model type.

· With OPTION model type = default, ENDO endogenizes a list of variables

(without date settings). A model must be defined beforehand.
· With OPTION model type = gams, ENDO produces array-series with names starting

with 'endo_'. These array-series can subsequently be used to tell e.g. GAMS which
variables are fixed and non-fixed. ENDO must indicate dates.

Use UNFIX to remove previously set ENDO or EXO variables.

Syntax

default type: ENDO variable1, variable2, ... ;
gams type: ENDO <period0> variable1 <period1>, variable2
<period2>, ... ;

variabl
es

Default type: The variables are simple series names, or lists of these,
for instance x2, or {#m}.

Gams type: The variables are series or array-series names, for instance
x2 or x2[a, b]. For array-series, lists may be used, for instance x2[a,

 #i, #j], where #i and #j are lists of strings.

period0 A period is a Gekko time interval like <2020 2030> or <2020q1
2030q4>. The general period can be set in the period0 field, and this
period will be be used for the variables, unless specific periods are
given in the period1, period2, etc.

period1
,
period2
, ...

A period is a Gekko time interval like <2020 2030> or <2020q1
2030q4>. These specific periods will overrule the general period
(period0).

Examples

Default type

If you need to exogenize a variable fy, and endogenize a variable tg, use this:

137Gekko commands

T-T Analyse

OPTION model type = default; //is default
MODEL forecst; //a model must be loaded beforehand
EXO fy; //a list of strings can be used, for instance {#m}
ENDO tg;
SIM <fix>; //option <fix> must be used to enforce the
goals/means.

Gams type

The following example exogenizes variables x1[a, k1] and y1, and endogenizes

x2[a, k1] and y2.

OPTION model type = gams;
EXO x1[a, k1] <2022 2024>, y1 <2024 2026>; //or: x1['a', 'k1']
ENDO <2023 2025> x2[a, k1] <2021 2023>, y2; //or: x2['a', 'k1']
PRT <2020 2027 width=20 n> exo_x1, exo_y1, endo_x2, endo_y2;

The resulting variables are as follows (note that these variables are overwritten if
they exist beforehand):

 exo_x1[a, k1] exo_y1 endo_x2[a, k1]
 endo_y2
 2020 M M M
 M
 2021 M M 1.0000
 M
 2022 1.0000 M 1.0000
 M
 2023 1.0000 M 1.0000
 1.0000
 2024 1.0000 1.0000 M
 1.0000
 2025 M 1.0000 M
 1.0000
 2026 M 1.0000 M
 M
 2027 M M M
 M

Instead of individual elements, you may use lists:

OPTION model type = gams;
#a = a1, a2;
#k = k1, k2;
EXO <2022 2024> x1[#a, #k];
ENDO <2021 2023> x2[#a, #k];
PRT <2020 2025 width=20 split n> exo_x1, endo_x2;

The two lists are automatically unfolded into 2 x 2 = 4 elements (subseries)
regarding exo_x1 and endo_x2:

138 Gekko 3.0 user manual

T-T Analyse

 exo_x1[a1, k1] exo_x1[a1, k2] exo_x1[a2, k1]
 exo_x1[a2, k2]
 2020 M M M
 M
 2021 M M M
 M
 2022 1.0000 1.0000 1.0000
 1.0000
 2023 1.0000 1.0000 1.0000
 1.0000
 2024 1.0000 1.0000 1.0000
 1.0000
 2025 M M M
 M

 endo_x2[a1, k1] endo_x2[a1, k2] endo_x2[a2, k1]
 endo_x2[a2, k2]
 2020 M M M
 M
 2021 1.0000 1.0000 1.0000
 1.0000
 2022 1.0000 1.0000 1.0000
 1.0000
 2023 1.0000 1.0000 1.0000
 1.0000
 2024 M M M
 M
 2025 M M M
 M

Note

With default type, the ENDO and EXO statements are non-cumulative, so all
endogenized/exogenized variables should be present in the same ENDO/EXO
statement.

With gams type, the ENDO and EXO statements are cumulative in the sense that
ENDO or EXO do not delete existing endo_... and exo_... array-series.

Related options

OPTION model type = default; //default | gams

Related commands

139Gekko commands

T-T Analyse

EXO, SIM, UNFIX

140 Gekko 3.0 user manual

T-T Analyse

3.28 EXIT

The command EXIT terminates the application (without any warning, so use it
carefully). It is often used in order to run Gekko sessions from batch (.bat) files.

From the user interface, you may exit by means of 'File' --> 'Exit', or Alt+F4. To
stop/abort a program while it is running, you can use the red stop button in the user
interface.

Syntax

EXIT ;

Related commands

STOP, RETURN

141Gekko commands

T-T Analyse

3.29 EXO

ENDO and EXO are used for fixing, that is, setting variables to some values (goal),
and asking the system to solve this by means of other variables (means). The EXO
command works differently depending upon OPTION model type.

· With OPTION model type = default, EXO exogenizes a list of variables (without

date settings). A model must be defined beforehand.
· With OPTION model type = gams, EXO produces array-series with names starting

with 'exo_'. These array-series can subsequently be used to tell e.g. GAMS which
variables are fixed and non-fixed. EXO must indicate dates.

Use UNFIX to remove previously set ENDO or EXO variables.

Regarding syntax, examples, etc., see the ENDO command.

Related options

OPTION model type = default; //default | gams

Related commands

ENDO, SIM, UNFIX

142 Gekko 3.0 user manual

T-T Analyse

3.30 EXPORT

The command writes the first-position databank or specific variables to a non-gbk file
in a particular format. Use WRITE to write to a .gbk file.

Please note that the EXPORT formats currently only supports series (or a matrix), not
other variable types (you may use WRITE to store these in .gbk files).

Compatibility note: If a time period is not indicated in the <>-option field, Gekko
3.0 will only export data inside the global time period. Before Gekko 3.0, all data
would have been exported. To emulate previous behavior, you can use
EXPORT<all>. Alternatively, you may set "OPTION bugfix import export = yes;". If
the option is set, IMPORT and EXPORT will work as in pre-3.0 versions. The option
will be removed at some point, so it is better to change occurrences of date-less
EXPORT to EXPORT<all> in old command files.

Excel note: When constructing xlsx files, if you encounter "dates" with integer
numbers larger than 20000, this may be because Excel shows the dates as numbers
rather than dates. You may try to change the format of the date cells: right-click,
"Format cells", "Date".

There is the following equivalence between EXPORT and WRITE: EXPORT =
WRITE<respect>, and the inverse: WRITE = EXPORT<all>. If a local period is set,
EXPORT and WRITE behave in the same way.

Syntax

EXPORT < period format ALL CAPS=... COLS DATEFORMAT=... DATETYPE=...
OP=... > filename ;
EXPORT < period format ALL CAPS=... COLS DATEFORMAT=... DATETYPE=...
OP=... > variables TO variables FILE=filename ;

period (Optional). Without a time period indicated, Gekko will write all the
data for all observations. When a period is indicated, the written
data(bank) is truncated.

format File format. Choose between CSV, FLAT, GCM, GDX, GNUPLOT, PRN,
R, TSD, TSP, XLS/XLSX (regarding gbk, see the WRITE command).
· CSV: Only frequencies matching the current frequency setting will

be written.
· FLAT. This is a special Gekko text-based format with lines that

resemble series statements. See more details in the IMPORT
section.

· GCM. This will export series as Gekko SERIES statements. You can
use operators n, d, p, m or q, for instance EXPORT<gcm op=p>

{#vars} file=data; to put the percentage change in the #vars

143Gekko commands

T-T Analyse

timeseries into the file data.gcm. Alternatively, you may use ^=, %

=, += or *= operators, for instance EXPORT<gcm op='%='>

{#vars} file=data;. With the latter operators, you must enclose

them in single quotes ('). You may use EXPORT<gcm> to export in

levels (corresponding to operator n). A .gcm file is imported simply

with RUN. See the FLAT format for a faster version of this format.
· GDX: A binary GAMS-database. Note "OPTION gams exe folder =

..." where it is possible to point to the exact GAMS folder
(otherwise the system will try to auto-locate GAMS). It seems
necessary to use a 32-bit version of GAMS, since the current
version of Gekko is 32-bit. Please note that only array-timeseries
(see SERIES) are written to the .gdx file, and that Gekko does not
(at the moment) export timeless timeseries. GAMS can be freely
downloaded as a demo, and the demo will work fine regarding
Gekko EXPORT.

· GNUPLOT: Gekko writes a prn-like format suitable for gnuplot. If
no period is set, Gekko will write all years occurring in the first-
position databank. (Note: PLOT also implicitly produces such a
data file, see the temporary files folder, under \gnuplot. Location
is given with Help --> About... in the main Gekko window).

· PRN: Same behaviour as for the CSV type.
· R: Exports matrices as a R script file. The syntax is a bit

convoluted, since matrices and not series are exported, and the
EXPORT<r> syntax is expected to change at some point. To export
several matrices in one go, you need to state the matrix names as
list items, for instance like this: #m1 = [1, 2; 3, 4]; #m2 =
[11, 12; 13, 14]; #matrices = ('#m1', '#m2'); EXPORT<r>

{#matrices} file=matrix.r; Exporting a single matrix is more

simple: #m = [1, 2; 3, 4]; EXPORT<r> #m file=matrix.r;.

For running R more interactively, see R_RUN.
· TSD: For interchange with AREMOS and others. With option

'CAPS=no', all .tsd variable names are written as they are
(otherwise they will be written as all caps).

· TSP: Gekko will write TSP records (load statements). Works for
annual frequencies only.

· XLS or XLSX: Gekko will try to write the data to an Excel
workbook. Only frequencies matching the current frequency
setting will be written. If no period is set, global time will be used.
Cf. also the SHEET command. The engine used for Excel writing
can be changed with "OPTION sheet engine = ...;". You can also
export a matrix to xlsx format.

ALL (Optional). With this option, all observations are exported,
regardless of the global time period. This corresponds to pre-3.0
Gekko behavior.

CAPS= When exporting a tsd file, the default is now to write the variable
names with all caps. This is because AREMOS fails if this is not done.
To avoid the caps, you may use option <tsd caps=no>.

https://www.gams.com/download/
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

144 Gekko 3.0 user manual

T-T Analyse

COLS (Optional). For .csv, .prn or Excel files, this indicates whether the
timeseries are running downwards in columns.

OP= (Optional). For .gcm files, this value indicates the operator used for
the SERIES statements.

DATEFOR
MAT=
DATETYPE
=

(Optional). These options control the date format for .xlsx and .csv
files. DATEFORMAT can be either 'gekko' (default) or a format string

like 'yyyy-mm-dd', and the latter may contain a first or last

indicator, for instance 'yyyy-mm-dd last', which indicates for

quarterly or monthly data that the last day of the quarter or month
is used. DATETYPE can be either 'text' or 'excel'. In the former

case, the dates are understood as text strings (for instance
'2020q3' or '2020-09-30' for a quarterly date), and in the latter

case (not relevant for .csv files), the date is understood as an Excel
date, which basically counts the days since January 1, 1900. This
number would correspond to 44104 for the date 2020-09-31, and
can be shown in Excel in different ways depending upon date format
settings, language settings, etc., but the internal number itself is
unambiguous. [New in 3.0.5].

variables Variables or lists (wildcards and bank indicators may be used), and
items may be separated by commas. If no variables are given, the
full first-position databank is written.

TO You may use TO to rename variables before they are written, for
instance EXPORT <csv> x* to *_old file = test;, where Gekko

will look for variables starting with x, and the found variables will

acquire a _old suffix. This logic is similar to the COPY and RENAME

commands.

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,

or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

Examples

145Gekko commands

T-T Analyse

You may export the contents of the first-position databank into a spreadsheet like
this:

EXPORT <xlsx all> data;

This produces the file data.xlsx. The <all> option makes sure that all observations
are exported: if omitted, only observations inside the global time period are exported.
If you only want subset of the variables or a subset of the time period, you may write
for instance:

EXPORT <2040 2050 xlsx> fy, fe, fm FILE=sim4050;

This produces the file sim4050.xlsx, containing the three variables over the period
2040-50. You may also use lists or wild-card lists regarding the variables:

EXPORT <xlsx> fX* file=fxfile;

This writes all variables in the first-position databank starting with 'fX' to the file
fxfile.xlsx.

EXPORT <2015 2020 gcm op=p> px* file=px;

This writes all variables in the first-position databank starting with 'pX' to the
command file px.gcm. The variables are written as percentage growth SERIES
statements (the data can be imported afterwards with RUN).

EXPORT <gdx> ats file=gamsdata;

This will export the array-timeseries ats to gamsdata.gdx.

Export of a matrix #m to Excel (matrix.xlsx):

EXPORT <xlsx> #m file = matrix.xlsx;

Note

You may use SHEET if you need to put expressions into an Excel sheet, or into
particular cells.

146 Gekko 3.0 user manual

T-T Analyse

If option folder = yes, and option folder bank is set, the EXPORT statement

tries to write to that particular folder instead of the working folder.

Related options

OPTION folder bank = [empty];
OPTION interface csv decimalseparator = period; [period|comma]

Related commands

IMPORT, READ, WRITE, SHEET

147Gekko commands

T-T Analyse

3.31 FINDMISSINGDATA

This command finds timeseries with missing values (only the timeseries with
frequency matching the global frequency setting).

Please note that the command is not intended to be put inside a large loop. In such
cases, using the iif() function is better, see the end of the examples section.

Syntax

FINDMISSINGDATA < period REPLACE=... > variables ;

period (Optional). Local period, for instance 2010 2020,

2010q1 2020q4 or %per1 %per2+1.

REPLACE= You may use for instance <REPLACE = 0> to
replace any missing values with 0 (or any other
value). When using the REPLACE options, lists are
not generated.

variables List of variable(s) to check, array-series can be
stated. If omitted, all series from the first-position
databank are investigated.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If no variables are given, all variables in the first-position databank will be
investigated

Examples

For instance, the command

FINDMISSINGDATA <2008 2010>;

looks for all series (including array-subseries) with any missing values in the period
2008-2010. You may restrict it like this:

FINDMISSINGDATA <2008 2010> {#vars};

148 Gekko 3.0 user manual

T-T Analyse

where the list #vars contains the names of the relevant variables you want to check.

Gekko outputs a number of lists from the investigation: for instance the list
#missingdata contains all variables with missing data in the first-position databank,

whereas the lists #missingdata_all, #missingdata_endo etc. are subsets of that list,

and correspond to the Gekko-defined lists #all, #endo etc. (i.e., all model variables,

all endogenous model variables, etc.).

FINDMISSINGDATA <2008 2010 replace = 0> {#vars};

This does not produce any lists, but replaces any missing values with 0.

You may use wild-card lists if preferable:

FINDMISSINGDATA <2008 2010> fX*, fYf*;

This will check all variables starting with 'fX' or 'fYf'. If a period is not given, the
global time setting is used.

If you need to change missing values to something else, using the iif() function is
often much more speedy. For instance:

RESET; MODE data; OPTION freq m;
TIME 2017m7 2017m10;
x = 100, 200, m(), 400;
y = 110, 210, 310, 410;
z = iif(x, '==', m(), y, x);
PRT <n> x, y, z;

The result is:

 x y z
 2017
 m7 100.0000 110.0000 100.0000
 m8 200.0000 210.0000 200.0000
 m9 M 310.0000 310.0000
 m10 400.0000 410.0000 400.0000

The x series has a hole in it (2017m9), and the iif() function checks (for each of the

four periods) if x has a missing value, and if so it uses the y value, else the x value.

So the resulting z series has the hole filled with the 2017m9 observation from y. The

m() function inside the iif() function just returns a missing value. A dollar conditional
($) works similar to iif(), and the replace() function can also be used.

Note

149Gekko commands

T-T Analyse

The command is convenient when developing new models or changing existing
models.

Related commands

COMPARE, DELETE, see also 'Utilities' --> 'Compare two databanks' (same as
COMPARE)

150 Gekko 3.0 user manual

T-T Analyse

3.32 FOR

The FOR command initiates a loop over strings, dates or values. Parallel loops
(tandem) over lists are also possible. Like the procedure and function definitions,
Gekko demands that the variable type is stated explicitly.

Loop over elements

This elements loop loops through the list of elements on the right-hand side of '='.
Indicating the type here is mandatory in Gekko 3.0.

FOR [type] %x = items ;
 statements... ;
END ;

[type] The type must be indicated

%x The loop variable %x

items Any list of items. For a simple list of strings, you may use the
naked list a, b, c instead of ('a', 'b', 'c'), similar to how a

list may be defined using short form. You may also use for
instance lists (#mylist) or wildcards (e.g. fx*). You may also use

a list of values, for instance (1, 2, 3), or a list of dates, for

instance (2001q1, 2001q2, 2001q3).

Note that you may use parentheses, for instance FOR([type] %x = items), like

the IF command.

Parallel loop over elements

This parallel string loop loops through the items in parallel/tandem. So in the i'th
iteration, %s1 is equal to the i'th item in items1, %s2 is equal to the i'th item in

items2, etc. The number of items must be the same in all the lists on the right-hand
sides of the '='. And the names on the left-hand sides of the '=' must be different.
The type must be stated.

FOR type1 %s1=items1 type2 %s2=items2 type3 %s3=items3 ... ;
 statements... ;
END ;

%s1, %s2, ... The loop variables (for instance: strings).

151Gekko commands

T-T Analyse

items1,
items2, ...

Any list of items.

Note that you may use parentheses FOR(%s1=items1 %s2=items2 ...), like

the IF command.

Date loop, FOR ... TO

A date loop loops through dates from a start date to an end date, with an optional
stepsize. (To use logical conditions on individual observations inside timeseries, see
the iif() function)

FOR date %d = date1 TO date2 BY step ;
 statements... ;
END ;

%d The loop variable d (of date type).

date1 Start date (inclusive), can be expression (including integer value).

date2 End date (inclusive), can be expression (including integer value).

step (Optional). An optional stepsize (default step: 1). Must be integer,
and may be negative. You may omit BY step if not needed. You may

use STEP instead of BY if preferred.

TO You may use '..' (range) instead: for instance FOR date %d =
2015q1 .. 2020q4;

Note that you may use parentheses FOR(date %d = date1 TO date2 BY

step), like the IF command. If one or both of date1 and date2 are positive

integers, they will be interpreted as annual dates.

Value loop, FOR ... TO

A value loop loops through values from a start value to an end value, with an
optional stepsize. If the stepsize is negative, the values will decrement.

152 Gekko 3.0 user manual

T-T Analyse

FOR val %v = val1 TO val2 BY step ;
 statements... ;
END ;

v The loop variable %v.

val1 Start value. Can be any number or expression.

val2 End value. Can be any number or expression.

step An optional stepsize (default step: 1). Can be any number or
expression, and may be negative. Omit BY step if not needed. You

may use STEP instead of BY if preferred.

TO You may use '..' (range) instead: for instance FOR val %v = 1 ..
100;

Note that you may use parentheses FOR(val %v = val1 TO val2 BY step),

like the IF command.

Examples (list)

You may wish to use some sector codes to print out production values easily:

FOR string %i = nf, nz, qz, o; //or: ('nf', 'nz', 'qz', 'o')
 PRT fX{%i};
END;

This will print out the variables fXnf, fXnz, fXqz, fXo (one by one). You may use

a pre-defined list after the '=' in the for statement FOR string %i = #mylist;, or a

wild-card list (FOR string %i = ['fx*'];), or combinations of these.

Nested loop:

FOR string %i = a, b, c; //or: ('a', 'b', 'c')
 FOR string %j = x, y, z;
 PRT var{%i}o{%j};
 END;
END;

The loop prints 9 variables beginning with varaox, varaoy, varaoz, varbox,

varboy, ... etc.

153Gekko commands

T-T Analyse

Note that you can easily pre- and suffix list items, cf. the LIST command. Gekko can
also loop over a list of values or dates, for instance:

OPTION freq q;
FOR date %d = (2020q1, 2020q3); //omitting the parenthesis will
not work
 TIME %d %d+1;
END;

This will set the period 2020q1-2020q2, and afterwards 2020q3-2020q4. Note the
parenthesis in the first line. Without it, the list will be understood as ('2020q1',
'2020q3'), that is, two strings and not two dates.

You may use parallel lists like this:

#m1 = a, b, c; //or: ('a', 'b', 'c')
#m2 = x, y, z;
FOR string %i = #m1 string %j = #m2; //or: FOR string %i = a,
b, c string %j = x, y, z;
 TELL '{%i}, {%j}';
END;

In contrast to the nested loop above (that ran the PRT statement 3*3 = 9 times), this
loop only runs the TELL statement 3 times in all. The result is the following:

a, x
b, y
c, z

The parallel loops is an easy way to loop two (or more) lists in tandem. It is easier to
use than doing the same loop 'manually', like the code below (this code produces the
same output):

#m1 = a, b, c;
#m2 = x, y, z;
FOR val %v = 1 to #m1.length();
 %i = #m1[%v];
 %j = #m2[%v];
 TELL '{%i}, {%j}';
END;

Examples (dates range)

154 Gekko 3.0 user manual

T-T Analyse

To compute the largest number of the variable fX{%i}, for the sectors a, b, nf, qf,

over the period %d1 to %d2:

%d1 = 1990;
%d2 = 2015;
#vars = a, b, nf, qf;
%max = 0; //initialize
FOR string %i = #vars;
 FOR date %d = %d1 to %d2;
 IF (fx{%i}[%d] > %max);
 %max = fX{%i}[%d];
 %dmax = %d;
 %imax = %i;
 END;
 END;
END;
TELL 'Largest value in sector {%imax}, period {%dmax}, value = {%
max}.';

After this loop, the string %imax will contain the sector name with the highest

number, the date %dmax will contain the period containing that number, and the

value %max will contain the max number. It is assumed that the values are all

positive, so that %max can safely start out with value 0.

This example sets the timeseries y, depending upon two timeseries x1 and x2, over

the period 2001-2003. For the observations where x1 > x2, y is set to x0, else to %v

(a scalar).

FOR (date %d = 2001 to 2003);
 IF (x1[%d] > x2[%d]);
 SERIES y[%d] = x0[%d];
 ELSE;
 SERIES y[%d] = %v;
 END;
END;

Note that such conditional setting of values via time-looping can be done much easier
with the iif() function:

<2001 2003> y = iif(x1, '>', x2, x0, %v);

You may loop over frequencies like this:

FOR string %i = a, q, m;
 OPTION freq = {%i};
 SERIES xx = 100;
END;

155Gekko commands

T-T Analyse

After this, there will be series xx!a, xx!q and xx!m, corresponding to each of the

frequencies a, q and m.

Examples (values range)

A value loop is similar to date loops

FOR val %v = 10 to 0 by -2.5;
 TELL 'Value: {%v}';
END;

This will print out the numbers 10, 7.5, 5, 2.5 and 0.

FOR (val %v = 10 to 0 by -2.5)
 TELL 'Value: {%v}';
END;

Equivalently, using parentheses (the semicolon in the first line may be omitted in this
case). This is just to avoid an error if the user assumes the same syntax as the IF
command (which has mandatory parentheses).

Note

You may sometimes need to use an explicit type conversion from one scalar variable
type to another. In that case, use the conversion functions val(), date() or string().

Related commands

END, STRING, DATE, VAL, IF

156 Gekko 3.0 user manual

T-T Analyse

3.33 FUNCTION

FUNCTION is used to define user-defined functions. Such user functions may return a
variable (if you need to return multiple variables, consider returning a map). For a
function that does not return anything, you may consider using a procedure instead.
A procedure is essentially the same as a user functions with no return value.

Note that all Gekko functions (both in-built and user-defined) implement so-called
UFCS so that a function like for instance f(x, y) can be written as x.f(y), and f(x,

y, z) can be written as x.f(y, z).

You may decorate a user function with a <>-option field containing an optional time
period. User-defined functions allow optional parameters with default values, and the
function may prompt (ask) the user about these parameters, if f?(...) is used

instead of f(...), where f is the name of the function.

How to use a library of Gekko functions/procedures in 3.0?

In Gekko 3.0, the OPTION library file = ...; is obsolete. Instead, you can

just put your user-defined functions/procedures in for instance a file called
lib.gcm. Afterwards, you can define a gekko.ini file containing the line RUN

lib.gcm; so that lib.gcm is always run at Gekko startup, or after a RESTART. See

the lib.gcm example on the RESTART help page. In Gekko 3.0, user
functions/procedures are always available after they have been defined, as long
as the use is chronologically after the definition.

Function hints

If a function has syntax errors, you may try to out-comment the FUNCTION
statement and corresponding END statement for better error messages. Function
arguments do not reside in any databanks, so if you have a function like FUNCTION

void f(series x); RUN data.gcm; END; you cannot expect to use x inside the

data.gcm command file, for instance expecting it to reside in the first-position
databank (regarding function arguments, in many cases using the name type is

more practical than the series type).

Syntax

FUNCTION type funcname(<date t1, date t2>, type1 var1 label1 = default1,
type2 var2 label2 = default2, ...);
 expressions... ;
END;

The function body must contain at least one RETURN statement, returning a variable.

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

157Gekko commands

T-T Analyse

t1, t2 (Optional). You may state optional time period parameters inside
<>-brackets, for instance FUNCTION series f(<date %t1, date %

t2>, series x); after which %t1 and %t2 are assigned to for

instance 2020 and 2030 in the call f(<2020 2030>, z). If the

function is called without <>-brackets, for instance f(z) , the

parameters %t1 and %t2 are assigned to the local/global time period

instead. Using a <>-brackets in a function call does not in itself
change the local time period inside the function: use for instance the
BLOCK structure to do that. See examples.

type1, ... Types of incoming and outgoing variables: series, val, date,

string, list, map, matrix. You may also use the special name type

for parameters, which behaves 100% as a string inside the

function, but where the single quotes are omitted when calling the
function from outside (the shorter call f(y) is used instead of

f('y')). If the function does not return anything, use void as type.

var1, ... The parameters/variables/expressions

label1, ... (Optional). A label for the parameter, used if the function is
promting (called with f?(...)). See more about prompting below.

default1, .
..

(Optional). A default value for the parameter. If the parameter is
omitted, the default value is used. If the function is asked to prompt
(called with f?(...)) and the parameter is omitted, the default

value is shown in the dialog box. In the dialog box, Enter or Escape

will return the default value, and fire up the next dialog box (for the
next optional parameter). If a ; is entered in the dialog box, all the

remaining parameters attain their default values, and no more
dialog boxes are shown. For string input, the use of quotes (') in the

input box is optional. At the moment, only val, date and string

types can be used for prompting input boxes.

funcname The function name

body The function body, that is, the commands to be performed. Use
RETURN to return a variable. If several variables need to be
returned, use a map or list to bundle them.

Tip: if you need to stop execution at a particular line, try inserting a line with a non-
existing function like for instance stop();. This will abort the program in a clean way

and make it possible to inspect variables etc.

Example

158 Gekko 3.0 user manual

T-T Analyse

Value examples, including multiple return values

The function square() below returns the input VAL squared.

FUNCTION val sq(val %x);
 RETURN %x*%x;
END;
//--------------
%y = sq(4);
%z = sq(sq(4));

So the VAL statement will produce a scalar value %y = 16, whereas %z = 256 (the

function calls may be nested).

Multiple variables may be returned, using a collection like for instance a map:

FUNCTION map f(val %x, val %y);
 RETURN (%sum = %x + %y, %product = %x * %y); //see definition of
a map
END;
//----------------------------
#m = f(3, 7);
PRT #m.%sum, #m.%product; //10, 21

Date example

FUNCTION date add3(date %d);
 RETURN %d + 3;
END;
//------------------------------
%d3 = add3(2000q3);
PRT %d3; //2001q2

String example

FUNCTION string f(string %x);
 RETURN %x + 'shine';
END;
//----------------------
%y = f('sun');
PRT %y; //'sunshine'

If you prefer to omit the quotes when calling the function (that is, f(sun) instead of

f('sun'), you may use the name type:

159Gekko commands

T-T Analyse

FUNCTION string f(name %x);
 RETURN %x + 'shine'; //%x behaves completely like a string
END;
//----------------------
%y = f(sun);
PRT %y; //'sunshine'

List example

FUNCTION val ncommon(list #x, list #y);
 #temp = intersect(#x, #y);
 RETURN #temp.len();
END;
//----------------------
#m1 = x1, x2, x3, x4;
#m2 = x2, x4, x5, x6;
%v = ncommon(#m1, #m2);
PRT %v; //2 common elements

Series example

FUNCTION series idx(series x, date %d);
 RETURN x/x[%d];
END;
//--------------------------------------
TIME 2000 2010;
CREATE x1; SERIES x1 = 10, 11, 12, 13, 11, 14, 16, 17, 15, 19, 20;
PRT x1, idx(x1, 2002), idx(x1, 2008); //index 2002=1 and 2008=1

The function idx() provides indexed values.

Combined example

FUNCTION void load(string %n, string %label, date %d1, date %d2,
val %v);
 CREATE {%n}; //must use {...}-braces to use as name.
 DOC {%n} label = %label;
 SERIES <%d1 %d2> {%n} = %v;
 RETURN;
END;
//-----------------------------------
load('extra1', 'Helper variable', 1980, 2020, 100);
load('vat', 'VAT rate', 1980, 2020, 0.25);
disp extra1, vat;

160 Gekko 3.0 user manual

T-T Analyse

The load() function will create the two timeseries extra1 and vat, both with labels,

and values 100 and 120, respectively. Since the function does not return any
variable, you may use a procedure instead.

Local period example

function series f(<date %t1, date %t2>);
 block time %t1 %t2;
 y = 100;
 end;
 return y; //return statement after the block ends
end;

TIME 2001 2001;
z1 <2002 2002> = f(); //z1 will be 100 in 2002
z2 <2002 2002> = f(<2003 2003>); //z2 will be 100 in 2003
p <2001 2003 n> z1, z2;

// Result:
// z1 z2
// 2001 M M
// 2002 100.0000 M
// 2003 M 100.0000

In the z1 statement, it is seen how the local period <2002 2002> is used inside the

f() function, by means of a BLOCK using the arguments %t1 and %t2. The f() function

itself is not called with time period, and since the time period is absent in the function
call, %t1 and %t2 are assigned to the local period set outside of the f() function.

The z2 statement illustrates a call of f() where a time period is present inside the f()

function. This overrules the local time period 2002-2002.

Promt and default values example

Gekko user-defined functions allow default values, and prompting regarding these.

function val f(val %x1, val %x2 'parameter 2' = 1, val %x3
'parameter 3' = 2);
 return 10000 * %x1 + 100 * %x2 + %x3;
end;
%y1 = f(9, 3, 4); //--> 90304
%y2 = f(9, 3); //--> 90302
%y3 = f(9); //--> 90102
%y4 = f?(9, 3); //enter 5 into the dialog box --> 90305
%y5 = f?(9); //enter 6 and 7 into the dialog boxes --> 90607
%y6 = f?(9); //enter 6 and ';' into the dialog box --> 90602
mem;

Beware that f() or f?() will fail with an error, since the first parameter is required.

As shown regarding the last function call, you may terminate a sequence of input

161Gekko commands

T-T Analyse

boxes with ;, which means the default values are used for the current and following

parameters. Pressing Enter or Escape returns the default value, and opens up the

next input box. For prompt input, only the variable types val, date, string and name
are supported at the moment (for name type, use for instance ... , name %x2
'parameter 2' = 'x', ...).

Note

See also PROCEDURE. A procedure can be thought of as a function without return
values. Procedures and user functions do not live in databanks, and are hence not
affected by CLEAR, CLOSE, READ, etc., but are removed with RESTART or RESET.

If a function is defined without <>-brackets to indicate time, it may still be called
with <>-brackets. In that case, the time period inside the brackets is just ignored.

Note that in Gekko 3.0, multiple return values are handled with maps. In Gekko's
before 3.0, so-called tuples were used to the same effect (such tuples do not work
anymore).

You can at most use 14 arguments, else use maps to bundle incoming arguments. Per
default, all arguments are passed by value, not by reference (cf. OPTION system

clone). This means that functions cannot have so-called side-effects on the incoming

arguments. Maps can be practical for bundling output variables.

It is planned to introduce the type namelist in addition to the name type, so that an

argument like (a, b, c) can mean ('a', 'b', 'c') internally.

Related options

OPTION library file = [filename];

Related commands

PROCEDURE, RUN

162 Gekko 3.0 user manual

T-T Analyse

3.34 GLOBAL

The GLOBAL command is used to designate variable names that are to be located in
the Global databank. Following a GLOBAL x; statement, any subsequent use of x

(without databank designation) will be understood as global:x.

After Gekko leaves the command file, function or procedure, these global variables
live on in the Global databank. Therefore, using GLOBAL or global:x = ... can be

practical regarding permanent storage of variables, for instance settings, without
polluting the 'normal' databanks.

Use GLOBAL<all>; to render all variables global. After a GLOBAL<all>, you can still

search for a bankless variable x outside of the Global databank by means of the

special all: designation (for instance y = all:x;).

See the description of the OPEN command regarding different types of databanks in
Gekko.

See also the similar LOCAL command, for local variables.

Syntax

GLOBAL varnames;
GLOBAL <all>;

varname
s

Comma-separated list of variables

ALL (Optional). With this option, all following (in the rest of the
program/function/procedure) left-hand side variables without explicit
databank designation are located in the Global databank. For a
variable x that you would like to keep in another databank despite

using a GLOBAL<all>, you may use first:x or another bank

designation to circumvent GLOBAL<all>.

Examples

GLOBAL x, %y, #z;

After this, any use of x, %y, or #z (in the present command file, function or

procedure) will be interpreted as global:x, global:%y, and global:#z.

163Gekko commands

T-T Analyse

The Global databank is searched last, if databank searching is active (that is, data- or
mixed mode), cf. databank search.

Variables in the Global databank survive for instance READ and CLEAR commands,
and the Global databank is practical for storing long-term variables like setting etc.
For instance:

global:%per1 = 2010;
global:%per2 = 2050;
global:%path = 'm:\data\scenario2';
global:%unit = 1000;

As long as Global is not cleared explicitly (or a RESET or RESTART is issued), %per1,

%per2, %path, and %unit would be available. In data- or mixed mode, you can just

refer to for instance %per1, provided that there is no %per1 located in other open

databanks. If you want to be absolutely sure that the variable is taken from Global,
you can use global:%per1 to refer to the variable.

To avoid all the global: indicators, you may consider this alternative, using a

procedure for the global settings:

RESET;
PROCEDURE globals;
 GLOBAL<all>;
 %per1 = 2010;
 %per2 = 2050;
 %path = 'm:\data\scenario2';
 %unit = 1000;
END;
globals; //call the procedure
//
// the rest of the program here
//

Note

You are not forced to use the GLOBAL keyword, when operating with global variables.
Defining global:%per1 = 2010; first, and referring to global:%per1 later on is

possible, too. In that sense, the GLOBAL keyword is just for convenience, especially if
%per1 is used several times.

Variables in the Global databank are practical for settings, etc. These variables
survive READ, CLEAR, etc., and do not 'pollute' the first-position databank if this is
later on written to file.

164 Gekko 3.0 user manual

T-T Analyse

Note that the Local or Global databanks are always searchable, independent on MODE
etc.

Related commands

LOCAL

165Gekko commands

T-T Analyse

3.35 GOTO

GOTO can be used to transfer execution to some other point (TARGET) in the
program.

You should mostly use this statement to jump out of loops (cf. the example below). It
is not intended for jumping around in plain non-looping code, where the presence of
GOTO/TARGET may render the programs slow-running and hard to read.

Syntax

GOTO name;

The label must be name-like, that is, alphanumeric characters including underscore
(and not starting with a digit). You can not use scalars or expressions etc. as labels.

Examples

%sum = 0;
FOR val %i = 1 to 5;
 IF(%i == 4);
 GOTO lbl1;
 END;
 %sum += %i;
END;
TARGET lbl1;

This example skips the iterations before the fourth iteration is about to be executed.
The value of %sum will be 6 (= 1+2+3, not 1+2+3+4+5).

The example below is NOT what the command is intended for:

TELL 'a'; GOTO x1;
TARGET x2; TELL 'c'; GOTO x3;
TARGET x1; TELL 'b'; GOTO x2;
TARGET x3; TELL 'd';

This prints 'a', 'b', 'c', 'd', but please use other means to organize the flow of your
gcm-file!

Note

166 Gekko 3.0 user manual

T-T Analyse

Target names cannot be duplicated. An error will be issued.

The program will also fail with an error, if the label does not exist. But 'orphaned'
labels are accepted (a TARGET without a corresponding GOTO).

You cannot call a target inside a loop, from outside the same loop. For instance, the
following will fail, and an error will be issued:

%sum = 0;
GOTO lbl1;
FOR val %i = 1 to 5;
 TARGET lbl1;
 %sum += %i;
END;

Eternal loops may be accidently created, for instance the line TARGET lbl1; GOTO

lbl1; will run forever. This example is easy to spot, but such problems may arise if

the GOTO structure is misused. It has been proven that the GOTO statement is
technically superflous, and it can lead to so-called spaghetti code (cf. Dijkstra: "Go To
Statement Considered Harmful").

At a later point, BREAK and CONTINUE might be added to Gekko loops, too.

Related commands

TARGET

167Gekko commands

T-T Analyse

3.36 HDG

HDG (heading) will put the heading into a databank file. This only works for .gbk
files.

Syntax

HDG heading ;

heading A string

Examples

Putting a heading on a databank can be useful:

HDG 'Bank for multiplier analysis, simulated 2010-2050';
WRITE mulbank ;
READ mulbank ;

When reading the .gbk databank, info like this is printed on the screen:

 Info : Bank for multiplier analysis, simulated 2010-2050
 Date : 26-10-2011 11:13:31

The heading will also be shown in the databank list (F2 button).

Databank files in .gbk format can contain meta-information like headings and date
and time when written.

Related commands

WRITE, READ

168 Gekko 3.0 user manual

T-T Analyse

3.37 HELP

The HELP command (or F1) provides access to Gekko help system. Through the HELP
command it is possible to get quick help on a command and its syntax, examples, etc.

The help system opens up in a separate window and is of the type "Compiled HTML
Help" (stored in a .chm file). The help system is browsable/searchable. It is typically
not possible to open the .chm from a network drive. Per default Gekko copies the
.chm file to a temporary folder on the user's hard disk, in order to avoid this problem.

The help files are also available online here. The online version is not updated as
often as the inbuilt version (.chm).

Syntax

HELP command;

command (Optional). The command on which help is needed. If the
command does not exist, the help system will indicate that the
file is missing. Opening up with just HELP; is possible, but in

that case pressing F1 is easier. Using the menu: 'Help' -->
'Gekko help file' is also possible.

Examples

If, for instance, you are in doubt about the syntax regarding the SERIES command,
you may look directly for this topic in the help file:

HELP series;

If you cannot remember that the name of the relevant command is SERIES (for
instance), you may write

HELP;

In the section "Gekko commands", there is a page called "Command overview" where
the commands are grouped by categories. Else, the .chm help system is also
searchable, cf. the "Search" tab.

https://t-t.dk/gekko/user-manual/

169Gekko commands

T-T Analyse

Related options

OPTION folder help = [empty];
OPTION interface help copylocal = [yes|no];

Related commands

OPTION

170 Gekko 3.0 user manual

T-T Analyse

3.38 IF

The IF command is used for conditional execution of different blocks of statements.
The IF statement works with strings, dates, and values (or for instance single
timeseries observations like x[2010]).

You may sometimes need to explicitly convert the variables in order to compare them
(by means of the functions val(), date() or string()).

If you need to perform IF-like operations inside a SERIES, you may use $-
conditionals on expressions, or the iif() function. See examples in the SERIES
section.

The IF-statements work with operators like for instance IF (%x == 100); ...;

END;, testing if %x has the value 100. But IF-statements also works with single

values, like IF (%x); ...; END;. In that case, the statements are not executed if %x

has the value 0, and are executed otherwise.

Syntax

IF (expression);
 statements1... ;
ELSE;
 statements2... ;
END ;

expression A logical expression involving strings, dates or values (or single
timeseries observations like x[2010]), in addition to the logical

operators AND, OR, NOT, <, <=, ==, >=, >, <>. Please note that logical

equivalence uses == (and not = which is assignment) , and that

you must use <> for logical difference, not for instance !=.

If the expression is a scalar value, the statements are not
executed if the scalar value is 0, and are executed otherwise.

statements1 Gekko commands to be executed if expression is true.

statements2 (Optional). Gekko commands to be executed if expression is false.

Example

171Gekko commands

T-T Analyse

See more examples involving IF in loops in the FOR help file. A very simple example
using the string scalar variable.

%write = 'yes';
IF (%write == 'yes'); //note the use of '==', using '=' here
will fail
 TELL 'Yes chosen';
ELSE;
 TELL 'No chosen';
END;

To choose between more choices (and test validity of %write), you may use:

%write = 'yes';
IF (%write == 'yes');
 TELL 'Yes chosen';
ELSE; IF (%write == 'no');
 TELL 'No chosen';
ELSE; IF (%write == 'maybe');
 TELL 'Maybe chosen';
ELSE;
 TELL 'ERROR: The scalar variable should be yes, no or maybe';
END; END; END;

This is a little awkward with the three ending ENDs (a 'real' ELSEIF statement will be
provided later on to provide easier syntax for several cases).

%v = 2000;
%s = '2000';
date %d = 2000; //without 'date' it becomes a value
IF (%v == val(%s) AND %v == val(%d) AND date(%s) == %d)
 TELL 'Ok';
ELSE;
 TELL 'Not ok';
END;

This will print 'Ok'. Note that you have to explicitly convert the variables to be able to
compare them, otherwise you will get an error. In this case, the conversion functions
val() and date() are used. The conversions may seem obvious and superfluous here,
but consider this example:

%s = '100';
%s1 = '33';
%v = 133;
IF (%v == %s + %s1) //Will give type mismatch error
 TELL 'Ok';
END;

172 Gekko 3.0 user manual

T-T Analyse

This gives an error, because Gekko does not know how to compare the value 133
with the string '10033' (the sum of the two strings taken literally). So

IF (%v == val(%s + %s1)) //will be false, comparing 133 and
10033

or this:

IF (%v == val(%s) + val(%s1)) //will be true, comparing 133 and
133

To avoid ambiguities, the type system in Gekko is quite strict. To access individual
observations from a series in the first-position databank, use the variable[period]

syntax:

TIME 2010 2012;
//CREATE data; //use this in sim-mode
data = 1, 2, 3;
DATE %d = 2011; %v = 2;
IF(data[%d] == %v) TELL 'Ok'; END;

This will print 'Ok'. To compare and transform timeseries depending upon individual
observations, see the iif() function.

The $-conditional can often be used instead of IF, for instance:

IF(x[2015] == 100);
 y = 2;
ELSE;
 y = 0;
END;

This can be stated in the following much simpler way, using the $-conditional.

SERIES y = 2 $ (x[2015] == 100);

Note

· Note the use of two equal signs (==) in IF-commands, and <> for logical difference.

· There is also an exist(x) function that returns 0 or 1 depending upon whether the

series x exists or not.

· See the iif() function for logical conditions inside timeseries observations.

173Gekko commands

T-T Analyse

· You may ask a list if it has a particular member (will return 1 for true, and 0 for
false). For instance 'a' in #m is true if #m contains 'a'. Therefore, you may for

instance use IF('a' in #m) without logical operator. The alternative syntax

#m.contains('a') is equivalent.

Related commands

FOR, END, STRING, DATE, VAL

174 Gekko 3.0 user manual

T-T Analyse

3.39 IMPORT

The IMPORT command merges data (typically series) from an external file into the
first-position databank. The IMPORT statement is primarily for non-.gbk files, and it
should be noted that IMPORT without options restricts data to the global time period,
it only puts data into the first-position databank, and it merges data with any pre-
existing data in the first-position databank.

Import supports collapsing (aggregating) data points of high frequency into monthly,
quarterly or annual series, cf. the <collapse> option.

Compatibility note: If a time period is not indicated in the <>-option field, Gekko
3.0 will only import data inside the global time period. Before Gekko 3.0, all data
would have been imported. To emulate previous behavior, you can use
IMPORT<all>. Alternatively, you may set "OPTION bugfix import export = yes;". If
the option is set, IMPORT and EXPORT will work as in pre-3.0 versions. The option
will be removed at some point, so it is better to change occurrences of date-less
IMPORT to IMPORT<all> in old command files.

Tabular formats note: When using IMPORT with xlsx, csv or prn files, it is advised
to first set the global frequency (option freq = ...) to the frequency of the data

file (temporary frequency change can be done with BLOCK freq ...; IMPORT ... ;

END;). With DATEFORMAT and DATETYPE at their default values, dates like 1990a1,

1990y or 90 are treated as annual 1990. A date like 199003 is treated as 1990q3 or

1990m3, if global frequency is set to q or m. To import data with undated (u)

frequency, the global frequency should be set to u first.

IMPORT is intended for non-.gbk files, and can be thought of as a soft version of
READ. In contrast to READ, IMPORT does not clear the first-position databank
(instead it merges data), it only imports data corresponding to the global time period
(unless a time period or <all> is used), and it does not alter the Ref databank. There
are the following equivalences: IMPORT = READ<first merge respect>, and the
inverse: READ = CLEAR<first> + IMPORT<all> + CLONE.

Syntax

IMPORT < period format ALL ARRAY COLS REF SHEET=... CELL=...
 NAMECELL=... DATECELL=... COLLAPSE=... METHOD=... DATEFORMAT=...
DATETYPE=... > filename TO bankname;

period (Optional). Without a time period indicated, Gekko will import all
the data for all observations. When a period is indicated, the
databank is time-truncated.

175Gekko commands

T-T Analyse

format (Optional). Choose between CSV, FLAT; GDX, PCIM, PRN, PX, TSD,
TSP, XLS, XLSX.

· CSV: Comma-separated file. Tabular format with rows/cols
consisting of names and dates. The global frequency (OPTION
freq) must correspond to the frequency in the file.

· FLAT: A Gekko-specific text-based format with lines that
resemble Gekko series statements. The format is: variable name
+ start date + end date + numbers. These items are separated
by blanks, for instance "x 2020 2022 1.5 -2.5 3.5". This
corresponds to x <2020 2022> = 1.5, -2.5, 3.5;. If only one

number is given, it will be used for the full time period. You can
use 'm' or 'm()' to indicate a missing value. Blank lines and lines
beginning with '//' are ignored. This format reads much faster
than 'real' series statements (which have to be parsed and
compiled before the values are extracted).

· GDX: A binary GAMS-database. Note OPTION gams exe folder

= ... where it is possible to point to the exact GAMS folder

(otherwise the system will try to auto-locate GAMS). It seems
necessary to use a 32-bit version of GAMS, since the current
version of Gekko is 32-bit. Please note that the data is read as
array-timeseries (see SERIES), and that Gekko only reads
variables, parameters, sets (as Gekko lists) and domains. GAMS
can be freely downloaded as a demo, and the demo will work fine
regarding Gekko IMPORT. Default options are OPTION gams time
set = 't'; OPTION gams time prefix = ''; OPTION gams

time offset = 0; OPTION gams time detect auto = no;.

This corresponds to time having the set name 't', with natural
values, for instance 2020, 2021, etc. Default GAMS read is using
a fast reader (low-level API). If this poses problems, try the more
robust normal API by setting OPTION gams fast = no;. See

more under OPTION.
· PCIM: A binary PCIM databank.
· PRN: The first item in the prn format must be either 'date' or

'name' to indicate the orientation. The global frequency (OPTION

freq = ...) must correspond to the frequency in the file.

· PX: Imports a PC-Axis file. See also the <array> option. See
more info regarding the px format and how Gekko reads it under
the DOWNLOAD command.

· TSD: For interchange with AREMOS and others.
· TSP: Imports TSP records.
· XLS and XLSX: Tabular format with rows/cols consisting of

names and dates. If you need to pick out Excel data from
particular cells, see SHEET<import>. The global frequency
(OPTION freq = ...) must correspond to the frequency in the

file. The engine used for Excel reading can be changed with
OPTION sheet engine = ...;.

https://www.gams.com/download/
http://www.scb.se/sv_/PC-Axis/Start/
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

176 Gekko 3.0 user manual

T-T Analyse

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.
If the filename is set to '*', you will be asked to choose the file in
Windows Explorer.
The extension .gbk is automatically added, if it is missing.

ALL (Optional). With this option, all observations are imported,
regardless of the global time period. This corresponds to pre-3.0
Gekko behavior.

REF (Optional). Reads the file into the reference databank (shown as
REF on the F2 window list). Note that the Ref/reference databanks
does not show up in the F2 window if it is empty.

COLS (Optional). For .csv or Excel files, this indicates whether the
timeseries are running downwards in columns. Note that for .prn
files, you indicate this in the first 'cell' (date/name).

TO (Optional). If "TO bankname" is indicated, Gekko will put the data
into a seperate 'named' databank alongside the Work and Ref
databanks. For instance, after IMPORT <xlsx> adambk TO a;, you

may refer to the variables by means of colon, for instance PRT

a:var1;. If you use IMPORT <xlsx> adambk TO *;, the bankname

will be the same as the file name. It should be noted that the
databank will be read-only (non-editable) when opened like this
(this functionality is a subset of the OPEN command)

ARRAY (Optional). Regarding the PX format, if this option is set, Gekko
will put the data into array-timeseries rather than normal
timeseries (for the GDX format, Gekko always puts into array-
timeseries per default).

CELL= (Optional). For Excel files: the first cell of the data section.
Defaults to 'B2'.

DATECELL= (Optional). For Excel files: the first cell of the dates labels.
Calculated from CELL location if not provided.

NAMECELL
=

(Optional). For Excel files: the first cell of the names labels.
Calculated from CELL location if not provided.

COLLAPSE= (Optional). For Excel files with Excel-dates that are going to be
collapsed, this option can be set to either m, q or a and indicates
the frequency that the data points are being collapsed into. A data

177Gekko commands

T-T Analyse

point is an Excel date and a corresponding value, for instance 24-
Dec-2010 with the value 123.45. In your Excel version, this date
might be shown as 24/12/2010 (British English) or 12/24/2010
(US English) or in other formats, but internally there is no
confusion, since the Excel dates are stored as values (technically
the number of days since January 1, 1900). See the collapse
example below.

METHOD= (Optional: default = total). For Excel files using COLLAPSE, the
METHOD option sets how the collapse (aggregation) is performed.
Choose between total, avg, first, last, count, cf. also the COLLAPSE
command. Use "method=count" to check that data is being
collapsed as desired, and note that "method=avg" amounts to
"method=total" divided by "method=count". After collapsing into
monthly or quarterly timeseries, X12A may be used for seasonal
adjustment.

DATEFORM
AT=
DATETYPE=

(Optional). These options control the date format for .xlsx and .csv
files. DATEFORMAT can be either 'gekko' (default) or a format

string like 'yyyy-mm-dd', and the latter may contain a first or

last indicator, for instance 'yyyy-mm-dd last', which indicates

for quarterly or monthly data that the last day of the quarter or
month is used. DATETYPE can be either 'text' or 'excel'. In the

former case, the dates are understood as text strings (for instance
'2020q3' or '2020-09-30' for a quarterly date), and in the latter

case (not relevant for .csv files), the date is understood as an
Excel date, which basically counts the days since January 1, 1900.
This number would correspond to 44104 for the date 2020-09-31,
and can be shown in Excel in different ways depending upon date
format settings, language settings, etc., but the internal number
itself is unambiguous. [New in 3.0.5].

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Examples

Reading data from the file data.xlsx (spreadsheet) can be done with:

IMPORT <xlsx> data;

or by the following:

IMPORT <xlsx> *;

178 Gekko 3.0 user manual

T-T Analyse

and then selecting the file. You can use paths etc.:

IMPORT <tsd> otherbanks\adam3;

This will look for adam3.tsd in the subfolder 'otherbanks', relative the the Gekko
working folder.

Use the TO keyword like this:

IMPORT <xlsx> forecst2 TO f2;

This reads forecst2.xlsx into the named databank f2. After this, you may use for

instance PRT f2:gdp; to print out the timeseries gdp from this databank. You may

use IMPORT <xlsx> forecst2 TO *; if you wish to use the filename as databank

name. It is possible to use for instance IMPORT <xlsx> * TO *;.

Using IMPORT for csv or Excel files is only implemented for 'well-formed'
spreadsheets. That is, with data starting in the first column and first row, and with
either timeseries running left-to-right (normal for .csv files) or downwards (less
normal). You may use IMPORT<csv cols> or IMPORT<xlsx cols>, if the timeseries

are running downwards. If you need to pick out data from Excel cells more arbitrarily,
see the SHEET<import> command.

Example, collapse

Excel data may be collapsed from higher frequencies than months (for instance from
daily or weekly observations), if the dates are represented as 'Date' types in Excel.
Example:

IMPORT <xlsx sheet='oil' collapse=m> highfreq.xlsx;

The Excel sheet might look like this:

19-1-2011 20-1-2011 21-1-2011 24-01-2011 25-01-2011

oil_crude 1 2 3 4 5

oil_refin
ed

2 4 6 8 10

Using this, it is expected that the timeseries run row-wise, with data starting at cell
B2. Hence, the first date should be found at B1, and the dates should continue at

179Gekko commands

T-T Analyse

cells B2, B3, etc. The first name should be at cell A2, and the names should continue
at cells A3, A4, etc. In the example, the timeseries will be collapsed into monthly
frequency, in the following way. For each date in the dates row, the month of this
particular date is found, and the data is put into that particular month for each
timeseries. Since the default method is 'total', the data is being summed for each
month. You may use "collapse = q" or "collapse = a" to collapse directly into quarterly
or annual data (this is better and simpler than using the COLLAPSE command on the
resulting monthly timeseries).

If needed, the X12A command can then be used for seasonal adjustments. If you only
want to obtain parts of the timeseries, you may restrict with a time period, for
instance:

IMPORT <2000m1 2018m5 xlsx sheet='oil' collapse = m> highfreq.xlsx;

If you prefer averages, use "method=avg":

IMPORT <xlsx sheet='oil' collapse=m method=avg> highfreq.xlsx;

To check that there is a similar number of data points for each month, you may use
"method=count" and print/plot the resulting series to check this (particularly relevant
regarding the start and end of the range of Excel dates). As noted above,
"method=avg" amounts to "method=total" divided by "method=count".

The data does not need to start at cell B2. If, for instance, the first data cell is at
G10, you may use:

IMPORT <xlsx sheet='oil' cell='g10' collapse=m> highfreq.xlsx;

Here, Gekko will expect the first date cell to be at G9, and the first name cell to be at
F10. If there are rows/cols between the dates/names and the data cells, you may
indicate the precise location of the dates/names:

IMPORT <xlsx sheet='oil' cell='g10' datecell='g1' namecell='a10'
 collapse=m> highfreq.xlsx;

In this particular case, the dates/names are located in the first row and column of the
spreadsheet. If the timeseries run downwards in columns, you may use <cols> for
transposed importing:

IMPORT <xlsx cols sheet='oil' collapse=m> highfreq.xlsx;

Note: when using this functionality, you may 'collapse' for instance monthly data into
its own frequency. In that case, using <method=count> should produce timeseries
with value 1, indicating that there is only 1 observation for each month (otherwise

180 Gekko 3.0 user manual

T-T Analyse

something is wrong regarding the Excel sheet). Note also that dates in Excel are
represented as the number of days since January 1, 1900. These dates may contain
fractions, so 1 hour is represented by 1/24, etc. Keep this in mind if you are using
<datecell=...>. If this points to a sequence of numbers that are not dates, these
numbers may be erroneously interpreted as dates!

Note

To convert a .tsd file or other formats into a .gbk file, just import it with
IMPORT<tsd>, and WRITE it. Please note that a .tsd file operates with 8 significant
digits (or less), so there will typically be a loss of precision compared to a .gbk file
(which is in double-precision).

The option 'copylocal' below copies the targeted file to a temporary file on the user's
local hard disk before reading. This copying is typically very fast, and afterwards
reading the temporary file is faster and more reliable, if the targeted file is located on
a network drive. In general, this is a recommended option that alleviates some
potential network problems.

Related options

OPTION databank file copylocal = yes;
OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];
OPTION gams exe folder = [empty];
OPTION gams fast = yes;
OPTION gams time set = 't';
OPTION gams time prefix = '';
OPTION gams time offset = 0;
OPTION gams time detect auto = no;
OPTION sheet engine = internal; //use 'excel' for the older .xls format

Related commands

READ, WRITE, EXPORT, OPEN, CLONE, DOWNLOAD, COLLAPSE

181Gekko commands

T-T Analyse

3.40 INDEX

The command is used to search for variables in databanks, using wildcards or ranges.
The result of the search may be put into a list.

Note that 'naked' wildcards are allowed in this command, so you may for instance use
the shorter a*b instead of {'a*b'}.

A wildcard like * does not match everything in Gekko: it only matches (in the first-

position databank) variables with no % and # type symbols, and only matches the

current frequency. You may use the special wildcard ** to match all variables in a

databank, or *** to match all variables in all databanks.

Beware: if one or more of the databanks contains many variables, this output may
become voluminous. Use INDEX<mute> or COUNT if you prefer to avoid the output.

Wildcard logic, including double and triple stars etc., is explained more generally on
the wildcards page.

Syntax

INDEX <MUTE BANK=... SHOWBANK=... SHOWFREQ=... > type wildcards TO
 listname ;

MUTE (Optional). If set, Gekko will not print the list of found items on
the screen. The COUNT command is essentially an
INDEX<mute>.

BANK= (Optional). A databank name indicating where the variables are
to be located.

SHOWBANK
=

(yes|no|all), default = 'yes'. If this option is 'no', banknames are
not included in the items. If the option is 'all', banknames are
always included in the items. If the option is 'yes' (default),
banknames are included in the items, except if the bankname is
the same as the first-position databank.

SHOWFREQ
=

(yes|no|all), default = 'yes'. If this option is 'no', frequencies are
not included in the items. If the option is 'all', frequencies are
always included in the items. If the option is 'yes' (default),
frequencies are included in the items, except if the frequency is
the same as the current frequency.

type (Optional). Restrict the type of variables.

182 Gekko 3.0 user manual

T-T Analyse

wildcard The variables to be searched for. You may use banknames to
indicate a particular bank, and you may separate the wildcards
with commas. In general, wildcards are of the form a*x to find all

variables starting with 'a' and ending with 'x', or a?x to match

only one character.

listname (Optional). The list name where the result is stored. The listname
may be for instance #m, or #(listfile m). The list is always a list

of strings (names of variables), not the objects themselves.

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The following provides a list of all variables in all databanks, including banknames
and frequencies (beware, this output may be voluminous if the databanks are large):

INDEX <showbank=all showfreq=all> ***; //all
variables in all banks
INDEX <showbank=all showfreq=all> *:**; //the same
INDEX <showbank=all showfreq=all> *:%*, *:#*, *:*!*; //the same

A string (or list of strings) representing variable names may be manipulated by
means of Gekko's inbuilt functions to handle these. Variable names here include
bank, frequency, indexes, etc., and examples of such functions could be setBank(),
removeBank(), replaceBank(), setFreq(), removeFreq(), setNamePrefix(), etc. There
are many more of such functions, see the functions section, under
‘Bank/name/frequency/index manipulations’.

For instance, if you have a list #m = ('x', 'y');, you may use PRT {#m}; to print

out x and y, PRT {#m.setBank('b')}; to print out b:x and b:y, or PRT

{#m.setFreq('q')}; to print out x!q and y!q (here, PRT b:{#m}; and PRT {#m}!q;

will work, too).

Examples

The following INDEX command will look for timeseries beginning with 'f' in the first-
position databank (and with the current frequency), and put the result into #m.

RESET;
fa = 1; fb = 2; fc = 3;
INDEX f* TO #m; //result: 'fa', 'fb', 'fc'
PRT #m; //prints the three strings
PRT {#m}; //prints the three series

183Gekko commands

T-T Analyse

INDEX will print the list of found variables, unless the <mute> option is used. To look
for the same pattern/wildcard in the Ref databank:

RESET;
ref:fa = 1; ref:fb = 2; ref:fc = 3;
INDEX ref:f* TO #m; //result: 'ref:fa', 'ref:fb', 'ref:fc'
PRT #m; //prints the three strings
PRT {#m}; //prints the three series

Here, the bankname is included, since Ref is not the first-position databank. You may
search in all banks like this:

RESET;
fa = 1; fb = 2; fc = 3;
CLONE;
INDEX *:f* TO #m; //result: 'fa', 'fb', 'fc', 'ref:fa',
'ref:fb', 'ref:fc'
PRT #m; //prints the six strings
PRT {#m}; //prints the six series

Instead of the above, you could alternatively use this:

RESET;
fa = 1; fb = 2; fc = 3;
CLONE;
#m = ['*:f*']; //result: 'fa', 'fb', 'fc', 'ref:fa',
'ref:fb', 'ref:fc'
PRT ['*:f*']; //prints the six strings
PRT {'*:f*'}; //prints the six series themselves
DISP *:f*; //also prints them: DISP does not need
{'...'}-syntax for wildcards.

In the light of the above example, the reader may ask: why use the INDEX command
at all? The answer is three-fold:

· Often, one would just like to see the result of a wildcard search, without putting the
result into any list. To that end, for instance INDEX *:f*; is practical.

· In addition to the above, for INDEX, the ['....'] part of the wildcard can often be

dropped, using the shorter INDEX *:f*; instead of using {'*:f*'} or ['*:f*'].

The shorter notation does not work generally for all command types, for instance

#m = *:f*; or PRT *:f*; would fail with an error. Do not expect "naked"

wildcards to work in commands that accept mathematical expressions.
· The INDEX command provides options regarding the search. For instance, INDEX

string %*; only matches string scalars. You may also indicate the bank in which

the variables are searched, and you may indicate how you want bank and
frequency information shown in the resulting list.

For instance:

184 Gekko 3.0 user manual

T-T Analyse

RESET;
fa = 1; fb = 2; fc = 3;
CLONE; //copies the series into the Ref
databank
INDEX {'*:f*'}; //just prints 'fa', 'fb', 'fc',
'Ref:fa', 'Ref:fb', 'Ref:fc'
INDEX *:f*; //same, shorter
INDEX <bank=ref> f*; //same as ref:f*, result = 'Ref:fa',
'Ref:fb', 'Ref:fc'
INDEX <showbank=no> *:f*; //omits banknames, result = 'fa',
'fb', 'fc', 'fa', 'fb', 'fc' (note dublets)
INDEX <showbank=all> *:f*; //all banknames, result = 'Work:fa',
'Work:fb', 'Work:fc', 'Ref:fa', 'Ref:fb', 'Ref:fc'
INDEX <showfreq=all> *:f*; //all freqs, result = 'fa!a', 'fb!a',
'fc!a', 'Ref:fa!a', 'Ref:fb!a', 'Ref:fc!a'
INDEX string {'%*'}; //indicate type of variable, will
find all strings in first-position bank

Matching rules: the wildcard * does not just match any variable. The wildcard * does

not match starting characters % or # at the start of the variable name, nor does it

match any frequency indicators at the end of the variable name (for instance !a or

!q). So the following rules apply:

· * matches all series of the current frequency in the first-position databank

· *!* matches all series of all frequencies in the first-position databank

· %* matches all scalars in the first-position databank

· #* matches all collections in the first-position databank

· ** matches all variables in the first-position databank

The last two-star wildcard is special, and can be understood as ** = *!* + %* + #*. If

you need to perform the same search in a particular databank, or in all databanks,
just add bankname and colon:

· *:* matches all series of the current frequency in all databanks

· *:*!* matches all series of all frequencies in all databanks

· *:%* matches all scalars in all databanks

· *:#* matches all collections in all databanks

· *:** matches all variables in all databanks

You may of course indicate a particular databank, for instance b2:*. To match

everything, use the following three-star wildcard:

· *** matches all variables in all databanks, that is, 'everything'.

Note

If you use variable names without wildcards or ranges, an existence check is
performed. The variable name will be kept in the resulting list only if the variable
exists.

185Gekko commands

T-T Analyse

You may also try SERIES ?;.

See also the wildcards page regarding wildcards, syntax, etc.

Related commands

LIST, COUNT

186 Gekko 3.0 user manual

T-T Analyse

3.41 INI

The INI command runs any gekko.ini file, if this file is present in the program folder
(where gekko.exe is located) and/or working folder.

See concrete examples of INI files in the RESTART help file.

Syntax

INI ;

Note

The RESTART command is in reality a RESET command followed by an INI command.
If no gekko.ini files are present, RESTART and RESET are equivalent.

Note: With OPTION interface remote = yes;, Gekko may be remote-controlled

from a special remote.gcm command file in the working folder (cf. OPTION).

You maybe put a gekko.ini next to gekko.exe, so that every time Gekko is started up,
you can be sure that this gekko.ini is run. This can be practical for very general
settings, like MODE, initial time period, file folders etc. Alternatively, you can put a
gekko.ini in your working folder, so that this gekko.ini will be run when Gekko starts
up in that folder. You may put a gekko.ini in both locations, in which case the
gekko.ini next to gekko.exe will be run first.

Settings etc. in a gekko.ini file can with advantage be put in the Global databank, for
instance global:%start_period = 1980;. Variables in the Global databank survive

READ, CLEAR, etc., and do not 'pollute' the first-position databank if this is later on
written to file.

Related commands

RESTART, RESET

187Gekko commands

T-T Analyse

3.42 INTERPOLATE

INTERPOLATE transforms one lower-frequency timeseries to a higher-frequency
timeseries, for instance converting annual data to quarterly data. Use COLLAPSE to
perform the inverse transformation.

Syntax

INTERPOLATE vars1 = vars2 method;

vars1 Higher frequency timeseries. Frequency can be indicated with
suffix !a, !q or !m. Banknames may be used. Lists can be use like

for instance {#m}.

vars2 Lower-frequencey timeseries. Frequency can be indicated with
suffix !a, !q or !m. Banknames may be used. Lists can be use like

for instance {#m}

method (Optional). Choose between:

· repeat: Repeats the lower-freq observation (rep may be used as

synonym)
· prorate: Also repeats, but divides the result so that the sum of

the higher-freq observations corresponds to the lower-freq
observation.

Note: default is repeat. More methods may be added by popular

demand.

· If a variable without databank indication is not found in the first-position databank,
Gekko will look for it in other open databanks if databank search is active (cf.
MODE).

Example

Use this to convert frequency:

INTERPOLATE x!q = x!a;

188 Gekko 3.0 user manual

T-T Analyse

Since the method is repeat as default, this will create the quarterly timeseries x

where each quarterly observation in x!q is the same as the corresponding annual

observation in x!a.

INTERPOLATE qbank:x!q = abank:x!a prorate;

With option prorate, the quarters will sum up to x!a instead of just being repeated.

 Note

If a frequency indicator is omitted, Gekko will use the current frequency.

More to come by popular demand, for instance using patterns, splines, etc., to create
the high-frequency series.

Related commands

COLLAPSE, SERIES, CREATE, PRT

189Gekko commands

T-T Analyse

3.43 ITERSHOW

The command ITERSHOW show details of previous Gauss-Seidel iterations (cf. SIM).

Syntax

ITERSHOW < period > variables;

period (Optional). Local period, for instance 2010 2020, 2010q1

2020q4 or %per1 %per2+1.

variables Variable(s) or a list like {#m}.

Example

Use this syntax to show iterations for the variable gdp for the year 2010:

ITERSHOW <2010 2010> gdp;

Details

The command produces output containing (for each iteration) the value of the
endogenous variable before and after simulating the Gauss-Seidel loop, and
differences, different criteria etc.

The output shows the iteration number, values before and after the iteration. The
next column "Hist. var" is the historical variance/variability in the data, obtained by
means of looking at lagged historical values of the endogenous variables.

The next column is the difference between the values before and after the iteration,
and "Relative1" is this difference divided by the historical variance. This is the
criterion Gekko uses for relative convergence per default.

The last column is the difference divided by the value before the iteration.
"Relative2" is the criterion used in the software package PCIM. So "Relative1"
corresponds to setting "OPTION solve gauss conv = conv1" (default), and "Relative2"
corresponds to setting "OPTION solve gauss conv = conv2".

190 Gekko 3.0 user manual

T-T Analyse

It is often the case that "Relative1" is larger than "Relative2", so using this criterion
is stricter and would demand more iterations given the same relative criterion
(0.0001 for instance). Sometimes the inverse is true, however, especially when the
"Before" value is close to zero, whereas the historical variability is large. In that case,
the PCIM-like criterion ("Relative2") would be stricter. But often this will just
postpone the solution, in case the variable just happens to be have a solution close to
zero in that particular year (but without being close to zero in general). Examples of
this could be balances and flows, for instance the balance of payments, net
investments, revaluation ("omvurderinger") etc. Close-to-zero solutions for such
variables are different in kind from variables with levels generally close to zero (in
ADAM, for example interest rates). Looking at historical variability as done in Gekko
is actually a means to try distinguishing such classes of variables from each other
regarding convergence. If, for instance, the balance of payments can change by an
amount of around 20000 (million DKK) from year to year, and the true solution in a
particular year just happens to be 1 million DKK, we are not interested in obtaining
an extreme precision (i.e., many digits after the decimal point) regarding that
particular value. If the variable normally can change by an amount of 20000 from
year to year, a solution of 2 is nothing to worry about, even if the true solution is 1.
Whereas if the true solution regarding an interest rate is 0.04, an alternative solution
of 0.08 is worrying.

Note

In order for this command to work, OPTION solve gauss dump must first be set to

yes, and a simulation performed. Beware that setting this option consumes a lot of

RAM when simulating, and also slows simulations down. In case of a RAM error, try to
limit narrow the time period.

Related commands

SIM

191Gekko commands

T-T Analyse

3.44 LIST

A Gekko list contains sequentially ordered variables (elements) of any type. List
names always start with the symbol #, like the other collection types map and matrix.

You may refer to list elements by means of indexes, for instance #m[1] for the first

element of #m. Listfiles can be used, using for instance #(listfile m) instead of #m,

where the list elements are stored in the external file m.lst instead of in a databank.
See examples.

Upgrade note

In Gekko 2.x, a list could be stated like for instance LIST m = #m1, a, #m2, b;.

Lists could only contain strings, so the command meant taking the strings from
#m1, adding the string 'a', adding the strings from #m2, and finally adding the

string 'b'. In Gekko 3.0, a list can be added to another list in two ways: either

adding the list itself (creating a nested list), or adding the list elements one by
one (like Gekko 2.x). The former operation is called append() in Gekko 3.0, and
the latter operation is called extend(), so the statement would be translated into
#m = #m1.append('a').extend(#m2).append('b');. Instead of this, you may

use the + operator, so #m = #m1 + ('a',) + #m2 + ('b',); will work, too. Note

the use of ('a',), which is a single-item list, where the comma cannot be omitted

(alternatively: use list('a')). Note also that #m = (#m1, 'a', #m2, 'b'); is

different in 3.0, creating a nested list.

These changes may seem cumbersome, but Gekko lists are much more powerful
in the 3.0 version, and the syntax changes are necessary to support that. To
alleviate some of the syntax burden, so-called naked lists like #m = a, b, c; are

allowed in 3.0, cf. below. Using a naked list, the above example can be written as
#m = {#m1}, a, {#m2}, b;. This is perhaps the easiest way to concatenate lists

and strings like in Gekko 2.x.

A general list is defined with parentheses and commas, for instance #m = ('a', 120,

2020q3);. In that case, the list contains a string, a value, and a date. In the special

case where all the list elements are simple alphanumeric words (including '_') without
special characters, you may use for instance #m = a, a38, 7z, 5, 007, 2001q1;

instead of the more cumbersome #m = ('a', 'a38', '7z', '5', '007',

'2001q1');. The 'naked' version without parentheses and quotes is practical for lists

of names etc. If all the list elements are values, like #m = 1, 2, 3;, a list of values

is produced instead of a list of strings (among other things, this is practical regarding
the series statement, for instance y = 1, 2, 3;). A naked list either returns a list of

strings or a list of values, cf. the page on naked lists.

You may may use the operators += and -= to add or subtract elements from a list

(this works for naked lists, too: #m = a, b; #m += c, d; #m -= c, d;). If you need

to use a naked list with one element, use a trailing comma, for instance #m = a,;.

This way, you can easily add or remove a single element like this: #m = a, b; #m +=

c,; #m -= c,;. Single-item lists (so-called singletons) can alternatively be stated as

#m = list('a') or #m = ('a',). Using #m = a or #m = ('a') will fail with an error,

192 Gekko 3.0 user manual

T-T Analyse

since Gekko understands this as setting a list equal to a series or a string. An empty
list can be created with #m = list().

The first element of a list #m is #m[1], and the last element is #m[#m.length()].

Slices/sublists can be cut out by means of ranges, for instance #m[2..5]. Non-naked

lists may contain any other variable types, including lists, so #m = (1, (2, 3)); is a

nested/reursive list, where #m[2][1] would refer to 2 (because #m[2] refers to the

sublist (2, 3)).

Syntax

#name = (expr1 REP n1 , expr2 REP n2, ...); //REP repeats the
item
#name = name, name, ... ; //short form for 2 or
more string variables
#(listfile m1) = #(listfile m2); //use of listfiles
m1.lst and m2.lst (for lists of scalars, or nested lists of scalars)
#name = list(...); //useful for
singleton lists or empty lists like #m = list('a') or #m = list().
LIST #name = ...; //LIST keyword may be
added, but is typically not necessary.
LIST ?; //show/count lists in
open databanks

It is no longer legal to use for instance LIST m = ... ;, omitting the '#' on the left-

hand side.

Referring:

#m[value] //picks out an element (by number 1, 2, 3, etc.)
#m[value..value] //range/slice, returns a list.
#m[... , ...] //matrix-like selections, using comma
{#m} //use braces {...} to refer to variables
corresponding to string elements

You may pick out individual items from a list with the []-brackets. For instance:

· #x[%i] = element number %i (a scalar)

· #x[%i1..%i2] = elements %i1 to %i2 (inclusive), returns a list (slice)

· #x[%i1..%i2, %j1..%j2] = matrix-like selection of nested list

· #x['fx*'] = returns a list of those string elements that start with 'fx'

· #x['f?a'] = strings that match the pattern 'f?a'

· #x['pxa..pxqz'] = strings in the range 'pxa' to 'pxqz' (both inclusive)

Use #x.length() or length(#x) to get the number of elements in #x, #x[0]

cannot be used for this anymore. Use #x.contains('a') to check whether 'a' is

a member of #x. In IF statements, you can use IF(#x.contains('a') == 1) or

IF('a' in #x) to condition on #x containing some particular element.

193Gekko commands

T-T Analyse

Operators:

· #y = #x1 + #x2;. Same as #y = #x1.extend(#x2);. Adds the elements of #x2

to #x1, use of += is possible. Note that #x1 + %s is not legal (where for instance

#x1 is a list of strings and %s is a string): to append to each list item, use

#x1.suffix(%s) instead.

· #y = #x1 - #x2;. Same as #y = #x1.except(#x2);. Subtracts the elements of

#x2 from #x1. Use of -= is possible.

· #y = #x1 || #x2;. Same as #y = #x1.union(#x2);. Union of two lists, dublets

removed.
· #y = #x1 && #x2;. Same as #y = #x1.intersect(#x2);. Intersection of two

lists.

The LIST keyword is optional and can typically be omitted. Use REP to repeat items.
For the last item, you may use REP * which has special capabilities in relation to

timeseries. You may use a list definition with parentheses (strict version) everywhere
a variable or expression is expected.

There are quite a lot of functions to deal with string lists, for instance sort() to sort
elements, unique() to remove dublets, prefix()/suffix() to add prefixes/suffixes to
elements, etc. You can also use the union(), except(), and intersect() functions for
lists of strings, or equivalently via operators ||, -, and &&. Please see the examples

below, and the functions section. Regarding string lists of variable names, there are a
lot of functions to handle banks, frequencies, indexes, etc., cf. the functions section,
under 'Bank/name/frequency/index manipulations'.

A listname always starts with the symbol '#', like the other collection types map and
matrix. If you prefer to refer to a list item by name instead of numbers/indexes, see
the MAP collection. In that case, you could use for instance #m['nairu'] or #m.nairu

rather than for instance #m[1] to refer to a particular named object in the collection

(this makes the programs easier to read).

String lists with variable names, optionally including banks, frequencies, indexes, etc.
are often used, and to refer to the variables themselves, {}-curlies must be used. For
instance: #m = ('x', 'b2:y!m[a, u]', '%z'); contains the strings corresponding

to x (series x without bank indication, and with default frequency), monthly array

series y from bank b2 with indexes [a, u], and finally a scalar %z. If you want to

refer to the variables corresponding to these strings, use {}-curlies, for instance
PRINT {#m};. This is the same as PRINT x, b2:y!m[a, u], %z;.

Lists of values are often used, for instance to define series. A list of values could be
#m = 1, 2, 3;, omitting the parentheses. If you need to use the sequential data in

linear algebra, instead of #m = 1, 2, 3; or #m = (1, 2, 3); you may use a row or

column vector instead, for instance #m = [1, 2, 3]; or #m = [1; 2; 3];. The latter

column vector is a bit more similar to the list in the sense that #m[1], #m[2] is

allowed regarding column vectors, where row vectors would have to use #m[1, 1],

#m[1, 2], etc. If a list of values is given as mathematical expressions, you must use

enclosing parentheses, for instance #m = (1/7, 2 + %v, 3*%v);.

194 Gekko 3.0 user manual

T-T Analyse

All Gekko functions implement so-called UFCS so that a function like for instance
extend(#x, #y) can generally be written as #x.extend(#y). This makes chaining of

such function calls more readable, for instance #m = #m1.extend(#m2).except(#m3).

List functions:

Note that some of the functions assume that the lists are lists of strings. This will be
fixed regarding values and dates.

Function
name

Description Examples

[x]-index Index: picks out a single
element. In contrast to R,
this does not return a 1-
element list containing the
variable. If you need that,
use for instance #m[3..3].
Returns: var

#m[3]; //the third element

[x1..x2]-
index

Index: picks out a range of
elements. You may omit x1
or x2.
Returns: list

#m[3..5]; //the third to
fifth elements

[x1, x2]-
index

For a nested list of lists,
#m[3, 5] will return the

same element as #m[3][5],

so this is just convenience
to make a nested list
accessible like a matrix. See
more here.
Returns: variable

[New in 3.0.6].

#m = ((1, 2), (3, 4));
PRT #m[2, 1], #m[2]
[1]; //same

[x1..y1,
x2..y2]-
index
[x1..y1, x2]-
index
[x1, x2..y2]-
index

For a nested list of lists,
#m[2..3, 2..4] will select

the given 'rows" and
"columns", corresponding to
selecting a submatrix from
a matrix. Beware that in
general, #m[2..3, 2..4] is

completely different from

// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
#m = ((1, 2, 3), (4, 5, 6),
(7, 8, 9), (10, 11, 12));
PRT #m[2, 2..3];
PRT #m[2][2..3]; //same as
above
PRT #m[2..4, 2]; //matrix-

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

195Gekko commands

T-T Analyse

#m[2..3][2..4]. See more

here.
Returns: list
[New in 3.0.6].

like selection
PRT #m[2..4][2]; //different
from above!
PRT #m[2..4, 2..3]; //matrix-
like selection
PRT #m[2..4]
[2..3]; //different from
above!

append(x1,
x2)
append(x1,
i, x2)

Adds variable x2 as it is at
the end of list x1. Note that
if x2 is a list of for instance
3 items, only 1 element is
added (the list itself). If you
need to add the 3 elements
individually, use extend().

If used with i argument, x2
is inserted at index i,
instead of at the end. See
also extend().

To prepend, use append(x1,
1, x2).

Returns: list

#y = #x1.append(#x2); //or:
append(#x1, #x2)
#y = #x1.append(2,
#x2); //insert at position 2

contains(x1,
x2)

Checks if the list of strings
x1 contains the string x2.
Returns 1 if true, 0
otherwise. You may
alternatively use x2 in x1,

see the last example. See
also the count() and index()
functions. The comparisons
are case-insensitive.
Returns: val

%v = #x1.contains(%s);
if(#x1.contains(%s) == 1);
tell 'yes'; end;
if(%s in #x1); tell 'yes';
end;

count(x1,
x2)

Counts the number of times
the string x2 is present in
the list of strings x1. See
also the contains() and
index() functions.

Note: to obtain the number
of elements in a list, use

%v = #x1.count(%s); //or:
count(#x1, %s)

196 Gekko 3.0 user manual

T-T Analyse

the length() function. The
comparisons are case-
insensitive.

Returns: val

data(x) Accepts a string of blank-
separated values x and
turns them into a list of
values. This is handy for
long sequences of blank-
separated numbers, instead
of manually setting the
commas.
Returns: list

#m = data('1.0 2.0 1.5');

dates(x) Tries to convert each
element of the list x to a
date.
Returns: list

#y = dates(#x);

except(x1,
x2)

The except() function
subtracts x2 from x1. You
may alternatively use the
operator -. Only works for

lists of strings. See also
intersect() and union().

Was called difference() in
Gekko 2.0. See also
extend().

Returns: list

#y = #x1.except(#x2); //or:
except(#x1, #x2)
#y = #x1 - #x2; //same

#y -= #x1; //subtract from
itself

extend(x1,
x2)
extend(x1, i,
x2)

The arguments x1 and x2
must be lists. The function
inserts the elements of list
x2 one by one at the end of
(or at position i in) the list
x1.

For two lists x1 and x2, you
may alternatively use the +

operator. See also except()
and append().

To pre-extend, use
extend(x1, 1, x2).

#y = #x1.extend(#x2); //or:
extend(#x1, #x2)
#y = #x1 + #x2; //same as
above
#y = #x1.extend(2,
#x2); //insert at position 2

#y += #x1; //add to itself

197Gekko commands

T-T Analyse

Returns: list

flatten(x) For at list x, the function
returns a flattened version
of the list. For instance, the
list (1, (2, 3)) is

transformed into a non-
recursive list of non-list
elements: (1, 2, 3).

Returns: list

#m1 = (1, (2, 3));
#m2 = #m1.flatten(); //or:
flatten(#m1).

index(x1,
x2)

Returns the index of the
first occurrence of the
string x2 in the list of
strings x1. Returns 0 if x2
is not found in x1. See also
the count() and contains()
functions. The comparisons
are case-insensitive.
Returns: val

%i = #x1.index(%s); //or:
index(#x1, %s)

intersect(x1,
x2)

The intersect() function
finds the common elements
of the two list of strings x1
and x2. You may
alternatively use the
operator &&. Only works for

lists of strings. See also
except() and union().
Returns: list

#y =
#x1.intersect(#x2); //or:
intersect(#x1, #x2)
#y = #x1 && #x2;

length(x) Returns the number of
elements in the list x. You
may use len() instead of
length().
Returns: val

%v = #x.length(); //or:
length(#x).
%v = #x.len(); //the same

list(x1,
x2, ...)

Returns a list of the
variables x1, x2, etc. The
function is handy for lists
with only 0 or 1 elements.
See examples.
Returns: list

#m = (); //will fail
#m = list(); //ok: empty
list
#m = (1, 2); //easy
#m = (1); //will fail
#m = (1,); //is ok
#m = list(1); //is ok

198 Gekko 3.0 user manual

T-T Analyse

lower(x) Returns string elements in
the list as lower-case.
Returns: list

#y = #x1.lower(); //or:
lower(#x1)

pop(x1, i)
pop(x1)

Removes the element at
position i in the list x1.
Removes the last element if
called with pop(x).
Returns: list

#y = #x1.pop(2); //or:
pop(#x1, 2)
#y = #x1.pop(); //last
element
#y = #x1.pop(1); //first
element

preextend(x
1, x2)

Same as extend(x1, 1, x2),
putting the elements of x2
in the first position of x1.

#y =
#x1.preextend(#x2); //insert
at position 1

prefix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 prefixed (prepended)
Returns: list

#y = #x1.prefix(%s); //or:
prefix(#x1, %s);

prepend(x1,
x2)

Same as append(x1, 1, x2),
putting x2 in the first
position of x1.

#y =
#x1.prepend(#x2); //insert
at position 1

sort(x) Returns a sorted list of
strings, provided that x is a
list of strings. Sorting is
case-insensitive.
Returns: list

#y = #x.sort(); //or:
sort(#x)

remove(x1,
x2)

Removes any string x2 from
the list of strings x1. See
also the except() function.
Returns: list

#y = #x1.remove(%s); //or:
remove(#x1, %s);

replace(x1,
x2, x3)
replaceinside
(x1, x2, x3)
replaceinside
(x1, x2, x3,
max)

replace(): In the list of
strings x1, if this string
element is the same as x2,
x3 is inserted instead.

replaceinside(): the string
element has any occurences
of x2 inside the string
replaced with x3. The
replacements may be
limited via the max
argument.

#y = #x1.replace(%x2, %
x3); //or: replace(#x1, %x2,
%x3)

#y = #x1.replaceinside(%x2, %
x3); //or: replace(#x1, %x2,
%x3, 'inside')

199Gekko commands

T-T Analyse

Returns: list

reverse(x) To be done

split(x, s) To be done

strings(x) Tries to convert each
element of the list x to a
string
Returns: list

#y = strings(#x);

suffix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 suffixed (appended)
Returns: list

#y = #x1.suffix(%s); //or:
suffix(#x1, %s);

t(x) For a nested list of lists, the
t() function returns the
transpose, similar to
transposing a matrix. [New
in 3.0.6].
Returns: list (of lists)

#m = ((1, 2), (3, 4));
p #m, t(#m);

union(x1,
x2)

The union() function adds
the two lists (only adds
unique elements in x2 that
are not in x1), or you may
use the operator ||.

Alternatively, you may use
x + y, but that may

introduce dublets. Only
works for lists of strings.
See also except() and
intersect().
Returns: list

#y = #x1.union(#x2); //or:
union(#x1, #x2)
#y = #x1 || #x2;

unique(x1) Retains only those elements
of list x1 that are unique
(list of strings only).
Returns: list

#y = #x1.unique(); //or:
unique(#x1)

upper(x) Returns string elements in
the list as upper-case.
Returns: list

#y = #x1.upper(); //or:
upper(#x1)

vals(x) Tries to convert each
element of the list x to a

#y = vals(#x);

200 Gekko 3.0 user manual

T-T Analyse

value
Returns: list

A string (or list of strings) representing variable names may be manipulated by
means of Gekko's inbuilt functions to handle these. Variable names here include
bank, frequency, indexes, etc., and examples of such functions could be setBank(),
removeBank(), replaceBank(), setFreq(), removeFreq(), setNamePrefix(), etc. There
are many more of such functions, see the functions section, under
‘Bank/name/frequency/index manipulations’.

For instance, if you have a list #m = ('x', 'y');, you may use PRT {#m}; to print

out x and y, PRT {#m.setBank('b')}; to print out b:x and b:y, or PRT

{#m.setFreq('q')}; to print out x!q and y!q (here, PRT b:{#m}; and PRT {#m}!q;

will work, too).

Examples

Define a list:

#m = ('a', 'b', 'c'); //list of strings
#m = a, b, c; //naked list syntax, only allowed
for a list of simple names.
#m += d, e; //naked list adding two elements.
#m -= d, e; //naked list removing them again
#m += d,; //naked list adding one element,
note the comma
#m -= d,; //naked list removing it again,
note the comma
#i = x, y;
#m = x[a], x[#i]; //naked list allows indexes too
(#i is a list of strings)
#m += #m2; //adding another list
#m = 1, 3, 2; //list of simple numbers,
parentheses can be omitted
#m = (2020q1, 2020q4, 2021q1); //list of dates
#m = (a, b, c); //NOTE: this is a list of series
objects, not strings!
#m = (('a', 'b'), (1, 3)); //list of lists

As shown, for naked lists you may use indexes to state array-series, for instance
x[#i] is unfolded into x[a], x[b], x[c], if #i = a, b, c. [New in 3.0.3].

In the last list, #m[1] refers to the list ('a', 'b'), #m[2] refers to the list (1, 3),

and for instance #m[1][2] refers to 'b'. To print a list, simply use PRT #m;. If the list

is a list of strings, and you want to print the variables corresponding to the strings,
use {}-curlies:

201Gekko commands

T-T Analyse

#m = ('a', 'b', 'c'); //list of strings, or: #m = a, b,
c;
PRT #m; //print the raw strings
PRT {#m}; //print the variables (series) a,
b, and c. Same as "PRT a, b, c;".

There are two functions to add items to a list: append() and extend():

#m1 = (1, 2, 3); //or: #m = 1, 2, 3;
#m2 = (4, 5);
#m = #m1.append(#m2); //result: (1, 2, 3, (4, 5)),
nested list
#m = #m1.extend(#m2); //result: (1, 2, 3, 4, 5)

Gekko functions implement so-called UFCS, so the function append(#m1, #m2) may

alternatively be written #m1.append(#m2), moving the first argument of the original

function out of the parentheses. This provides a more fluent interface, and enables
easy chaining of list functions (see examples below). As it is seen, append() puts the
list #m at position 4 in #m1, whereas extend() unpacks #m2 and puts the two elements

at positions 4 and 5 in #m1. Therefore, if you need to add a single value to a list, use

append(), but if you need to add the elements of a list to another list, use extend():

#m1 = (1, 2, 3);
#m = #m1.append(4); //result: (1, 2, 3, 4)
#m = #m1.extend(4); //Fails with an error

Instead of #m1.extend(#m2), the + operator can be used instead of extend() when

dealing with two lists:

#m1 = (1, 2, 3);
#m2 = (4, 5);
#m = #m1 + #m2; //result: (1, 2, 3, 4, 5), same as
#m1.extend(#m2)

It should be noted that #m1 + %s does not append %s to the list (but will fail with an

error). Use #m1.append(%s) or #m1 + list(%s) instead. In earlier Gekko versions,

the expression #m1 + %s appended %s to each element of #m1, but this behavior is

deprecated.

Lists in Gekko may contain dublets. Still, set operations are possible with the
functions union(), except() and intersect():

#m1 = ('a', 'b', 'c'); //or: #m1 = a, b, c;
#m2 = ('b', 'd');
#m = #m1.union(#m2); //result: ('a', 'b', 'c', 'd')
#m = #m1.except(#m2); //result: ('a', 'c')
#m = #m1.intersect(#m2); //result: ('b')

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

202 Gekko 3.0 user manual

T-T Analyse

It is noted that union() avoids introducing dublets in the list, which is not the case
regarding extend() and the + operator. Instead of these functions, you may use

operators ||, - and &&:

#m1 = ('a', 'b', 'c'); //or: #m1 = a, b, c;
#m2 = ('b', 'd');
#m = #m1 || #m2; //result: ('a', 'b', 'c', 'd')
#m = #m1 - #m2; //result: ('a', 'c')
#m = #m1 && #m2; //result: ('b')

If the list #x1 contains none of the #x2 elements, the expression #x1 + #x2 - #x2

will be = #x1. However, Gekko lists may contain dublets, and you can use the

unique() function to remove these, and the sort() function for sorting. For instance:

#m1 = ('c', 'b', 'a'); //or: #m1 = c, b, a;
#m2 = ('b', 'c', 'd', 'e');
#m = #m1.extend(#m2); //result: ('c', 'b', 'a',
'b', 'c', 'd', 'e')
#m = #m1.extend(#m2).unique(); //result: ('c', 'b', 'a',
'd', 'e')
#m = #m1.extend(#m2).unique().sort(); //result: ('a', 'b', 'c',
'd', 'e')

The above example also illustrates function chaining. The expression
#m1.extend(#m2).unique().sort() is easier to understand than the equivalent but

more backwards expression sort(unique(extend(#m1, #m2)).

To check if a list contains an item, use contains() or index():

#m = ('a', 'b', 'c'); //or: #m = a, b, c;
%v = #m1.contains('b'); //result: 1 (true)
%i = #m1.index('b'); //result: 2 (the position)

You may replace elements in a list, for instance:

#m1 = ('ax', 'bx', 'xc'); //or: #m1 = ax, bx,
xc;
#m = #m1.replace('bx', 'y') //result: ('ax', 'y',
'xc')
#m = #m1.replaceinside('x', 'z') //result: ('az', 'bz',
'zc')

The last function, replaceinside(), replaces text inside the individual elements.

List elements may be of mixed types, for instance (1, 'two', 2003q3), and lists of
values are often used to feed values into timeseries:

203Gekko commands

T-T Analyse

TIME 2020 2026;
x = 100, 101 rep 3, 102, 103 rep *; //parentheses can be
omitted for simple values
PRT x; //result: 100, 101, 101,
101, 102, 103, 103

You can use rep to repeat values, and rep * is special when used to define a series,

since it repeats the last item to make the list fit with the sample (here: 7
observations). If you have input data with (a lot of) blank-separated values, you may
use the data() function instead of manually setting the commas:

TIME 2020 2026;
x = data('100 101 101 101 102 103 103'); //result: 100, 101,
101, 101, 102, 103, 103

Lists can be looped, for instance:

#m = ('a', 'b', 'c'); //or: #m = a, b, c
%s = '';
FOR string %i = #m;
 %s += %i;
END;
PRT %s; //result: 'abc'

Lists can be nested, for instance an #alias list (cf. OPTION interface alias):

x = 100;
y = series(1); y[z] = 200;
option interface alias = yes;
global:#alias = (('a', 'x'), ('b', 'y[z]'));
PRT a, b; //will be the same as PRT x, y[z]

An #alias list can among other things be convenient as a bridge between the naming

conventions of two different models.

Listfiles

Instead of storing lists in a databank, you may optionally use an external file instead.
Using a listfile animals.lst (you may use EDIT animals.lst; to do this):

------------ animals.lst ------
//comments like these are allowed, and blank lines too
dog
cat
mouse
fish

204 Gekko 3.0 user manual

T-T Analyse

You can use the listfile in the following way:

#animals = #(listfile animals);

Listfiles may contain strings or values, and for simple strings starting with a letter,
you may omit single quotes. If you need to make sure that an element is interpreted
as a string and not as a value, you can enclose the string in single quotes.

When Gekko reads an element, if it is enclosed in quotes, it always becomes a string.
Otherwise, the interpretation rules are the same as for naked lists. When writing
elements, if all elements are simple strings starting with a letter, Gekko will omit the
quotes. Else it will write strings with single quotes, and dates are written as strings,
too. To convert a list of strings into a list of dates, just use the dates() function. Like
normal lists, listfiles may contain elements beginning with '-',for instance:

------------ items.lst -------
x1
-x2
x3

But you cannot put complicated items like expressions into a listfile (use a normal list
for that). You can create a listfile m.lst with #(listfile m) = a, b, c;. Nested

listfiles are possible: just separate the elements with the ';' symbol:

------------ nested.lst ------
1
2; 3
mouse
2010q1; 2010q3

All these items are converted into strings, because they are not all values. You could
create this file with #(listfile nested) = ('1', ('2', '3'), 'mouse',

('2010q1', '2010q3')). The last element can be followed by the ';' symbol, but it

may also be omitted. The following list is similar to a matrix:

------------ matrix.lst ------
1; 2
3; 4

If #m = #(listfile matrix), for instance #m[2][1] = 3, corresponding to row 2,

column 1. This is similar to the matrix #m = [1, 2; 3, 4], where #m[2, 1] = 3. In

general, the listfile format corresponds to .csv, and the reason ',' is not used to
delimit elements is that csv files may allow numbers to be stored with decimal
separator ',' instead of '.'.

205Gekko commands

T-T Analyse

Instead of using a two-dimensional csv-like listfile like matrix.lst above, you may

instead store such data in an Excel spreadsheet, and load them with SHEET <import

list> #m file = ... ;.

Searching

You may search a list of strings using wildcards, in order to return certain patterns of
string elements.

#m1 = ('abd', 'abcd', 'abcde'); //or: #m = abd, abcd,
abcde
#m2 = #m1['a*d']; //result: 'abd', 'abcd'
#m3 = #m1['a?d']; //result: 'abd'
#m4 = #m1.addbank('b1').addfreq('q'); //result: 'b1:abd!q',
'b1:abcd!q', 'b1:abcde!q'

As the last line shows, there are a lot of functions available, if you need to handle for
instance banknames, frequency indicators, etc. on such lists of names. See under
functions, bank/name/frequency/index manipulations. Note that if you need to for
instance print the elements of #m1 with a particular bank and frequency, you may use

either PRT {#m1.addbank('b1').addfreq('q')};, or the easier PRT "b1:{#m1}!q;.

You may use a 'naked' wildcard to obtain variable names from open databanks, for
instance:

abd = 1; abcd = 2; abcde = 3;
#m2 = ['a*d']; //result: 'abcd', 'abd',
list is alphabetical
#m3 = ['a?d']; //result: 'abd'

The wildcards match variable names found in open databanks. Please keep in mind
that the logic regarding such 'naked' wildcards is a bit different from searching inside
a list of strings. A wildcard like ['a*d'] will look for series starting with 'a' and

ending with 'd', but only in the current first-position databank, and only regarding
variables with the same frequency as the current frequency. To get series names
from all banks with all frequencies, starting with 'a' and ending with 'd', you would
have to use ['*:a*d!*']. And to get, for instance variables starting with

'%' (scalars), and then followed by 'a' and ending with 'd', you would have to use ['%

a*d']. See more on the wildcards page and on INDEX section.

To print out results of wildcards searches, {}-curlies must be used, for instance:

abd = 1; abcd = 2; abcde = 3;
PRT ['a*d']; //prints the two strings
'abcd' and 'abd'
PRT {['a*d']}; //result: same as PRT
abcd, abd;

206 Gekko 3.0 user manual

T-T Analyse

PRT {'a*d'}; //shortcut: the inner []-
brackets may be omitted here

As seen above, you must use {}-curlies to print out the variables corresponding to a
wildcard search. And as shown, you do not have to use the pattern {['....']}, but can
omit the innermost []-brackets and just use {'....'} to print wildcard variables.

Lists and array-series

As a last note, lists can be used to define domains for array-series. See the SERIES
section, but the following example illustrates the use:

time 2020 2022;
x =
series
(
1); //arra
y-series with 1 dimension
x[a] = 1; x[b] = 2; x[c] = 3;
#i = a, b, c;
p <n> x[#i], sum(#i, x[#i]), sum(#i, x[#i] $ (#i in
#i.remove('b')));

The result is the following:

 sum(#
i, x[#i]
 s $
(#i in #i.
 x[a] x[b] x[c] um(#i, x[#i])
remove('b')))
 2020 1.0000 2.0000 3.0000 6.0000
 4.0000
 2021 1.0000 2.0000 3.0000 6.0000
 4.0000
 2022 1.0000 2.0000 3.0000 6.0000
 4.0000

So x[#i] prints out the three elements, sum(#i, x[#i]) sums them up, and sum(#i,

x[#i] $ (#i in #i.remove('b'))) show the sum for the list #i except the element

'b'.

You may assign a domain to array-series dimensions with the setdomains() function,
and you may restrict which elements are printed/plotted via a special #default map.
See more in the SERIES section.

207Gekko commands

T-T Analyse

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

You can remove <direct> in LIST<direct> from older Gekko 2.0/2.2/2.4 code.

You can use minus ('-') before a list item in a naked list. This can for instance be used
in the Laspeyres chain index function laspchain(), to indicate a variable that is to be
deducted. For instance:

#p = p1, p2, p3, p4; //same as: #p = ('p1', 'p2', 'p3', 'p4');
#q = x1, x2, -x3, x4; //same as: #q = ('x1', 'x2', '-x3', 'x4');
#m = laspchain(#p, #q, 2010);

The function returns a map #m containing the aggregated p and q series as named

elements, where series x3 is to be deducted from the aggregation (and the price p is

set to 1 in 2010). The resulting series and quantities can be accessed with #m.p and

#m.q.

If you have input data with blank-separated values, you may use the data() function
to avoid having to set the commas, for instance #m = data('1.0 2.0 1.5');. This

function can be practical for long lists of numbers. Data from an Excel spreadsheet
can be loaded into a nested list by means of SHEET <import list>.

Note that an assignment like #m1 = #m2;, where #m2 is a list, #m1 will become a copy

of #m2, not a reference to it. The same is the case regarding function arguments,

where manipulating #m1 inside the function body of f(#m1) will not affect #m1 after the

function has been left.

The lists #all (all model variables), #endo (all endogenous variables), and #exo (all

exogenous variables) and some more are defined beforehand, if a model is loaded by
the MODEL command. These lists are located in the Global databank. See LIST ?;.

The reader may wonder why it is not possible to add a list #m and a scalar %s like

this: #m + %s, appending %s to #m? This is tempting, but then what about %s1 + %s2

+ #m + %s3? Should this mean a list with %s1, then %s2, then the elements of #m,

and lastly %s3? But if %s1 and %s2 are two strings, these strings are added into

another string. And if they are values, the values are added first. Hence, to avoid
such confusion, using + between a list and a scalar is disallowed (which is also the

case in Python and other languages).

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko list relates to the following in different languages:

208 Gekko 3.0 user manual

T-T Analyse

· Gekko: #m = ('x', 2.2);.

· R: list (holds different types of variables), m <- list("x", 2.2). A R vector is

similar, but holds only variables of the same type, for instance m <-

c("a","b","c"). Note that #m[%i] in Gekko returns the object at position %i, not a

1-element list containing the object, like R. Use #m[%i..%i] to get such a R-like

slice. In this sense, #m[%i] in Gekko corresponds to m[[i]] in R.

· Python: list (holds different types of variables), m = ["x", 2.2]. Python has a

built-in set type, with union(), intersection() and difference() methods. Note that
for union(), Python uses operator | where Gekko uses ||, for intersection() Python

uses operator & where Gekko uses &&, and for difference() both Python and Gekko

use operator - (difference() is called except() in Gekko). Python sets do not allow

dublets, but Python lists do not provide methods union(), intersection() and
difference().

· Matlab: same type elements: array, else: cell array, m = {"x", 2.2}.

Related commands

MAP, MATRIX, FOR

209Gekko commands

T-T Analyse

3.45 LOCAL

The LOCAL command is used to designate variable names that are to be located in
the Local databank. Following a LOCAL x; statement, any subsequent use of x

(without databank designation) will be understood as local:x.

After Gekko leaves the command file, function or procedure, these local variables do
not live on, so the variables only live in the local context. Therefore, using LOCAL or
local:x = ... can be practical regarding temporary variables that are not intended

to live on, polluting the databanks (such variables are called "side-effects").

You may use LOCAL<all>; to render all bankless variables local inside a function or

procedure. This is useful regarding encapsulation: ensuring that a function only uses
its own arguments and local variables (unless a variable is stated with an explicit
databank reference). After a LOCAL<all>, you can still search for a bankless variable

x outside of the Local databank by means of the special all: designation (for

instance y = all:x;).

See also the similar GLOBAL command for global variables, and the BLOCK structure
for temporary settings.

Syntax

LOCAL varnames;
LOCAL <all>;

varname
s

Comma-separated list of variables

ALL (Optional). With this option, all following (in the rest of the
program/function/procedure) left-hand side variables without explicit
databank designation are located in the Local databank. This may
practical for functions/procedures where no temporary variables are
supposed to exist after the function/procedure has been left. For a
variable x that you would like to keep despite using a LOCAL<all>,

you may use first:x or another bank designation to circumvent

LOCAL<all>.

Example

LOCAL x, %y, #z;

210 Gekko 3.0 user manual

T-T Analyse

After this, any use of x, %y, or #z (in the present command file, function or

procedure) will be interpreted as local:x, local:%y, and local:#z, respectively.

And after Gekko leaves the current context (command file, function or procedure),
these local variables cease to exist.

The Local databank is searched first, if databank searching is active (that is, data- or
mixed mode), cf. databank search.

You may use LOCAL<all> in functions/procedures:

PROCEDURE test;
 LOCAL <all>;
 %x = 2;
 %y = 3;
 first:%z = %x + %y;
END;
test;
val?;

Only %z will exist (in the first-position databank) after the procedure has been left.

Still, it is perhaps better to use a function to return the value.

Note

You are not forced to use the LOCAL keyword, when operating with local variables.
Defining local:%per1 = 2010; first, and referring to local:%per1 later on is

possible, too. In that sense, the LOCAL keyword is just for convenience, especially if %

per1 is used several times.

Local variables survive READ, CLEAR, etc., but do only live in their local context
(command file, function or procedure). Hence, they do no 'pollute' the first-position
databank if this is later on written to file.

Note that the Local or Global databanks are always searchable, independent of MODE
etc.

Related commands

GLOBAL

211Gekko commands

T-T Analyse

3.46 LOCK

LOCK is used to set a databank non-editable, so that the data inside cannot be
changed, but only read. Per default, databanks are opened non-editable, unless you
use OPEN<edit>. See also the inverse UNLOCK command.

Syntax

LOCK databank;

Examples

LOCK mybank;

This locks mybank (sets it non-editable, provided that it is unlocked already).

Related commands

UNLOCK, OPEN

212 Gekko 3.0 user manual

T-T Analyse

3.47 MAP

A map is a data container, much like a mini-databank, convenient for storage, and for
passing variables into and out of functions. It can also be thought of as a named list,
where the elements are found (looked up) by means of strings (keys), instead of by
consecutive numbers 1, 2, ... etc. Map names always start with the symbol '#', like
the other collection types list and matrix. If, for instance, you need to return several
variables from a user-defined function, a map is a very convenient container for that
purpose.

Syntax

#m = (name = expr, name = expr, ...); //Definition of a map, where
#m is the map name.
MAP ?; //show/count maps in open
databanks

Refer to the elemements with brackets or dots:

#m['x'] //Refer to element with name (key) 'x'. Blanks and
other symbols can be used.
#m[x] //Simple names may omit the single quotes (only when
the name does not have type symbols)
#m.x //Simple names may use dot, in that case type
symbols are allowed

It is not legal to use for instance MAP m = ... ;, omitting the '#'.

For instance, the result of the OLS command could be stored in a list #ols_stats,

where #ols_stats[1] could be residual sum of squares, #ols_stats[2] could be

standard error, etc. This may get confusing, and a map would allow references to look
like #ols_stats['%rss'], #ols_stats['%se'], etc., using expressive names. For

simple names, you can also refer to the elements by means of #ols_stats.%rss,

#ols_stats.%se, etc. Written like this, it is seen that there is a similarity to

databanks, where such a reference to the databank ols_stats would be written as

ols_stats:%r2, ols_stats:%se, etc. The similarity is not coincidal: maps really are

mini-databanks!

Examples

The following example shows the definition of a map #m, consisting of a string and

another map, #mm. The map #mm contains a string with the same name, and a

timeseries.

213Gekko commands

T-T Analyse

time 2009 2012;
#m = (%i1 = 'a', #mm = (%i1 = 'b', <2010 2011> ts = (1, 2)));
p #m.%i1; //'a', alternatively p #m['%i1'];
p #m.#mm.%i1; //'b', alternatively p #m['#mm']['%i1']
p #m.#mm.ts; //1, 2, alternatively p #m['#mm']['ts']

Another example could be the Laspeyres chain index function laspchain(), which
returns a map containing an aggregated quantity, and an aggregated price.

#p = p1, p2, p3; //or: #p = ('p1', 'p2', 'p3');
#q = x1, x2, x3; //or: #q = ('x1', 'x2', 'x3');
#m = laspchain(#p, #q, 2010);

Now, #m['q'] and #m['p'], or the shorter #m.q and #m.p refer to the aggregated

quantity and price index (as series).

Object orientation

Gekko does not yet provide the possibility of defining classes, with class methods etc.
that an object derived from a given class use. But the map collection can be used
together with the fact that all Gekko functions implement so-called UFCS, so that a
function like for instance f(x, y) can generally be written as x.f(y). This makes a kind
of poor man's object orientation possible, consider the following example:

function val volume(map #m);
 %volume = 0;
 if (#m.%type == 'square');
 %volume = #m.%size * #m.%size;
 else;
 if (#m.%type == 'box');
 %volume = #m.%size * #m.%size * #m.%size;
 end;
 end;
 return %volume;
end;

#sq = (%type = 'square', %size = 2, %color = 'red');
#bx = (%type = 'box', %size = 3, %color = 'green');
tell '';
tell 'Type {#sq.%type}: size = {#sq.%size}, volume =
{#sq.volume()}, color = {#sq.%color}';
tell 'Type {#bx.%type}: size = {#bx.%size}, volume =
{#bx.volume()}, color = {#bx.%color}';

This produces the following output:

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

214 Gekko 3.0 user manual

T-T Analyse

Type square: size = 2, volume = 4, color = red
Type box: size = 3, volume = 27, color = green

Here, map #sq is defined as type 'square', whereas the map #bx is defined as type

'box'. When the volume() function is called on such a map, a square type will return
size^2, whereas a box type will return size^3. Therefore, #sq.volume() = 2*2 = 4,

whereas #bx.volume() = 3*3*3 = 27. Note that #sq.volume() could alternatively be

written volume(#sq), but the variant #sq.volume() has more object method flavor.

So in the example, the volume() function called on a square or a box 'knows' how to
calculate the volume of that particular object.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

As it is the case regarding array-series, you may omit the single quotes in indexes,
for instance #m[p] will correspond to #m['p']. Please note that this only applies to

simple names without symbols, in other words: timeseries names. So do not expect
#m[%s] to correspond to #m['%s'] (it does not).

Maps are 1-dimensional, more dimensions are not supported regarding names/keys.
If you need to handle multidimensional data, you may look into array-series (or
matrices).

Internally in Gekko, maps are represented in the exact same way as databanks, so in
the longer run it is expected that it will be possible to convert seamlessly between
maps and databanks.

Note that an assignment like #m1 = #m2;, where #m2 is a map, #m1 will become a

copy of #m2, not a reference to it. The same is the case regarding function arguments,

where manipulating #m1 inside the function body of f(#m1) will not affect #m1 after

the function has been left.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko map relates to the following in different languages:

· Gekko: #m = (%a = 'x', %b = 2.2);

· R: named list, m <- list(a="x", b=2.2)

· Python: dict, m = {"a": "x", "b": 2.2}

· Matlab: struct array or the more general container map.

215Gekko commands

T-T Analyse

Related commands

LIST

216 Gekko 3.0 user manual

T-T Analyse

3.48 MATRIX

A Gekko matrix contains two-dimensional cells with numeric values. Matrix names
always start with the symbol '#', like the other collection types list and map. You can
import/export matrices to/from Excel.

NOTE: Instead of the former SHOW command for printing matrices, you should use
PRT in Gekko 3.0.

Syntax

#m = expression;
MATRIX #m = expression;
MATRIX < ROWNAMES = #list COLNAMES = #list > #m = expression;
MATRIX ?; //show/count matrices in open
databanks

It is no longer legal to use for instance MATRIX m = ... ;, omitting the '#'.

ROWNAMES = A list containing the names (labels) of the rows of the
matrix, to be shown with PRT. You may use quotes (') when
creating the list elements, if you need special characters
like blanks etc.

COLNAMES = A list containing the names (labels) of the cols of the
matrix, to be shown with PRT. You may use quotes (') when
creating the list elements, if you need special characters
like blanks etc.

name The name of the matrix.

expression Any expression. You may omit the expression if you just
need to decorate an already existing matrix with row- or
colnames.

? Query regarding a particular matrix, or all matrices

Note to Excel users: to import data from a spreadsheet, use the SHEET command
(SHEET<import matrix>). To export a matrix #m from Gekko to Excel, you can use

EXPORT <xlsx> #m file = matrix.xlsx;.

Examples

217Gekko commands

T-T Analyse

The MATRIX command supports quite a lot of the more common matrix capabilities.
More capabilities will be added over time. Regarding matrix functions, please consult
the Gekko functions page, under the 'Matrix functions' section (for instance
determinant, inverse, transpose, diagonal, summation, etc.). These functions are also
shown at the end of this help page.

You may construct a 2x2 matrix like this:

#m = [1, 2; 3, 4]; //or: MATRIX #m = [1, 2; 3, 4];

The commas separate the row items, and the ';' separates columns. The MATRIX
keyword may be omitted, since the right-hand side is guaranteed to be a matrix
defintion. To construct matrices, you may use values or other matrices instead of the
fixed numbers shown here. In general, matrices are referred to by means of the '#'
indicator, just like lists. Use PRT to print out a matrix:

PRT #m;

This will print out the following:

 #m
 1 2
 1 1.0000 2.0000
 2 3.0000 4.0000

Note: after printng a matrix like this, you may use Copy-button in the main Gekko
window to copy/paste the matrix to Excel. To decorate with custom row- and col-
names, you may do the following (you may alternatively use listfiles to contain the
labels, cf. LIST):

#rn = ('Agriculture', 'Services etc.');
#cn = ('Employed', 'Unemployed');
<rownames=#rn colnames=#cn> #m = [1, 2; 3, 4];
PRT #m;

This will print the following labeled matrix:

 #m
 Employed Unemployed
 Agriculture 1.0000 2.0000
 Services etc. 3.0000 4.0000

You may concatenate existing matrices like this:

218 Gekko 3.0 user manual

T-T Analyse

#a = [#m1; #m2]; //column-wise
#b = [#m1, #m2]; //row-wise
#c = [#m1, #m2; #m3 ,#m4]; //both

You may get a list of all matrices or a particular matrix with

MATRIX ?;

You may construct matrices filled with 0's, 1's or missing values by means of the
functions zeros(n, k), ones(n, k), or miss(n, k), for instance:

#m = zeros(5, 10);

You can use +, -, * and / on two matrices, to add, subtract, multiply or divide.

Regarding division, you can only divide a matrix by a value or a 1x1 matrix.
Otherwise, use the element-by-element functions multiply() and divide().

You may index a matrix by means of the indexer []. For instance:

%v = #m[2, 4];

This picks out the element in row 2, column 4. Please note that the indexes are 1-
based. The inverse operation:

#m[2, 4] = %v;

Sub-matrices can be picked out by means of the range dots ('..'), for instance:

#m2 = #m[1..2, 5..7];

This picks out rows 1 and 2, and combines them with columns 5, 6 and 7. Note that
these ranges may not be descending, for instance #m[2..1, 7..5]. The inverse

operation:

#m[1..2, 5..7] = #m2;

To select a full row or column, use an 'empty' range like this:

#m2 = #m[3, ..];

219Gekko commands

T-T Analyse

This selects all the items in row 3. You may also use for instance '2..' to pick out the
elements from 2 and onwards, or '..10' to pick out the elements from 1 up to and
including 10. Use '..' to pick out all rows/columns.

For a column vector #c (that is, a n x 1 matrix), you may omit the column index, so

in that case, these two will amount to the same:

%v = #c[5];
%v = #c[5, 1];

You may pack and unpack matrices from timeseries, for instance:

reset;
time 2001 2003;
x1 = 1, 2, 3;
x2 = 3, 4, 5;
p #m;
#m = pack(2001, 2003,x1, x2);
y1 = #m[.., 1].unpack(2001, 2003);
y2 = #m[.., 2].unpack(2001, 2003);
p<n> x1, y1, x2, y2;

This will pack the two timeseries x1 and x2 into a 3 x 2 matrix #m (with data from

2001-2003). You may unpack back to two timeseries again with the unpack()
function as shown. The indexes [.., 1] and [.., 2] pick out all rows of the two

columns in #m. You may also consult the pack/unpack example in the R_RUN section.

Column vectors can be handy, when you use them as a list of values:

#m = [100; 150; 120];
FOR val %i = 1 to #m.rows();
 TELL 'Index {%i} has value {#m[%i]}';
END;

This will print out the numbers 100, 150 and 120:

 Index 1 has value 100
 Index 2 has value 150
 Index 3 has value 120

Since #m is a column vector, you may use #m[%i] instead of the more cumbersome

#m[%i, 1].

There are min, max, avg and sum functions, working on rows or columns. For
instance, you may decorate a matrix with grand totals like in the code below (where
the third row and column are totals). The functions sumr() and sumc() sum the rows
and columns, respectively. The last expression, #m.sumc().sumr(), could just as well

have been stated as #m.sumr().sumc(). The divide(#m1, #m2) function divides two

220 Gekko 3.0 user manual

T-T Analyse

matrices element by element, but #m2 may have only 1 row or column stated. In that

case, the function works on rows or columns, respectively.

#m = [1, 2; 3, 4];
PRT [#m, #m.sumr(); #m.sumc(), #m.sumc().sumr()];
PRT divide(#m, #m.sumr());
PRT divide(#m, #m.sumc());

Output:

 [#m, #m.sumr(); #m.sumc(), #m.sumc().sumr()]
 1 2 3
 1 1.0000 2.0000 3.0000
 2 3.0000 4.0000 7.0000
 3 4.0000 6.0000 10.0000

 divide(#m, #m.sumr())
 1 2
 1 0.3333 0.6667
 2 0.4286 0.5714

 divide(#m, #m.sumc())
 1 2
 1 0.2500 0.3333
 2 0.7500 0.6667

In the first print, the rows sum to 1, and in the second print, the columns sum to 1.
Matrices can be exported and imported from Excel, for instance:

#m = [1, 2, 3; 4, 5, 6];
EXPORT <xlsx> #m file = m.xlsx;
SHEET <import matrix> #m2 file=m.xlsx;
PRT #m, #m2;

The example below estimates a linear least squares model with five parameters. You
may consult the OLS section to see the same parameters calculated via the OLS
solver, or the R_RUN section to see the same parameters calculated via the R
interface.

RESET;
CREATE lna1, pcp, bul1;
SERIES <1998 2010> lna1 = data(' 166.223000 173.221000 179.571000
 187.343000 194.888000 202.959000
209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
SERIES <1998 2010> pcp = data(' 0.9502030 0.9699920 1.0000000
 1.0235000 1.0401100 1.0605400
1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
SERIES <1998 2010> bul1 = data(' 0.0684791 0.0591698 0.0560344

221Gekko commands

T-T Analyse

 0.0535439 0.0535003 0.0631703
0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
TIME 2000 2010;
CREATE s0, s1, s2, s3, s4, s5;
s0 = dlog(lna1);
s1 = dlog(pcp);
s2 = dlog(pcp.1);
s3 = bul1;
s4 = bul1.1;
s5 = 1;
#x = pack(2000, 2010, s1, s2, s3, s4, s5);
#y = pack(2000, 2010, s0);
#b = inv(t(#x)*#x)*t(#x)*#y; //OLS formula
PRT #b;

The commands produce the following parameter estimates:

 #b
 1
 1 0.1445
 2 0.6139
 3 0.1867
 4 -0.3509
 5 0.0298

Matrix functions

Matrix functions:

Function
name

Description Examples

avgc(x) Average over cols.
Returns: matrix

#m2 = avgc(#m1);

avgr(x) Average over rows
Returns: matrix

#m2 = avgr(#m1);

chol(x)
chol(x, type)

Cholesky decomposition of
matrix x. Accepts type
(string), either 'upper' or
'lower'.
Returns: matrix

#m2 = chol(#m1, 'upper');

222 Gekko 3.0 user manual

T-T Analyse

cols(x) Returns the number of
colums of x
Returns: val

%v = cols(#m);

det(x) Determinant of a matrix.
Returns: val

%v = det(#m);

diag(x) Diagonal. If x is a n x n
symmetric matrix, the
method returns the
diagonal as a n x 1 matrix.
If x is a n x 1 column
vector, the method returns
a n x n matrix with this
column vector on the
diagonal (and zeroes
elsewhere).
Returns: matrix

#m2 = diag(#m1);

divide(x1,
x2)

Element by element
division of the two matrices.
If x2 is a row vector, each
x1 column will be divided
with the corresponding
value from the row vector.
And if x2 is a column
vector, each x1 row will be
divided with the
corresponding value from
the column vector.
Returns: matrix

#x = divide(#x1, #x2);

i(n) Returns a n x n identity
matrix.
Returns: matrix

#m = i(10);

inv(x) Inverse of matrix x
Returns: matrix

#m2 = inv(#m1);

maxc(x) Max over cols
Returns: matrix

#m2 = maxc(#m1);

maxr(x) Max over rows
Returns: matrix

#m2 = maxr(#m1);

minc(x) Min over cols
Returns: matrix

#m2 = minc(#m1);

223Gekko commands

T-T Analyse

minr(x) Min over rows
Returns: matrix

#m2 = minr(#m1);

m(r, c) or
miss(r, c)

Returns a n x k matrix filled
with missing values. Cf.
also m() function for
values.
Returns: matrix

#m = m(5, 10);

multiply(x1,
x2)

Element by element
multiplication of the two
matrices. If x2 is a row
vector, each x1 column will
be multiplied with the
corresponding value from
the row vector. And if x2 is
a column vector, each x1
row will be multiplied with
the corresponding value
from the column vector.
Returns: matrix

#x = multiply(#x1, #x2);

ones(n, k) Returns a n x k matrix filled
with 1's
Returns: matrix

#m = ones(5, 10);

pack(v1,
v2, ...)
pack(<t1
t2>, v1,
v2, ...)

Using period t1-t2, the
timeseries v1, v2, ... are
packed into a n x k matrix,
where n is the number of
observations and k is the
number of variables. If the
period is omitted, the global
time period is used.
Returns: matrix

#m = pack(<2020 2030>, x, y,
z); Returns: a 11 x 3 matrix
#m with the values.

rows(x) Returns the number of rows
of x.
Returns: val

%v = rows(#m);

sumc(x) Sum over cols
Returns: matrix

#m2 = sumc(#m1);

sumr(x) Sum over rows
Returns: matrix

#m2 = sumr(#m1);

t(x) Returns the transpose of a #m2 = t(#m1);

224 Gekko 3.0 user manual

T-T Analyse

matrix.
Returns: matrix

trace(x) Returns the trace of a
matrix.
Returns: val

%v = trace(#m);

unpack(m)
unpack(<t1
t2>, m)

The column matrix m (with
only one column) is
unpacked into a timeseries
spanning the period t1-t2.
If the period is omitted, the
local/global time period is
used.
The unpack() function is not
strictly necessary: you may
alternatively assign a nx1
matrix directly to a series
(see example).
Returns: series

//This picks out the second
column of #m (and all the
rows).
y = #m[.., 2].unpack(<2020
2030>);
y <2020 2030> = #m[..,
2].unpack(); //same
y <2020 2030> = #m[..,
2]; //also works

zeros(n, k) Returns a n x k matrix filled
with 0's. Zeroes() can be
used as alias.
Returns: matrix

#m = zeros(5, 10);

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

You may use m() to indicate a missing value for a matrix element. You can also use
m(r, c) to get a matrix with missing values.

Note that an assignment like #m1 = #m2;, where #m2 is a matrix, #m1 will become a

copy of #m2, not a reference to it. The same is the case regarding function arguments,

where manipulating #m1 inside the function body of f(#m1) will not affect #m1 after

the function has been left.

Matrices are printed with PRT, the former SHOW command is obsolete.

225Gekko commands

T-T Analyse

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

A Gekko matrix only supports numeric values inside the cells. It relates to the
following in different languages:

· Gekko: #m= [1, 2; 3, 4];

· R: matrix data structure, m = matrix(c(1, 2, 3, 4), nrow=2, ncol=2)

· Python: list of lists (with numeric values), m = [[1, 2], [3, 4]]

· Matlab: two-dimensional array of numeric values

Related commands

VAL, SERIES, LIST, SHEET

226 Gekko 3.0 user manual

T-T Analyse

3.49 MEM

Prints a list of all scalar variables (value, date, string). Before Gekko 3.0, such scalar
variables were stored in memory (ram), hence the name of the command. In Gekko
3.0, scalars are stored in databanks, like series and other variable types.

Syntax

MEM;

Example

Consider this example:

%s1 = 'cat';
%s2 = 'dog';
%v = 123.45;
%d1 = date(2010); //or use 2010a or 2010a1 to make it a date.
%d2 = 2011q3;
MEM;

This will produce an overview similar to this:

 6 scalars found in 'Work' databank

 type name value

 DATE %d1 2010
 DATE %d2 2011q3
 STRING %s1 'cat'
 STRING %s2 'dog'
 VAL %v 123.45

Note

For scalars, you may use VAL?, DATE?, STRING?, to print out these individually.

Otherwise, you can also print scalars with the PRT command.

227Gekko commands

T-T Analyse

Related commands

STRING, DATE, VAL

228 Gekko 3.0 user manual

T-T Analyse

3.50 MENU

MENU is not a command, but the 'Menu' tab will open up a .html menu file when
clicked (regarding the .html file, see 'Related options' below). Menus can for instance
be used to organize tables (.gtb) in hierarchies, or call command files (.gcm). The
easiest way to start up the menu system is to click on the 'Menu' tab. Another
possibility is via 'Window' --> 'Restart Menu' (in the Gekko user interface).

Menu's are browsable, i.e., you may use the backwards and forwards arrows. The
'Home' button will point the menu to the starting .html file.

Details

The html file will be shown in the 'Menu' tab in the same way as the html file would
be shown in an internet browser. The only real difference is that links work in a
slightly different way. If the link is to a file with extension .gtb, Gekko will show that
particular table (as text in the 'Main' tab, or as html in the 'Menu' tab, depending
upon the setting OPTION table type...).

For instance, the html may contain the following HTML code:

Production
Run scenario 1

The first <a> tag indicates a link, with link text "Production". The linked file is

s43.gtb. Since this is a .gtb file, Gekko shows this particular table when the link is

clicked. Instead of a .gtb file, you may indicate a .gcm file (command file) inside the
quotes. In that case, if the link is clicked, Gekko will RUN the .gcm file.

You may design the HTML pages in any way you like, for instance it can be
convenient to style menus by means of a common stylesheet (CSS), so that their
design can be controlled centrally. Gekko will show just about all legal HTML code you
may come up with, including images etc.: the engine showing the HTML in the 'Menu'
tab is in reality the same engine that is used for showing pages in Internet Explorer.

The HTML files can be made by means of any HTML editor, for a free and quite robust
editor, you may for instance try the free Kompozer.

There is an automatic menu conversion tool from the older PCIM menus to the new
HTML format. See the menu: 'Utilities' --> 'Converters' --> 'PCIM converters' -->
'Convert PCIM menus...'.

Example file

https://sourceforge.net/projects/kompozer/

229Gekko commands

T-T Analyse

The HTML code below shows a menu ('OVERVIEW') with five items. The two first
items link to two different submenus (menu1/menu2.html), whereas the two
following links link to two different tables (s1/s2.gtb). The last item gives the
opportunity to browse a level up to a parent menu (main.html).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <link rel="stylesheet" href="styles.css" type="text/css">
 <meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
 <title>OVERVIEW</title>
 </head>
 <body>
 <big>OVERVIEW</big>

 SUPPLY BALANCE
 IMPORTANT KEY FIGURES ETC.
 Production S1
 Productivity S2
 MAIN MENU
 Back

 </body>
</html>

You may run command files via the menus, for instance adding the following list item
to the menu system:

Run menutest.gcm

This will provide a link ("Run menutest.gcm"), and when the link is clicked,
menutest.gcm is executed.

The HTML file uses a stylesheet (styles.css) which can be common the all the HTML
files in the menu system. In addition, a small table icon is used (table.png), to
indicate that the item points to a table. The stylesheet styles.css could be something
like this:

body {
 color: #000000;
 font-family: Verdana;
 font-size: 10pt;
 font-style: normal;
 font-variant: normal;
 background-color: white;
}
a {text-decoration: none;}
img {border-style: none;}

230 Gekko 3.0 user manual

T-T Analyse

This sets colors, font, size etc., and indicates that HTML links (<a>) should have no

underline, and HTML images () no border.

Note

A menu system may be organized in folders and sub-folders, if preferred. In that
case, call the html file in the subfolder with for

instance. To navigate to a parent folder, use '..', for instance . These are standard html conventions regarding relative

paths.

Anything can be put into the html file, but for security reasons Gekko will not open
up Internet links in the Menu tab. If an external Internet link is present (for instance
http://www.t-t.dk/gekko), Gekko will open that link with the default web browser.

You may use the EDIT command to edit the files (for instance: EDIT menu.html;),

but using a special html editor may be easier.

Related options

OPTION menu startfile = menu.html;
OPTION folder menu = ...;
OPTION interface table operators = yes; //click transformations on tables

Related commands

TABLE, EDIT

http://www.t-t.dk/gekko

231Gekko commands

T-T Analyse

3.51 MODE

The MODE command switches between sim mode (model simulation), data mode
(data revision programs etc.), and mixed mode (mixing sim- and data mode). Mixed
mode is default. The modes are reflected on the status bar at the bottom of the main
window (cf. the colors in the table below: green, blue or yellow).

· Sim mode: Focused on MODEL, READ, SERIES, SIM, PRT/MULPRT, WRITE and
similar commands. The Ref (reference) databank is essential in sim mode (to show
simulation differences/multipliers). See here regarding an overview of commands
that have primarily sim flavour.

· Data mode: Focused on OPEN, COPY, IMPORT, SERIES, PRT, CLOSE and similar
commands. The reference bank is often not used at all in this mode. See here
regarding an overview of commands that have primarily data flavour.

· Mixed mode: models and data handling can be mixed as the user wishes. Please
note that this mode is more flexible, but also has more room for errors, if care is
not taken (for instance whether a variable is a model variable, or whether a
variable is from the first-position databank or stems from some other open
databank).

It should be emphasized, however, that most commands and functionality can be
used in all modes, but there are some nuances. Below, an overview of the settings
associated with the three different modes.

Mode Sim Data Mixed

OPTION databank search = ...
In sim-mode, the user should use READ ... TO ...
(which is equivalent to OPEN) to open extra
'named' databanks, and in this case, explicit
databank colon must be used afterwards to refer to
the timeseries. In data- and mixed mode, Gekko
will search for a timeseries x (without databank

colon) in all databanks except Ref in the F2
window.

no yes yes

OPTION databank create auto = ...
In sim-mode, the user has to first CREATE a new
timeseries, before putting data into it with the
SERIES command. This is to avoid that the user
accidentally issues a "SERIES x = ... ;" statement,
thinking that he or she changes a model variable,
when in fact x is not part of the model. (If the
timeseries name starts with 'xx', CREATE is not
mandatory in sim mode). In data- and mixed
modes, a SERIES command will auto-create the
timeseries, if it does not exist beforehand.

no yes yes

232 Gekko 3.0 user manual

T-T Analyse

OPTION solve data create auto = ...
In sim-mode, when the user issues a general READ
statement, any model variables (contained in the
list #all) not present in the data file will be auto-

created (including missing variables of D-, J-, and
Z-types). In data-mode, such creation is not
performed, even if a model is present.

yes no yes

In addition to this, 'OPTION interface mode' is set to sim/data/mixed. This
option directs the following behavior:

· In sim-mode, READ ... TO ... is recommended instead of OPEN. OPEN<edit>,
OPEN<first> or OPEN<ref> are warned against.

· In sim- and mixed-mode, general READ will tell the user about superfluous
variables not in the model.

· In data-mode, general READ is warned against
· In data-mode, MODEL, SIM, CLONE and MULPRT are warned against.

Gekko starts out in mixed mode per default. You may set the mode in the gekko.ini
file (see INI). If you need Gekko to always start out in a particular mode, you can use
a gekko.ini containing for instance the command mode sim; in the same folder as the

gekko.exe file.

Syntax

MODE mode;
MODE ?;

mode Choose between sim, data or mixed. Default is sim

mode.

? Shows the current mode.

Example

This command changes to sim mode:

MODE sim;

233Gekko commands

T-T Analyse

Note

The MODE functionality will be continuously developed, but the intention is to avoid
making modes more complicated than they really are. Modes try to help the user
focus on the tasks at hand, rather than being confused about non-relevant Gekko
capabilities.

See also the databank search page.

Note that the Local or Global databanks are always searchable, independent on MODE
etc.

Related options

OPTION databank search = ...
OPTION databank create auto = ...
OPTION solve data create auto = ...
OPTION interface mode = [sim | data | mixed];

Related commands

RESET, RESTART, INI

234 Gekko 3.0 user manual

T-T Analyse

3.52 MODEL

The MODEL command is used in one of two ways:

· Load Gekko equations contained in a .frm file
· Load GAMS equations stored in a GAMS file. GAMS models are not solved, but their

equations can be displayed or decomposed.

Regarding Gekko model files (i.e., files with extension .frm, containing model
equations), see at the bottom of this help file regarding equation syntax etc. Please
put a MODEL statement before READ statements: in that way all model variables not
found in the databank will be auto-created when issuing the READ statement. Failsafe
note: if you experience problems solving the model (SIM), try using the Gauss-Seidel
method (default) together with the setting OPTION solve failsafe = yes. With this

option, Gekko will stop when the first missing value is encountered, and report
equation that produced the error.

Syntax

MODEL < DEP=... DUMP GMS > filename ;

DEP= (Optional). Together with the <gms> option, the user can provide a
list that identifies what variables individual equations determine.
For instance, in a GAMS equation e_1 specified like e_1[i, t] ..

p[i, t] * q[i, t] =E= v[i, t]; there is the question of which

variable is determined in the e_1 equation? In a system of

simultaneous equations, what is determined is a complicated
question, but in many cases it makes sense to designate a
"dependent" variable. In the e_1 equation, we would expect the

dependent variable to appear on the left-hand side of the equation,
but then there is the question of whether this is p or q?

Gekko can try to find the dependent variable in two ways, controlled
by OPTION model gams dep method = Either it will look for

the first variable that is not inside a []-bracket or $-condition; in
the above case p. Alternatively, it will look at the equation name,

and if this is for instance e_p, it will assume that p is the dependent

variable. If these rules do not designate the "right" variable, you
may use the <dep> local option like this: MODEL <gms

dep=#(listfile dep)> model.gms;. In the listfile (you may

alternatively use a normal list), you can state lines like this:

p; e3; e10;
q; e2;

235Gekko commands

T-T Analyse

This tells Gekko that equations e_3 and e_10 designate p as

dependent variable, whereas equation e_2 designates q as

dependent variable. These designations overrule the above-
mentioned logic (either picking the first variable on the left-hand
side, or using the equation name), so only the special cases that do
not follow that rule need to be stated. For instance, if e_1 was

determining q instead of p, the q-line of the listfile could be q; e_1;

e_2. instead of just q; e_2.

When using the first variable on the left-hand side, Gekko will allow
lagged or leaded variables to be dependents. This can be switched
off with OPTION model gams dep current = yes, after which only

current (non-lagged and non-leaded) variables can be identified as
dependents.

Note: The identification of "dependents" is only used in the DISP
and DECOMP commands, not elsewhere. [New in 3.0.2]

DUMP (Optional). With this option together with the <gms> option, a
GAMS model will be dumped in Gekko form, as the file dump.gcm.

This file can be used to inspect how Gekko translates GAMS-
equations, and which variables are indentified as dependents in
each equation (and if they are identified via a DEP list). These
equations may not run in Gekko, at the moment <dump> is only for
debugging. [New in 3.0.2]

GMS (Optional). With this option, Gekko will read GAMS equations from a
.gms file (extension .gms will be added if missing). Gekko will
search the .gms file for equations which can be shown with the DISP
command. Use together with OPTION model type if you want to

DISP the equations.

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,

or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.
If the filename is set to '*', you will be asked to choose the file in
Windows Explorer.
The extension .frm is automatically added, if it is missing.

Example

236 Gekko 3.0 user manual

T-T Analyse

If the model file name is adam2.frm, you may load the file as follows:

MODEL adam2;

Note that extension '.frm' is automatically added if it is missing (you may
alternatively use MODEL *; to choose the model in Windows Explorer).

MODEL othermodels\adam3;

This will look for adam3.frm in the subfolder othermodels, relative the the Gekko

working folder. When a model is loaded, it is first parsed. During this phase, you will
get errors if parentheses are missing etc. Gekko will also warn against dublets (for
instance two equations with the same left-hand side variable).

The MODEL statement also orders the equations, and compiles the model. The
ordering splits the model into three parts: the prologue (pre-model), the
simultaneous part, and the epilogue (post-model). So Gekko will automatically detect
any pre- and post-model and will use this information in order to speed up
simulations (hence, PCIM’s 'AFTER$' statement is ignored if it is present in a model).
The simultaneous part of the model is sub-divided into two parts: the feedback
variables, and the simultaneous recursive variables. This information is used to speed
up the Newton algorithm, by reducing the dimensionality of the simultaneous
equations.

After ordering, Gekko emits some files containing lists of exogenous, endogenous,
and DJZ-type variables (that is, add-factors and variables used for exogenization). It
also emits a file with ordering information. These files are assembled into a .zip-file
with the name [model]__info.zip, where [model] is the name of the model. Gekko

also creates the lists #all, #endo, #exo, #exod, #exodjz, #exoj, #exotrue and

#exoz with lists of different kinds of variables. The lists are located in the Global

databank, so that they survive READ statements.

Model files (.frm files) consist of equations (there is no limit on the number of
equations other than available RAM). The equations have the following syntax:

FRML frmlcode variable = expression;

frmlcod
e

May be used to indicate auto-generated D-, J- and Z-variables.

variable A variable, or an expression on a variable: log(var), dlog(var), dif(var) or
pch(var)

express
ion

Any mathematical expression

An example to illustrate, we will consider a particularly simple equation:

FRML _GJDD dif(y) = dif(x) ;

237Gekko commands

T-T Analyse

Ignoring for a moment the formula code, we first note that the equation uses the
dif() function, given as dif(x) = x - x[-1]. Hence, we get this equivalent equation:

FRML y = y[-1] + x - x[-1];

Next comes the formula code (_GJDD). This means that an add factor (JD) will be

added, with the name JDy. So our equation is augmented into

FRML y = y[-1] + x - x[-1] + JDy;

Last, exogenization dummies are added, too. This is done in order to ease
exogenization of the equation, if needed. In general, such variables are add in the
following way:

FRML y = (1-Dy) * (y[-1] + x - x[-1] + JDy) + Dy * Zy;

As you can see, two variables are added, Dy and Zy. If Dy = 0, the two variables have

no effect, but if Dy = 1, the equation reduces to y = Zy. I.e., the equations is given

by the exogenous Z-variable Zy (or in other words, the variable y will always be set

to this value, corresponding to exogenizing it). This is the equation used internally in
Gekko. In addition to this equation, Gekko adds two more “reverted” equations
regarding JDy and Zy. These equations are not part of the "real" model, but are

calculated after each simulation:

Reverted1: JDy = y - (y[-1] + x - x[-1]);
Reverted2: Zy = y;

If Dy = 0, it is easy to see that JDy will not change its value (together with the above

FRML, the first reverted equation reduces to JDy = JDy). But if Dy = 1, JDy will get

the value that corresponds to what Zy might have been set to, JDy = Zy - (y[-1] +

x - x[-1]). This way, you may set Dy = 1, and Zy to some chosen value. When you

simulate, y will assume that value. Later on, you may reset Dy = 0 and simulate. You

will notice that y still assumes the chosen value. So these exogenization dummies

can be used to change the levels of endogenous variables, but keeping them
endogenous if a multiplier is run on top of that.

The same functionality is often used for log-linear equations. Such an equation would
look like:

FRML _GJRD Dlog(y) = Dlog(x);

The add-factor (J-variable) is now relative (code 'JR'), and the resulting equations
become more complicated, but the basic idea is the same.

238 Gekko 3.0 user manual

T-T Analyse

You may use parameter values instead of numerical values, for instance:

VAL %c = 0.758812; //Note: you must use the VAL keywoard in frml
files
FRML _i Y = %c*X1 + (1-%c)*X2;

The parameter value must be located inside the model file, either before or after the
FRML statement(s) using it. Scalar variables in .gcm command files are not used: all
such variables must be present in the model file itself.

In addition to the normal functions like log(), exp(), abs(), pow(), the following
functions are possible:

Name Description Possibl
e on
left-
hand
side

dif(x) or
diff(x)

Absolute time-
difference

yes

dify(x) or
diffy(x)

Yearly absolute
time-difference

yes

dlog(x) Logarithmic time-
differences

yes

dlogy(x) Yearly logarithmic
time-differences

yes

lag(x,
lag)

Lags x a number of
periods. Note the
sign of the lag:
lag(x, 2) = x[-2].
Can be used if x is
an expression.

no

movavg(
x, lags)

Moving average no

movsum(
x, lags)

Moving sum no

pch(x) Percent time-
difference

yes

pchy(x) Yearly percent
time-difference

yes

Variable list

239Gekko commands

T-T Analyse

You may add a variable list with variable explanations at the end of the model file
(.frm). The list can be 'folded', using indices like qJ{j}{i}. The list must be in UTF-8-
format, if for instance 'æ', 'ø' and 'å' or other special characters are to be shown
correctly. In Notepad, you can choose encoding UTF-8 under 'Save as'. These variable
explanations show up in for instance DISP or DECOMP.

An example:

FRML Qu = ;
FRML fMz01 = ;

VARLIST;

Qu
Antal beskæftigede i alle erhverv ekskl. landbrug mv.
(1000 pers.)
Kilde: Statistikbanken, NAT18, branche: jf. fX{j}

fMz{i} i=01,2,3q,59,s
Den del af importgruppe {i}, der har en generel
substitutionselasticitet til dansk produktion
(mio.kr., 2005-priser, kædede værdier)
Kilde: Nationalregnskabet
Beregning: fMz{i} = Mz{i}/pm{i}

Note that each variable has a section delimited by '------'. The rules are as follows:

· Every variable section must end with a line with "---" (at least three of these). The
variable list as a whole must end with such a line in order to get the last variable
section read.

· You may use {}-placeholders that are auto-unfolded. If you need more than one
list in one section, the lists can be delimited by blanks or ';'. Example: qJ{j}{i}

j=t,e;i=a,b (compact) or qJ{j}{i} j = t, e i = a, b (mere spacing).

· The index inside the {}-placeholder can be an arbitrary letter, but only one letter.
· The lists can be of arbitrary depth/dimension, for instance: qJ{i}{j}{k}{m}

i=a,b;j=1,2;k=x,y;m=nm,nk.

· The lines following the first line (with the variable name) are descriptions. All {}-
placeholders are in-substituted in the descriptions, too.

· You can use an arbitrary number of description lines. For instance, (1) description,
(2) unit, (3) source, (4) calculation. You may use empty description lines.

· Instead of putting the variable list in a model (.frm) file, it can exist in a stand-
alone file called varlist.dat (without the 'VARLIST;' line).

Note

You cannot use broken lags, for instance x[-0.3]. This will perhaps be added later on

(would be translated into 0.7*x + 0.3*x[-1]). Leads like x[+1] are allowed.

240 Gekko 3.0 user manual

T-T Analyse

For exponents, please use either a^b or a**b (in addition, pow(a,b) is also possible).

Comments: use // to out-comment the rest of the line.

You may put meta-information into the model file (.frm). As of now, Info, Date, and

Signature fields are supported. Example (to be put in the top of the model (.frm)

file):

// Info: Model used for forecasting 2012-2030
// Date: 7-11-2012 15:37:00
// Signature: fp88RzyZfJNaoTi3I4X3Ww

Gekko will complain if this format deviates, for instance the Info field is to be written

with capital 'I', with no blank before the colon, and one blank after the colon. This
rigorousness regarding form is to make it easy to spot the information in different
.frm files. The Info and Date fields will be displayed when loading the model (MODEL

command), and the Signature field is used for verifying that .frm files have not been

changed relative to an 'official' version. The signature for a particular .frm file can be
obtained with the SIGN command.

If you have a variable that is defined implicity, for instance as f(x) = 0, but where

the x cannot be isolated, you may use the following pattern:

FRML _d x = x + f(x);

where f(x) is an expression where x cannot be isolated. If you choose OPTION solve

method = newton, an equation like the above should solve just fine with SIM.

Related options

OPTION folder model = [empty];
OPTION model type = default; //default | gams
OPTION model gams dep current = no; //yes | no

Related commands

SIM, SERIES, READ

241Gekko commands

T-T Analyse

3.53 MULPRT

The MULPRT command prints multipliers of variables, lists or expressions. A
'multiplier' is the difference between values in the first-position and reference
databanks.

MULPRT is a specialized version of the more general PRT command. The key
difference between the two print commands is that the operators are different:

· Short operators like d, p, m, q etc. cannot be used in the MULPRT command

· The long operators have different interpretation than in the PRT command.
· There is the additional operator v for 'verbose' MULPRT.

Please note that after any MULPRT, you may click the Copy-button in the main
window to copy-paste the print to Excel or other spreadsheets.

Syntax

MULPRT < period operators decimals width ROWS FILTER=... BANK=...
 REF=... > period elements HEADING=... FILE=... ;

where:

period (Optional). Local period, for instance 2010 2020, 2010q1

2020q4 or %per1 %per2+1.

operators operator operator ...

operator lev, abs, pch, gdif, v (note: v overrides any other operators)

decimals DEC=number | NDEC=number | PDEC=number

width WIDTH=number | NWIDTH=number | PWIDTH=number

elements element, element, ...

element variable 'label' < operators decimals width >

details:

242 Gekko 3.0 user manual

T-T Analyse

operators Long operators: lev, abs, pch or gdif. These can be switched

off by means of prefix no (for instance nopch), or added to

existing default operators by means of underscore (for instance
_lev). Default operators are abs and pch (absolute and

percentage multiplier is printed). Finally, you may use the v

operator to get verbose (detailed) output. Also see OPTION

print mulprt (The so-called 'short' operators cannot be

used in MULPRT).

element The variable can be a variable name, a list (for instance {#m}),

or an expression. Labels are put in single quotes (will be
ignored for lists). Operators here will override other operators
(global ones, or those set on the MULPRT statement), so
element-operators are local to the particular element.

DEC= Sets number of decimals, will apply to all kinds of numbers.

NDEC= Sets number of decimals for non-percentage numbers. See also
OPTION print fields ndec....

PDEC= Sets number of decimals for percentage numbers. See also
OPTION print fields pdec....

WIDTH= Sets width, will apply to all kinds of numbers.

NWIDTH= Sets width for non-percentage numbers. See also OPTION print

fields nwidth....

PWIDTH= Sets width for percentage numbers. See also OPTION print

fields pwidth....

ROWS If set, the result will be transposed, i.e., with variables running
downwards.

FILTER= A timefilter can be activated or deactivated (see TIMEFILTER
command). With <FILTER> or <FILTER=yes>, the current

timefilter is used. With <NOFILTER> or <FILTER=no>, any

filtering is deactivated. The filter type can also be changed
locally, for instance <FILTER=hide> hides the out-filtered

periods, whereas <FILTER=avg> averages the out-filtered

periods. See OPTION timefilter....

BANK (Optional). A bankname where variables are looked up. For
instance MULPRT <bank = b1> x; is equivalent to MULPRT

243Gekko commands

T-T Analyse

b1:x;. See also <REF = ...>. These options can be convenient

instead of opening and closing banks.

REF (Optional). A bankname where reference variables are looked
up. For instance MULPRT <bank = b1 ref = b2 m> x; uses

banks b1 and b2 for the multiplier. See also <BANK = ...>.

These options can be convenient instead of opening and closing
banks

HEADING= A heading in quotes.

FILE= A filename that the print is put into.

Note: You must specify at least one element.

For instance, MULPRT <2010 2015> x1, x1/x2, {#y}; will print out multiplier

differences regarding x1, x1/x2 and the variables corresponding to the list #y, for the

period 2010-2015.

Long operators for MULPRT

lev Absolute level: x

abs Absolute multiplier: x-@x[-1]

pch Relative multiplier: (x/@ -1)*100

gdif Multiplier in growth rate: (x/x[-1] -1)*100 - (@x/@x[-1] -1)
*100

v Prints verbose output (detailed, overrides other operators)

Note: For MULPRT the so-called 'short' operators are not available (see PRT).

Per default, MULPRT always prints out corresponding to MULPRT <abs pch>, i.e.,

printing out the absolute difference and percent difference. These default options can
be altered in OPTION print mulprt ... (see 'Related options' below). For instance,

to only print the absolute multiplier of a variable, use MULPRT<abs>, to only print the

relative multiplier, use MULPRT<pch>. You can alternatively switch options off with a

preceding 'no', for instance MULPRT<nopch> (same as MULPRT<abs>) etc. In addition,

you can use the 'glue' character '_' to add options to existing options. For instance,
MULPRT<_lev> will correspond to MULPRT<lev abs pch>, because lev is added to the

default options (abs and pch). You may put the codes after individual elements, for

instance MULPRT var1<pch> var2<abs>;, to have var1 displayed as pch and var2

displayed as abs. Codes put on an element override more general codes put directly

after MULPRT, so MULPRT<pch> var1 var2<abs>; yields the same result.

244 Gekko 3.0 user manual

T-T Analyse

In addition to the above transformations, the print can be formatted regarding the
width of each data column, and the number of decimals. Please see the PRT help file
regarding the syntax and capabilities.

The output can be transposed by means of the ROWS keyword, for instance
MULPRT<rows> gdp, pgdp;. This is handy for printing a long list of timeseries, or for

copy-pasting the cells to a spreadsheet by means of the copy-button in the Gekko
interface.

Finally, you can use a timefilter (see TIMEFILTER) in the MULPRT option field. See
examples in the PRT help file.

If referencing a variable in a particular databank beware that MULPRT b:variable;

will print the difference between b:variable and ref:variable, that is, Gekko looks

for a variable with the same name in the reference databank.

Examples

After performing some experiment, you may use "MULPRT fy;" to print out the
multiplier regarding the variable fY:

 fy (E)%
 2011 806.0090 0.06
 2012 917.4147 0.06
 2013 872.7069 0.06
 2014 834.6051 0.06

The '(E)' indicates that fy is endogenous ('(X)' indicates exogenous)). Regarding

width and decimals formatting, or using timefilters, see the examples in the PRT help
file.

You may use MULPRT<v> (v for verbose) to obtain more detailed multiplier output:

 fY % Reference %
Difference %
 2011 1432173.5090 3.82 1431367.5000 3.76
806.0090 0.06
 2012 1464027.0397 2.22 1463109.6250 2.22
917.4147 0.06
 2013 1492288.9569 1.93 1491416.2500 1.93
872.7069 0.06
 2014 1513081.9801 1.39 1512247.3750 1.40
834.6051 0.06

The last two columns correspond to the normal MULPRT statement, whereas the four
first columns show levels and growth rates from the first-position and reference
databanks respectively. Note that the last percentage column is not the difference

245Gekko commands

T-T Analyse

between the other percentage columns. Such a difference is the growth rate
multiplier (MULPRT<gdif> or PRT<mp>). So the 0.06 in the last row above is

(834.6051/1512247.3750)*100, not 1.39-1.40.

If you prefer to have levels of the variable shown in a normal MULPRT statement, you
can use MULPRT<_lev>. To add levels in all MULPRT statements, use this:

OPTION print mulprt lev = yes;
MULPRT fy; //this and the following MULPRT's will include levels

Note

If a model is loaded (see MODEL), the MULPRT command indicates (E) for

endogenous, and (X) for exogenous variables. Missing values are shown with a M

instead of numbers. If some variable is missing in the databank, an error message
will be issued.

You may change what is printed as default via the OPTION print mulprt ... options

(see 'Related options' below). For instance you may want to switch off printing of
percentage growth permanently: OPTION print mulprt pch = no.

The so-called 'short' operators (d, p, m, q, etc.) can only be used with the PRT

command.

Related options

OPTION freq a; [a|q|m]
OPTION print filewidth = 130;
OPTION print width = 100;

OPTION print fields ndec = 4;
OPTION print fields nwidth = 13;
OPTION print fields pdec = 2;
OPTION print fields pwidth = 8;

OPTION print mulprt lev = no;
OPTION print mulprt abs = yes;
OPTION print mulprt pch = yes;
OPTION print mulprt gdif = no;
OPTION print mulprt v = no;

OPTION timefilter type = hide;
OPTION timefilter = no;

246 Gekko 3.0 user manual

T-T Analyse

Related commands

PLOT, SHEET, CLIP, PRT, DISP, DECOMP

247Gekko commands

T-T Analyse

3.54 OLS

The OLS command performs linear regression (ordinary least squares) on an
equation, optionally with linear restrictions on the parameters.

Note: a constant term (intercept) is added automatically, unless suppressed with
<constant = no>.

Syntax

OLS <period CONSTANT=... DUMP=... DUMPOPTIONS=...> name leftside =
var1, var2, ... IMPOSE=... ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4

or %per1 %per2+1.

CONSTANT
=

With <constant = no>, a constant term is not added

automatically.

DUMP= (Optional). Dumps the results as a FRML equation for use in
models. You may use OLS<dump> to produce a ols.frm file.

OLS<dump=eqs.frm> will use the filename eqs.frm instead. Note

that there is no firm guarantee that a subsequent MODEL
statement will load the file, but in most cases it will (FRML
statements only support a limited subset of general Gekko
expressions). If the equation loads, you may consider a SIM<res>
to check its residuals. Gekko will put parentheses around all
expressions that contain a + or -. This will introduce superfluous

parentheses in expressions like a * (b + c) or exp(a - b) etc.

[New in 3.0.6]

DUMPOPTIO
NS=

(Optional). If you use OLS<dump=eqs.frm

dumpoptions='append'>, the results will be appended to an

existing eqs.frm file. These options will be augmented with

styling, FRML code, etc. [New in 3.0.6]

name (Optional). A name for the equation, used to name the results. If
no name is given, ols is used as name.

leftside The leftside variable (may be an expression)

var1, ... A list of variable names or expressions. A constant term is added
automatically, unless you use option <constant = no>.

248 Gekko 3.0 user manual

T-T Analyse

IMPOSE (Optional). You can impose linear restrictions on the parameters,
via a suitable matrix. One restriction per row of the matrix, cf.
example below.

Results:

Note that if a name is given, ols is replaced with that name.

ols_predict A timeseries with the predicted values

ols_residual A timeseries with the residuals

#ols_param A matrix with estimated parameters

#ols_se A matrix with standard errors on parameters

#ols_t A matrix with t-values on parameters

#ols_covar A matrix with the variance-covariance matrix (of
parameters)

#ols_corr A matrix with the correlation matrix (of parameters)

#ols_stats A matrix containing different measures (analogous to
the .stats matrix in AREMOS):

1: Residual sum of squares
2: Standard error
3: Residual mean
4: Root mean square error (RMSE)
5: R squared
6: R bar squared
7: [empty]
8: Dependent variable mean
9: Durbin-Watson with lag 1

(At some point, a map will be used instead for these
measures).

Example

249Gekko commands

T-T Analyse

This example estimates a linear model with five parameters. You may consult the
MATRIX section to see the same parameters calculated with linear algebra, or the
R_RUN section to see the same parameters calculated via the R interface.

RESET;
CREATE lna1, pcp, bul1;
SERIES <1998 2010> lna1 = data(' 166.223000 173.221000 179.571000
 187.343000 194.888000 202.959000
 209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
SERIES <1998 2010> pcp = data(' 0.9502030 0.9699920 1.0000000
 1.0235000 1.0401100 1.0605400
 1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
SERIES <1998 2010> bul1 = data(' 0.0684791 0.0591698 0.0560344
 0.0535439 0.0535003 0.0631703
 0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
OLS <2000 2010> dlog(lna1) = dlog(pcp), dlog(pcp.1), bul1, bul1.1;

The commands produce the following screen output:

 OLS estimation 2000-2010 (n = 11)
 dlog(lna1)

 Variable Estimate Std error T-stat

 dlog(pcp) 0.144517 0.227011 0.64
 dlog(pcp.1) 0.613875 0.236473 2.60
 bul1 0.186740 0.202534 0.92
 bul1.1 -0.350908 0.203182 1.73
 CONSTANT 0.0298039 0.0089418 3.33

 R2: 0.625034 SEE: 0.00346154 DW: 1.8651

In addition to the screen output, the timeseries ols_predict and ols_residual are

produced, together with the matrices #ols_param, #ols_se, #ols_t, #ols_covar,

#ols_corr, and #ols_stats. The matrices can be printed out with the PRT command.

In the example above, you may, for example, restrict the first two parameters to sum
to 0.80, and the third and fourth to be equal like this (cf. the MATRIX command):

#r = [1, 1, 0, 0, 0, 0.80; 0, 0, 1, -1, 0, 0];
OLS <2000 2010> dlog(lna1) = dlog(pcp), dlog(pcp.1), bul1, bul1.1
IMPOSE = #r;

If the parameters are called b{i}, the first restriction is equivalent to 1*b1 + 1*b2 +

0*b3 + 0*b4 + 0*b5 = 0.80, or b1 + b2 = 0.80. The second restriction is

equivalent to 0*b1 + 0*b2 + 1*b3 + (-1)*b4 + 0*b5 = 0, or b3 = b4. So the last

250 Gekko 3.0 user manual

T-T Analyse

column of the #r matrix contains the values that the linear restrictions should sum

up to. The restrictions produce the following:

 OLS estimation 2000-2010 (n = 11)
 dlog(lna1)

 Variable Estimate Std error T-stat

 dlog(pcp) 0.167642 0.180625 0.93
 dlog(pcp.1) 0.632358 0.180625 3.50
 bul1 -0.0863480 0.0794747 1.09
 bul1.1 -0.0863480 0.0794747 1.09
 CONSTANT 0.0291952 0.0085164 3.43

 R2: 0.491156 SEE: 0.00349218 DW: 1.6847

Note

You may consider R to perform econometrics. But Gekko also has some pretty good
interfaces to TSP (with its rock-solid LSQ estimator).

The variables do not need to have similar magnitude to obtain precise parameter
estimates (pre-scaling is performed internally).

Instead of OLS<dump>, some people prefer to compose FRML equations for models by

hand, using TELL and PIPE. In this way, the equations can be formatted exactly as
the user prefers. To control the formatting of paramaters, you may use the inbuilt
format() function, for instance using TELL 'FRML y = {format(#ols_param[1],

'0.000000')} * x + ({format(#ols_param[2], '0.000000')})';. The last

parenthesis is to deal with #ols_param[2] being negative. See more on formatting of

strings in the TELL section.

After an OLS, you may use the Copy-button in the main Gekko window to copy/paste
(with full precision) the matrix of parameter values/errrors to Excel or other
spreadsheets.

Related commands

 ANALYZE, MATRIX, MODEL, R_RUN

http://www.tspintl.com/

251Gekko commands

T-T Analyse

3.55 OPEN

The OPEN command opens databanks. In general, there are (potentially) the
following databanks in Gekko:

Number Searchable Non-searchable

Local

1. First Ref

2. Another databank

3. Another databank

... ...

n'th Last databank

Global

More info on this databank list on the databank search page. The first-position
databank can always be referred to by for instance first:x, and the reference

databank by ref:x.

In sim-mode, the order in the above list is not significant, since all banks that are not
the first-position or local/global databank must be referred to by either bankname
(like b2:x) or operators (like PRT<m>x;, to print the difference between first:x and

ref:x). In other modes, for instance data-mode, Gekko will search for variables in

the databanks shown in the 'Searchable' column. Note here that the Ref databank is
never searchable, since the purpose of the Ref databank is to ease different kinds of
comparisons.

When looking for a variable x in a command (for instance PRT x; or at the right-hand

side of an expression (for instance y = x;), Gekko will look first in the Local

databank (if it contains variables), then in the first-position databank (often called
Work), then in the second-position, third-position etc. databanks, and finally in the
Global databank. The Local databank is used to store temporary variables, for
instance variables used in functions and procedures, whereas the Global databank is
used to store permanent variables that can survive a RESET or RESTART. These
databanks are created at Gekko startup, but they are not shown in the databank list
(F2) if they are empty. The same goes for the Ref databank, which is not shown in
the F2 list if empty. Therefore, when Gekko starts up in a clean state, only the first-
position databank (default: Work) is shown in the F2 list.

The OPEN command reads timeseries from a databank file into a databank with the
same name as the file (minus the extension). A databank opened in the way is called

252 Gekko 3.0 user manual

T-T Analyse

a 'named' databank (in contrast to READ which operates on the first-position and/or
reference databanks). Named databanks may be written to if they are opened with
OPEN<edit>, and the databanks are closed with the CLOSE command.

NOTE: Gekko opens up databanks in the last position in the databank list. This
behavior deviates from AREMOS and is only relevant for data- or mixed-mode users.

To open a databank file as the first databank in the list of databanks (cf. the F2
window), you may use OPEN<first> -- or OPEN<edit> if you want it in first position

and editable. The first-position databank is the bank in which timeseries are found
per default, and the reference databanks is often used for multiplier purposes
(analyzing differences between two banks, for instance via MULPRT, PLOT<m>, etc.).

Variables in named (OPEN) databanks are referred to by means of colon (':'), for
instance adam:x if the opened databank is the file adam.gbk, containing the variable

x. Note that you can get a list of available in-memory databanks (including Work and

Ref) by means of the F2 key.

The order in which normal OPEN databanks (that is, opened with OPEN, not for
instance OPEN<edit>, OPEN<first> or OPEN<ref>) are opened is only of importance
if OPTION databank search = yes is set (it is set to no as default in sim-mode, but

set to yes as default in data-mode). So regarding a bank-less variable like x, it

depends upon the databank search settings how x is searched for in the different

open databanks (cf. the databank search page). The variable @x (same as ref:x) is

always x taken from the reference databank, and adam:x is always x taken from the

in-memory databank adam.

With OPTION databank search = yes, which is default, Gekko will search for a

bank-less variable x first in the Local databank, then all numbered databanks in the

F2 window (bank number 1, 2, and so on), and finally in the Global databank.

Syntax

OPEN < EDIT FIRST LAST POS=... REF SAVE=... CREATE format COLS
DATEFORMAT=... DATETYPE=... > filename1 AS alias1, filename2 AS
alias2, ... ;

EDIT The databank is opened in first position, as editable. (See also
OPEN<create>).

FIRST The databank is opened in first position, as non-editable
(protected)

LAST The databank is opened in last position, as non-editable
(protected). This corresponds to the way databanks are opened
with the OPEN command in Gekko versions 2.1.3 and later.

253Gekko commands

T-T Analyse

POS= (Optional) Indicate an integer value. The databank is opened in
the n-th position, as non-editable (protected)

SAVE With OPEN<save=no>, Gekko will not write the databank to file

when it is CLOSEd, even if the databank contents has changed. In
that way, you may change the contents of a databank in RAM only
(that is, the data is changed while the databank is open and the
session lasts), but without altering the underlying databank file
(.gbk). See also CLOSE<save=no>.

CREATE If this option is set, Gekko will accept an OPEN<create>b1, even if

b1.gbk does not exist beforehand. Regarding a non-existing file,
this is similar to OPEN<edit>, the difference is that OPEN<edit>

puts the bank in first position, as editable. The reason why
<create> is not the default way of opening a databank is to avoid

errors if a user misspells a databank name.

format (Optional). Can be tsd, gbk, pcim, csv, prn, xls, xlsx. The default

file format is gbk.

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.
If the filename is set to '*', you will be asked to choose the file in
Windows Explorer.
The extension .gbk is automatically added, if it is missing.

COLS (Optional). Only for .xlsx and .csv files: this indicates whether the
timeseries are running downwards in columns. Note that for .csv
files, you indicate this in the first 'cell' (date/name).

DATEFORM
AT=
DATETYPE=

(Optional). These options control the date format for .xlsx and .csv
files. DATEFORMAT can be either 'gekko' (default) or a format

string like 'yyyy-mm-dd', and the latter may contain a first or

last indicator, for instance 'yyyy-mm-dd last', which indicates

for quarterly or monthly data that the last day of the quarter or
month is used. DATETYPE can be either 'text' or 'excel'. In the

former case, the dates are understood as text strings (for instance
'2020q3' or '2020-09-30' for a quarterly date), and in the latter

case (not relevant for .csv files), the date is understood as an
Excel date, which basically counts the days since January 1, 1900.
This number would correspond to 44104 for the date 2020-09-31,
and can be shown in Excel in different ways depending upon date
format settings, language settings, etc., but the internal number

254 Gekko 3.0 user manual

T-T Analyse

itself is unambiguous. [New in 3.0.5].

alias (Optional). The name that is used when referencing the databank.
Default is the filename minus extension.

Example

Opening a .gbk file called bk1 is done with

OPEN bk1;

or by

OPEN *;

and then selecting the databank. Afterwards, you may reference variables in the
databank by means of for instance:

PRT fy, @fy, bk1:fy;

This will print out the fy variable from the first-position, reference, and bk1

databanks. You may use an AS alias to shorten the databank name:

OPEN bk1 AS b;
PRT fy, @fy, b:fy;

Try pressing F2 to open up the databanks window. This window provides an overview
regarding the different open databanks (including Work and Ref).

If you open up two databanks like this:

OPEN bank1;
OPEN bank2;

bank1 will show up above bank2 in the databank list, because the OPEN command

puts databank in the last position on the list. The following yields the same:

OPEN bank1, bank2;

255Gekko commands

T-T Analyse

You may use OPEN<first>, OPEN<sec>, OPEN<pos=n>, OPEN<last> to open a databank

in a specific position on the databank list (F2). The command OPEN<edit>mybank; is

the same as OPEN<first>mybank; UNLOCK mybank; -- and in that case, a subsequent

SERIES xx1 = 100; will put the series xx1 into mybank:

OPEN <edit> mybank;
SERIES xx1 = 100;
CLOSE mybank;

After the CLOSE command, the altered databank is automatically written to file, so
mybank.gbk will contain the xx1 series.

Note

To get an editable databank in the second position or below, OPEN it and use UNLOCK
afterwards.

When reading, extension '.gbk' is automatically added if it is missing. Global time
settings does not affect the OPEN command, so all the data in the .gbk file is read
into the databank regardless of how the timeperiod is set in Gekko.

See the IMPORT command for more information on databank formats.

You can use SERIES ?; to see what kinds of series reside in all open databanks

(including their frequencies).

Banks are opened as 'protected' (non-editable) as default, unless you use OPEN<edit>

or unlock with UNLOCK (see LOCK/UNLOCK).

You may use the isopen() function to test if a particular databank is open.

Related options

OPTION databank file copylocal = yes; [yes|no]
OPTION databank search = no; [yes|no]
OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];

Related commands

256 Gekko 3.0 user manual

T-T Analyse

READ, WRITE, CLONE, UNLOCK, LOCK

257Gekko commands

T-T Analyse

3.56 OPTION

The command sets various global option values, in a hierarcical tree of possibilities.
"OPTION ?" gives an overview regarding different options and their current values.
Below, the different options are described (with their default values indicated).

Note that Gekko provides suggestions (a small popup-window) for the OPTION
command (see "OPTION interface suggestions = option"), to aid the user navigate
the option tree.

Syntax

OPTION type = value;

type One or more space-delimited options

value Boolean (e.g.: yes|no)

Integer (e.g.: 200)
Floating point number (e.g.: 0.45)
String (eg.: newton)

Note: the '=' may be omitted: OPTION freq q; and OPTION freq = q; are

equivalent.

Below the full list of options are provided, with their default values. You may set
temporary options via the BLOCK structure.

Options

OPTION databank create auto = no; [yes|no]
If yes, timeseries will be auto-created. For instance, SERIES y1 = 100; will be

possible without CREATE y1;, even if y1 does not exist in the first-position databank.

 Setting OPTION databank create auto = yes; and OPTION databank search =

yes; can be practical in data revision programs. See also the MODE command.

OPTION databank create message = yes; [yes|no]
A message is issued when a new timeseries is created.

OPTION databank compare tabs = 1.0;
OPTION databank compare trel = 0.0001;
These options set limits regarding the COMPARE command (comparing the first-
position and reference databanks).

OPTION databank file copylocal = yes;

258 Gekko 3.0 user manual

T-T Analyse

If yes, when reading (READ/IMPORT) or opening (OPEN) a databank, the file will first

be copied into a temporary file on the user's hard drive. This will in many instances
speed up reading/opening files on network drives.

OPTION databank file gbk compress = yes;
OPTION databank file gbk internal = 'databank.data';
OPTION databank file gbk version = 1.2; [1.0|1.1|1.2]
Some options regarding the .gbk format, applying only to writing or closing databanks
(WRITE/CLOSE). Without compression there is some speed gains while writing and
reading, but in most cases the speed gains do not outweigh having to deal with much
larger databank files. The internal name for the data file inside the zipped .gbk file is
databank.data, but can be changed here (it used to be databank.bin). Regarding

the .gbk version, there is normally no need to change this.

OPTION databank search = no;
If yes, variables will be searched for in all open databanks except Ref (cf. the F2

window). Setting OPTION databank create auto = yes; and OPTION databank

search = yes; can be practical in data revision programs. See also the MODE

command, and the databank searching page. Note that the Local or Global databanks
are always searchable, independent on MODE etc.

OPTION decomp maxlag = 10;
OPTION decomp maxlead = 10;
When decomposing, effects via lags are restricted within these values (larger values
= slower decomp).

OPTION folder = yes; [yes|no]
If yes, Gekko will look for files in predefined folders (is switched on per default).

OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];
While reading, importing or opening databanks (READ/IMPORT/OPEN), Gekko will
first look for databanks in the working folder, and then in the bank, bank1 and bank2

folders (in that order). If the folder contains blanks, single quotes should be used (for
instance OPTION folder bank = 'c:\my banks'). Relative paths may be used:

OPTION folder bank = \databanks. In that case, Gekko will look for a sub-folder

databanks in the working folder. If bank is set, databanks are written to that folder

(WRITE).

OPTION folder command = [empty];
OPTION folder command1 = [empty];
OPTION folder command2 = [empty];
While looking for command files (see RUN), Gekko will first look for .gcm files in the
working folder, and then in the command, command1, command2 folders (in that order).

OPTION folder help = [empty];
Folder where Gekko looks for the help system (gekko.chm file). Normally this file is
located where Gekko is installed (and comes bundled with the installer files).

OPTION folder menu = [empty];

259Gekko commands

T-T Analyse

Folder where Gekko looks for menu files (.html files).

OPTION folder model = [empty];
Folder where Gekko looks for model files (.frm files).

OPTION folder pipe = [empty];
Folder where Gekko pipes out text output files (see the PIPE command). If no folder
is indicated, piped files will end up in the working folder.

OPTION folder table = [empty];
OPTION folder table1 = [empty];
OPTION folder table2 = [empty];
Folders where Gekko looks for table files (.gtb files). Gekko will first look in table,

then table1, and last table2 folders.

OPTION folder working = [empty];
This changes the Gekko working folder. (For advanced users: note that you can also
use the parameter '-folder' with the gekko.exe file, for instance: gekko.exe -

folder:c:\mygekkofiles).

OPTION freq = a; [a|q|m|u]
Sets frequency of timeseries to 'a' (annual), 'q' (quarterly), 'm' (monthly), or
'u' (undated). You may use a string inside {}-bracket, for instance %f = 'q'; OPTION
freq = {%f};

OPTION gams exe folder = [empty];
This option starts out empty, and if so, GAMS will try to auto-detect the location of
the executable for GAMS (gams.exe). Instead of this auto-detection, you may try to
set the folder name manually, for instance OPTION gams exe folder = 'c:

\GAMS\win32\24.1';. Note that only the path is indicated, excluding the file name.

Please use quotes if the folder contains dots (.).

OPTION gams fast = yes;
Default GAMS read is using a fast reader (low-level API). If this poses problems, try
the more robust normal API by setting OPTION gams fast = no;.

OPTION gams time freq = 'a'; [a, q, m, u]
OPTION gams time set = 't';
OPTION gams time prefix = '';
OPTION gams time offset = 0;
OPTION gams time detect auto = no;
These options describe how the time dimension is obtained from the GAMS variables
and parameters. The default values correspond to the time being the GAMS set name
't', with natural annual values like 2020, 2021, 2022, etc. If the time values are
instead, for instance, t0, t1, t2, you may use OPTION gams time prefix = 't';

OPTION gams time offset = 2020;. In that case, t0 will be understood as 2020, t1

as 2021, etc. In this case, you may also set OPTION gams time detect auto =

yes;. If so, any dimension element with the pattern 't' + integer will be understood

as a time period. This may happen if a variable/parameter does not use a strict set
(name 't' in this case, cf. OPTION gams time set) for the time dimension, and Gekko

260 Gekko 3.0 user manual

T-T Analyse

may in that case create a lot of timeless timeseries with dimensions like x['2020'],

x['2021'], etc.

OPTION interface alias = no; [yes|no]
When this option is set, Gekko will look for at list with the name #alias to perform

alias substitution of names. For instance, global:#alias = (('a', 'x'), ('b',

'y[z]')); will mean that PRT a, b; will be interpreted as PRT x, y[z];. So the

#alias list is a list of lists, where the inner lists contain the source name and the

destination name. Among other things, #alias can be convenient as a bridge

between the naming conventions of two different models. You can switch on and off
the use of alias with this option, but if you need to use another #alias list, you have

to first perform a RESET/RESTART.

OPTION interface clipboard decimalseparator = period; [period|comma]
The option is used in three places: (1) in the CLIP command, (2) regarding the
'Copy'-button on the user interface (copying cells from the last print to the clipboard),
and (3) regarding copy-pasting cells from the DECOMP window. The setting is not
relevant for SHEET which does not use the clipboard.

OPTION interface csv decimalseparator = period; [period|comma]
Used with IMPORT<csv> and EXPORT<csv> local option, where the databank is
written as a csv (comma separated) file. The decimal separator in the .csv file will
correspond to the indicated setting.

OPTION interface csv delimiter = semicolon; [semicolon|comma]
Used with IMPORT<csv> and EXPORT<csv>. The field delimiter is ; per default, but

can be set to , instead. This symbol delimits the columns of data. Regarding

EXPORT<csv>, combining OPTION interface csv delimiter = comma; with OPTION

interface csv decimalseparator = comma; will issue a warning. [New in 3.0.5].

OPTION interface debug = dialog; [dialog|none]
Choose between dialog or none. If dialog, the user may rerun a file on syntax

errors, or skip lines on runtime errors.

OPTION interface excel language = danish; [danish|english]
If set to danish, CLIP, SHEET and the 'Copy' button will use the Excel code

"ikke.tilgængelig()" instead of "na()" to indicate missing values. Also, if set to

danish, EXPORT<csv> will use '#NAVN?' for missing values (alternatively, it uses

'#NAME?').

OPTION interface excel modernlook = yes; [yes|no]
Turns on modern looking blue colors in SHEET.

OPTION interface help copylocal = yes;
If this option is active, Gekko will copy the file gekko.chm into a local folder on the
user's hard disk, before it is opened (for instance with F1, or the HELP command). In
Windows 7 and 8, problems will arise when trying to open up a .chm files from a
network drive, so keeping the option active should eliminate such problems.

OPTION interface mode = sim; [sim|data|mixed]

261Gekko commands

T-T Analyse

Sets some interface messages/warnings etc. regarding different modes (see the
MODE command). This option is not intended for direct use: please use the MODE
command that changes the mode explicitly.

OPTION interface mute = no; [yes|no]
When this option is set to yes, all screen output (or pipe file output) is suppressed. If

errors occur, this option is automatically set to no. Alternatively, PIPE is somewhat

similar. The option is is primarily set in command files/procedures/functions to avoid
voluminous screen output blocking and slowing the user interface. [New in 3.0.6].

OPTION interface remote = no; [yes|no]
If this is set to 'yes', Gekko will look for a file named remote.gcm in the current

working folder. If that file is changed (Gekko looks at Windows time stamps), the
whole file is run (corresponding to RUN remote.gcm;). This makes remote controlling

of a Gekko instance possible from, for instance, an external text editor. For instance,
typing Alt+Enter or something similar in the editor might be set up so that a
remote.gcm file containing the contents of the text line (or block of lines) is created.

See also a Gekko-specific add-in for the Sublime text editor here.

OPTION interface sound = no; [yes|no]
If active, Gekko will play a sound when a command file finishes (or has an error). See
also OPTION interface sound type and OPTION interface sound wait for more

options regarding sounds.

OPTION interface sound type = bowl; [bowl|ding|notify|ring]
The sound type, choose between bowl, ding, notify, ring.

OPTION interface sound wait = 60;
The minimum duration of the job (in seconds), before for Gekko plays a sound. Used
to avoid too much noise regarding fast-executing jobs.

OPTION interface suggestions = option; [none|option]
If set to option, small popup with suggestions will appear when entering options.

OPTION interface table operators = yes;
If yes, html tables will include radio buttons to select operators by point-and-click, for

instance percentage growth, or multiplier differences. Note: 'operators' was
'printcodes' in Gekko 2.4 and earlier.

OPTION interface zoom = 100;
The zoom level (default = 100%) regarding font sizes in the user interface (the three
tabs in the main window). May be increased on high-res monitors, or for educational
purposes (projector).

OPTION menu startfile = menu.html;
The filename for the html menu file shown in the 'Menu' tab (see MENU).

OPTION model cache = yes; [yes|no]
Whether or not a model cache is used.

OPTION model cache max = 20;

https://github.com/MartinBonde/gekko_sublime

262 Gekko 3.0 user manual

T-T Analyse

The maximum number of compiled models kept in RAM (cached), during a Gekko
session. Reduce the number if you for instance are doing a lot of ENDO/EXO
simulations and run into memory issues.

OPTION model infofile = yes; [yes|no]
If no, Gekko will not produce a modelname__info.zip file after a MODEL statement

(with default model type).

OPTION model gams dep current = no; [yes|no]
When reading a GAMS model with MODEL<gms>, Gekko will try to identify the
dependent variable in each GAMS equation. If OPTION model gams dep method =

lhs (default), Gekko will try to find the first variable on the left-hand side that is not

inside a []-bracket or a $-condition. WIth current = no, Gekko will identify the

variable as dependent, even if it contains a lag or lead. With current = yes, Gekko

will only look for variables that have no lags and no leads. See also the MODEL <dep

= ...> local option under MODEL. [New in 3.0.2].

OPTION model gams dep method = lhs; [lhs|eqname]
When reading a GAMS model with MODEL<gms>, Gekko will try to identify the
dependent variable in each GAMS equation. With option lhs, Gekko will try to find

the first variable on the left-hand side that is not inside a []-bracket or a $-condition.
With option eqname, Gekko uses the equation name instead, for instance the

equationname e_pc_tot is understood as identifying the variable pc as dependent

variable. In both these cases, such identification can be overruled with a list
identifying these relationships, cf. the MODEL <dep = ...> local option under MODEL.

[New in 3.0.3].

OPTION model type = default; [default|gams]
If type = gams, Gekko will handle ENDO, EXO, UNFIX and DISP differently to ease

the interaction with GAMS.

OPTION plot decimalseparator = period; [comma|period]
The type of decimal separator used for tic labels.

OPTION plot elements max = 200;
Limits the number of curves in a graph, so that PLOT does not crash or stall when
accidently feeding with too many elements. See PLOT<nomax>.

OPTION plot lines points = yes; [yes|no]
Whether or not the PLOT graph has individual points indicated with markers.
Intended for Gekko 2.0 graphs, but also works for Gekko 2.2. graphs.

OPTION plot using = [empty];
With this option, a global .gpt PLOT template file can be set, for instance OPTION

plot using = m:\common\gekko.gpt;. Subsequent PLOT commands will then use

that template (unless the PLOT command itself has a using argument).

OPTION plot xlabels annual = at; [at|between]
OPTION plot xlabels nonannual = between; [at|between]

263Gekko commands

T-T Analyse

Whether or not the data points are at x-tics, or between them. For quarterly and
monthly data, the latter is often the most logical.

OPTION plot xlabels digits = 4; [2|4]
Number of digits in the year (at the x-labels). The option only applies to labels
between tics, not labels at tics (see the preceeding options). With two digits, we get
15, 16, 17, instead of 2015, 2016, 2017.

OPTION print collapse = none; [avg|total|none]
If this option is set to avg or total, Gekko will print averages or totals for timeseries

of frequencies quarterly or monthly. Cf. also the COLLAPSE command. Only applies to
OPTION print freq = pretty;.

OPTION print disp maxlines = 3;
The number of lines of data shown per default in the DISP command. You may choose
-1 for infinite, 0 means that no data are shown.

OPTION print elements max = 400;
Limits the number of elements in a print, so that PRT does not crash or stall when
accidently feeding with too many elements. See PRT<nomax>.

OPTION print freq = pretty; [pretty|simple]
If this option is set to pretty, timeseries of frequencies quarterly and annual are

printed with years and quarters/months separated, for better readability. If the
option is set to simple, the dates are shown without such separation.

OPTION print fields ndec = 4;
OPTION print fields nwidth = 13;
OPTION print fields pdec = 2;
OPTION print fields pwidth = 8;
These options set the default decimals and width of number fields when printing with
PRT or MULPRT. The first two sets decimals and width for for non-percent fields, and
the two last for percent fields. The ndec and nwidth settings also affect printing of

matrices.

OPTION print filewidth = 130;
Line width (number of characters) when printing to a file

OPTION print mulprt abs = yes; [yes|no]
OPTION print mulprt gdif = no; [yes|no]
OPTION print mulprt lev = no; [yes|no]
OPTION print mulprt pch = yes; [yes|no]
OPTION print mulprt v = no; [yes|no]
These options set the default way of printing with the MULPRT command. Per default,
abs and pch are chosen, so MULPRT shows absolute multiplier difference (abs), and

relative difference (pch). These can be overridden via the option fields in the MULPRT

command.

OPTION print prt abs = yes; [yes|no]
OPTION print prt dif = no; [yes|no]
OPTION print prt gdif = no; [yes|no]

264 Gekko 3.0 user manual

T-T Analyse

OPTION print prt pch = yes; [yes|no]
These options set the default way of printing with the PRT command. Per default, abs

and pch are chosen, so PRT shows the absolute level (abs), and the growth rate

(pch). These can be overridden via the option fields in the PRT command.

OPTION print split = no; [yes|no]
If set, the variables or expressions delimited by comma are shown separately, cf. also
the local option PRT<split>. With the global optoin set, PRT x, y; is shown as if it

had been PRT x; PRT y;. This may be practical for comparisons of data with similar

columns, for instance PRT x[#i], @x[#i];. In that case, you may prefer to use for

instance the <missing = m> option, so that all columns (#i) are shown (and are

hence aligned), regardless of whether the subseries exist or not.

OPTION print width = 100;
Line width (number of characters) when printing to screen

OPTION r exe folder = [empty];
This option starts out empty, and if so, Gekko will try to auto-detect the location of
the executable folder for R (R.exe). If this auto-detection fails, you may try to set the

folder name manually, for instance OPTION r exe folder = 'c:\Program

Files\R\R-3.0.0\bin\R.exe';. Note the single quotes because of the blank in

'Program Files'. You should state the path to an executable file (R.exe), but if you

omit a trailing 'R.exe' or '\R.exe', Gekko will fill these in for you. So in the above
example, OPTION r exe folder = 'c:\Program Files\R\R-3.0.0\bin'; would

have been equivalent.

OPTION series array calc missing = error; [error|m|zero]
With option error (default), a missing #i element in x in an expression like for

instance sum(#i, x[#i]) will halt with an error. With option m, Gekko will not halt,

but will use missing values instead of x[#i] -- so the sum will return a missing value.

With zero, zeroes are used instead of missing elements in x[#i], so the sum is

calculated as if the missing elements were skipped.

OPTION series array print missing = error; [error|m|zero|skip]
With option error (default), a missing #i element in x in PRT x[#i]; will halt with

an error. With option m, missing values will be printed (typically as 'N' instead of 'M'

to indicate that it is a non-existing subseries). With zero, zeroes are printed instead,

and with skip, the missing #i's are skipped (not shown). See also the local option

<missing = ...> for PRT. As mentioned, with option missing = m, the raw PRT

x[#i]; will show missing #i elements as 'N' because they are non-existing, whereas

an expression like PRT x[#i] + 1; will show them as 'M', since they are now a result

of a mathematical expression.

OPTION series data missing = m; [m|zero]
With option m (default), missing data/observations in a normal series or array-series

are propagated normally, so that an expression containing a missing value will always
result in a missing value. With option zero, a missing value in an observation will be

treated as if the value was 0. The four options above that also handle missings deal
with the question of what to do if a normal series or array-subseries does not exist at
all. In contrast, this option solely affects the time domain: what to do if an

265Gekko commands

T-T Analyse

observation inside a series is missing. In some cases, for instance when importing
data from GAMS, such a missing observation could sensibly be interpreted as the
value 0. See more on this, including examples, on this page, and cf. also the
<missing = ignore> local option for SERIES and PRT/PLOT/SHEET. [New in 3.0.3].

OPTION series dyn = no; [yes|no]
With this option, lagged endogenous variables like in the expression x = x[-1] + 1;

accumulate over time, because the expression is run 'dynamically', one period at a
time consecutively. The option will only be active, if the right-hand side of the
expression is of series type. Because the use of this option entails a speed penalty,
the option can only be activated via BLOCK; ... ; END; (see BLOCK).

OPTION series failsafe = no; [yes|no]
When this option is set, Gekko will abort with an error message, when a series
statement like for instance y = x; or y[2020] = %v; tries to insert an observation

containing a missing value into the left-hand series. The option can be practical for
debugging Gekko command files (.gcm), if the source of a missing value is hard to
track. The option is only intended for debugging purposes. See also OPTION solve

failsafe. [New in 3.0.2].

OPTION series normal calc missing = error; [error|m|zero]
With option error (default), a missing series x in a calculation will will halt with an

error. With option m, missing values will be used instead of x, and with zero, zeroes

are used instead of the missing x.

OPTION series normal print missing = error; [error|m|zero|skip]
With option error (default), a missing series x in PRT x; will halt with an error. With

option m, missing values will be printed (typically as 'N' instead of 'M' to indicate that

it is a non-existing series). With zero, zeroes are printed instead, and with skip the

missing x series is skipped (not shown). See also the local option <missing = ...>

for PRT. As mentioned, with option missing = m, the raw PRT x; will show N's

because the series is non-existing, whereas an expression like PRT x + 1; will show

the missings as 'M', since they are now a result of a mathematical expression.

OPTION sheet engine = internal; [internal|excel]
For reading and writing Excel spreadsheet files, Gekko will normally use an internal
engine to do this. This engine is independent upon Excel being installed on the user's
pc. The internal engine only supports .xlsx files, not the older .xls files. If you need to
access the older .xls files, you may set the option to excel which reads and writes

both the old and new format. Beware however, that the excel option demands Excel

being installed on the pc. It is also a bit slow and unstable, and may leave Excel
processes behind, eating up memory.

OPTION sheet freq = simple; [pretty|simple]
If this option is set to pretty, timeseries of frequencies quarterly and annual are

printed with years and quarters/months separated, for better readability. If the
option is set to simple, the dates are shown without such separation.

OPTION sheet mulprt abs = yes; [yes|no]
OPTION sheet mulprt gdif = no; [yes|no]
OPTION sheet mulprt lev = no; [yes|no]

266 Gekko 3.0 user manual

T-T Analyse

OPTION sheet mulprt pch = no; [yes|no]
OPTION sheet mulprt v = no; [yes|no]
[NOT USED YET]. These options set the default way of printing with the SHEET<mul>
(not implemented yet) command. Per default, only 'abs' is chosen, so SHEET<mul>
shows absolute multiplier difference ('abs'). These can be overridden via the option
fields in the SHEET command.

OPTION sheet prt abs = yes; [yes|no]
OPTION sheet prt dif = no; [yes|no]
OPTION sheet prt gdif = no; [yes|no]
OPTION sheet prt pch = no; [yes|no]
These options set the default way of printing with the SHEET command. Per default,
abs is chosen, so SHEET shows the absolute level (abs). These can be overridden via

the option fields in the SHEET command.

OPTION sheet collapse = none; [avg|total|none]
If this option is set to avg or total, Gekko will show averages or totals for timeseries

of frequencies quarterly or monthly. Cf. also the COLLAPSE command. Only applies to
OPTION sheet freq = pretty;.

OPTION sheet cols = no; [yes|no]
OPTION sheet rows = yes; [yes|no]
Per defaut, the SHEET command prints timeseries row-wise, that is, with variable
names in the first column, and time periods in the first row. These options may
change the orientation, or you can use SHEET<rows> or SHEET<cols>.

OPTION solve data create auto = yes; [yes|no]
If yes, when a databank is read by means of the general READ command (that is,
excluding READ<first> or READ<ref>, but including READ<merge>), all model
variables not present in the file are auto-created (and filled with missing values). See
also the MODE command.

OPTION solve data ignoremissing = no; [yes|no]
If yes, if a variable has a missing value when Gekko tries to simulate (SIM), the

number zero will be used instead. Warning: this may get the model to simulate, but
the result may be incorrect!

OPTION solve data init = yes; [yes|no]
If yes, when simulating lagged values are used as starting values for endogenous

variables (this is default and typically the most robust). If no, the current period
values are used as starting values for endogenous variables.

OPTION solve data init growth = yes; [yes|no]
OPTION solve data init growth min = -0.02;
OPTION solve data init growth max = 0.06;
If set yes, Gekko will look at the historical growth rate of endogenous variables, in

order to come up with good initial values. With the sub-options min and max, you may

indicate a range. Per default, the range is set to -2% up to 6%, meaning that only
historical growth rates within that range will be used to initialize endogenous
variables. The 'growth' option typically speeds up SIM convergence, provided
resonable min/max limits are used.

267Gekko commands

T-T Analyse

OPTION solve failsafe = no; [yes|no]
If yes, the Gauss algorithm will stop at the exact time when any equation produces a

missing value. The option slows the simulations down a bit (which is why it is not set
per default). When the option is on, variables from the above-mentioned problematic
equation will be printed out on screen automatically (using DISP<info>). See also
OPTION solve newton robust. and OPTION series failsafe.

OPTION solve forward dump = no; [yes|no]
If yes, information regarding the Fair-Taylor iterations is kept. With one lead-

variable, you can see the iterations by means of printing the variables ftabs1_1,

ftabs1_2, ftabs1_3, etc., where the last number is the FT-iteration (try PLOT

{'ftabs1_*'};). If Newton-Fair-Taylor ('nfair') is used, there will also be matrices

#ft_1, #ft_2, etc., containing the Jacobi interaction between leaded variables.

OPTION solve forward fair conv = conv1; [conv1|conv2]
Set Fair-Taylor convergence type to conv1 (default) or conv2. This corresponds to the

criteria used in the OPTION solve gauss conv ... options.

OPTION solve forward fair conv1 abs = 0.001;
OPTION solve forward fair conv1 rel = 0.001;
Relative criterion for the (default) conv1-type convergence check, and absolute

criterion for the (default) conv1-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

OPTION solve forward fair conv2 tabs = 1.0;
OPTION solve forward fair conv2 trel = 0.001;
Relative criterion for the PCIM-like conv2-type convergence check, and absolute

criterion for the PCIM-like conv2-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

OPTION solve forward fair damp = 0.0;
Damping used regarding leaded endogenous variables in the Fair-Taylor algorithm.
The larger the factor is, the harder the damping. Setting the factor to 0.0 means no
damping at all, whereas setting it to 1.0 means the equations cannot progress.

OPTION solve forward fair itermax = 200;
OPTION solve forward fair itermin = 0;
The maximum and minimum number of iterations done in the Fair-Taylor algorithm.

OPTION solve forward nfair conv = conv1; [conv1|conv2]
Set Newton-Fair-Taylor convergence type to cnv1 (default) or conv2'. This

corresponds to the criteria used in the OPTION solve gauss conv ... options.

OPTION solve forward method = fair; [fair|nfair|none]
The method used regarding leaded endogenous variables. If set to fair, the Fair-

Taylor algorithm is used, and if set to nair, the Newton-Fair-Taylor method us used.

If set to none, no forward-looking method is used. In that case, the leaded

endogenous variables are just taken exogenously as their databank values.

OPTION solve forward nfair conv1 abs = 0.001;

268 Gekko 3.0 user manual

T-T Analyse

OPTION solve forward nfair conv1 rel = 0.001;
Relative criterion for the (default) conv1-type convergence check, and absolute

criterion for the (default) conv1-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

OPTION solve forward nfair conv2 tabs = 1.0;
OPTION solve forward nfair conv2 trel = 0.001;
Relative criterion for the PCIM-like conv2-type convergence check, and absolute

criterion for the PCIM-like conv2-type convergence check. Note that the criteria are

less strict than the corresponding Gauss criteria.

OPTION solve forward nfair damp = 0.0;
Damping used regarding leaded endogenous variables in the Newton-Fair-Taylor
algorithm. The smaller the factor is, the harder the damping. Setting the factor to 1.0
means no damping at all, whereas setting it to 0.0 means the equations cannot
progress.

OPTION solve forward nfair itermax = 200;
OPTION solve forward nfair itermin = 0;
The maximum and minimum number of iterations done in the Newton-Fair-Taylor
algorithm. Usually this algorithm need far fewer iterations than standard Fair-Taylor.

OPTION solve forward nfair updatefreq = 100;
How often the Jacobi matrix is updated in the Newton-Fair-Taylor algorithm. For hard
problems, you may set updatefreq = 1.

OPTION solve forward terminal = const; [const|growth|exo]
This sets terminal conditions regarding leaded endogenous variables. If the
simulation period ends in 2100, y[+1] in that period will be set to the value y is

solved for in 2100 (and not the databank value for y in 2101). With growth, y[+1] in

2100 will use the growth rate instead of the level for the solved y in 2100. If the

option is set to none, y[+1] in 2100 will be taken as the databank value of y in 2101

(this is often not a good choice).

OPTION solve forward terminal feed = internal; [internal|external]
This is a technical option that decides wheather the terminal values are used inside
one Fair-Taylor iteration, or only between them.

OPTION solve gauss conv = conv1;
Set Gauss convergence type to conv1 (default) or conv2. Read more about

convergence criteria in the help file related to the command ITERSHOW.

OPTION solve gauss conv1 abs = 0.0001;
OPTION solve gauss conv1 rel = 0.0001;
Relative criterion for the (default) conv1-type convergence check, and absolute

criterion for the (default) conv1-type convergence check.

OPTION solve gauss conv2 tabs = 1.0;
OPTION solve gauss conv2 trel = 0.0001;
Relative criterion for the PCIM-like conv2-type convergence check, and absolute

criterion for the PCIM-like conv2-type convergence check.

269Gekko commands

T-T Analyse

OPTION solve gauss conv ignorevars = yes; [yes|no]
If active, variables indicated by means of the CHECKOFF command will be ignored
regarding convergence check.

OPTION solve gauss damp = 0.5;
In the Gauss algorithm, this damps any equations with damping set with the given
factor. The larger the factor is, the harder the damping. Setting the factor to 0.0
means no damping at all, whereas setting it to 1.0 means the equations cannot
progress. The damped equations have a 'Z' in their formula codes.

OPTION solve gauss dump = no; [yes|no]
This option activates recording of Gauss iterations, for later inspection by means of
the ITERSHOW command. Beware that the option may use a lot of RAM, and that it
slows down simulations considerably.

OPTION solve gauss itermax = 200;
OPTION solve gauss itermin = 10;
The maximum and minimum number of iterations done in the Gauss algorithm.

OPTION solve gauss reorder = no; [yes|no]
When active, this option reorders equations in the simultaneous block of the model.
This should normally reduce the number of required Gauss iterations for solving the
model, but it may sometimes induce starting value problems (therefore the option is
set to no as default). The option should be issued before a MODEL statement to take

effect.

OPTION solve method = gauss; [gauss|newton]
Choose between gauss or newton

OPTION solve newton backtrack = yes; [yes|no]
If yes, the Newton algorithm tries to backtrack if an iteration step seems too large.

OPTION solve newton conv abs = 0.0001;
Sets the absolute Newton convergence criterion. This is the value that the square
root of the sum of squared residuals in all the equations may not exceed. So any
residual will be (numerically) lower than this value, and usually a lot lower (since
there are many equations).

OPTION solve newton invert = lu; [lu|iter]
The algorithm used to invert the Jacobian matrix. The lu option is usually the most

robust.

OPTION solve newton itermax = 200;
The maximum number of iterations done in the Newton algorithm, before exiting.

OPTION solve newton robust = yes; [yes|no]
With this option set, the Newton method will be more robust regarding starting
values that normally would result in a crash due to illegal values, such as, for
instance, the logarithm of a negative number etc. The robust mode is experimental,
but if the starting values are legal, robust = yes will perform exactly the same

iterations as robust = no. See also OPTION solve failsafe.

270 Gekko 3.0 user manual

T-T Analyse

OPTION solve newton updatefreq = 15;
This options indicates how often the Newton algorithm should update the Jacobi
matrix, when doing fast steps.

OPTION solve print details = no; [yes|no]
If yes, the Newton algorithm will produce quite a lot of extra information regarding
the iterations.

OPTION solve print iter = no; [yes|no]
If yes, the individual periods are printed out while simulating. Set to no as default.

OPTION solve static = no; [yes|no]
If yes, all lagged endogenous values are taken as their databank values (i.e. not their

simulated values). See also SIM<static> local option.

OPTION system code split = 20; [0 or positive integer]
This is a very technical option related to how Gekko compiles command files. If > 0,
long non-looping command files are internally chopped up in smaller chunks which
are put into their own C#-methods. This eases the life of the C# compiler, especially
for large/long files. The option tells how many lines of .gcm code are bundled into
sub-methods at a time. A value of 20 seems good regarding speed, but the special
value 0 switches this splitting off altogether. So you may try the value 0, if Gekko
breaks down for mysterious reasons.

OPTION system clone = yes; [yes|no]
This is a very technical option related to how user-defined functions and procedures.
If set active (default), when calling a function like %y = f(#x);, Gekko will clone the

function arguments, so that there can be no side-effects on the function arguments
after the function call is done. The option may cost some performance/speed if a
function is called with very large objects, like very large matrices etc. Setting the
option = no only applies to the types series, list, map and matrix (scalars never have
side-effects).

OPTION table decimalseparator = period; [comma|period]
The type of decimal separator used.

OPTION table html datawidth = 5.5;
For html tables, this is the minimum width of data columns, in so-called 'em' units (in
CSS: "width: 5.5em"). The 'em' units are independent of font size.

OPTION table html firstcolwidth = 5.5;
For html tables, this is the minimum width of the first column, in so-called 'em' units
(in CSS: "width: 5.5em"). The 'em' units are independent of font size.

OPTION table html font = Arial;
OPTION table html fontsize = 72;
You may choose the font and fontsize for html tables. The fontsize is in percent, so
72 corresponds to 72% (in CSS: "font-size: 72%").

OPTION table html secondcolwidth = 5.5;

271Gekko commands

T-T Analyse

For html tables, this is the minimum width of the second column (sometimes
containing variable names), in so-called 'em' units (in CSS: "width: 5.5em"). The 'em'
units are independent of font size.

OPTION table html specialminus = no; [yes|no]
If yes, a non-breaking hyphen is insert instead of the normal minus character. This

may avoid some breaking of numbers, but that hyphen is not good for copy-pasting to
Excel via right-clicking the table. (But please use the copy-button in the user
interface to copy a table to Excel).

OPTION table ignoremissingvars = yes; [yes|no]
If yes, missing variables will be shown as 'M', just like missing values for existing

variables.

OPTION table mdateformat = ''; [string in quotes]
This option will change for instance "2020m1" to "Jan. 2020" regarding monthly table
dates. Options are: 'english-short', 'english-long', 'danish-short', 'danish-long'. These
can have a '-lower' appended, for instance 'english-short-lower' (lower first letter of
the month). The option must be stated within single quotes.

OPTION table stamp = yes; [yes|no]
If yes, a date and time stamp is added to tables.

OPTION table thousandsseparator = no; [yes|no]
Can activate thousandsseparator (either period or comma, depending upon OPTION

table decimalseparator). Note that you can now use negative decimals places. For

instance, using varformat="f9.-2" in the gtb file, numbers are rounded to nearest
hundreds. Combining these two, a number like 12345 would be printed as "12.300"
or "12,300" depending on the decimalseparator.

OPTION table type = html; [txt|html]
If set to txt, tables will be shown in text format in the Main tab. If set to html, .html

format will be used (shown in the Menu tab). There are some options to control the
html layout: see OPTION table html

OPTION timefilter = no; [yes|no]
Switches the timerfilter on or off (provided a timerfilter has been defined). See
TIMEFILTER.

OPTION timefilter type = hide; [hide|avg]
If set to hide, applying a timefilter will just hide the out-filtered periods (i.e., they

are not shown). If avg is used instead, the non-shown periods will be aggregated into

the shown periods (as averages). See TIMEFILTER.

Note

As stated above, you may omit the '=' in option commands, but it may be a good idea
to keep it in programs for readability.

272 Gekko 3.0 user manual

T-T Analyse

Setting OPTION interface suggestions = option (which is default) will help the

user navigate the option tree.

For setting temporary options, see the BLOCK structure.

273Gekko commands

T-T Analyse

3.57 PAUSE

PAUSE is for pausing the command flow: the command will wait for the user to press
[Enter]. See also ACCEPT.

Syntax

PAUSE info;

info (Optional). Text string to be displayed when a command flow is paused.
You can use '\n' inside the string to insert a new line.

Example

The command may contain text inside single quotes:

PAUSE 'This is the first part of the scenario';

Related commands

RETURN, STOP, EXIT, ACCEPT

274 Gekko 3.0 user manual

T-T Analyse

3.58 PIPE

Redirects output to a file (or back to the screen). Directing to a .html file is
supported.

If you are going to pipe only parts of your Gekko output to an external file, it is
recommended to start at pipe with PIPE [filename];, and then use PIPE<pause>;

and PIPE<continue>; to start and stop piping to the file (and PIPE<stop>; at the

end of the session). If you instead use PIPE<stop>; and PIPE [filename]; to switch

piping to the same file off and on, the external file may become blocked (and the
program will run slower, too).

If you just want to suppress screen output, without directing it to an external file,
you may use OPTION interface mute = yes; (if PIPE is used, the file writing is

suppressed).

Syntax

PIPE < HTML APPEND PAUSE CONTINUE STOP > filename ;

HTML (Optional). If this option is used, Gekko will insert
the text into the <body> of an existing html file (if

appending), or create a html file from scratch to
write into. Note that Gekko appends text to the
.html file without any prior formatting. So for
instance to append a line to a .html file, you have
to include the html tags (for instance: TELL

'<p>Hello</p>';). Html output is reasonably

simple to convert into pdf.

APPEND (Optional). If this option is used, the output will be
appended to an existing file, otherwise the file is
overwritten (if it exists to begin with).

PAUSE (Optional). Sets piping on pause

CONTINUE (Optional). Starts piping again

STOP (Optional). Stops piping altogether.

filename (Optional, not used with PAUSE, CONTINUE, STOP
options).
Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

275Gekko commands

T-T Analyse

\gekko\myfile.gbk, or be stated without a path.

Filenames containing blanks and special characters
should be put inside quotes. See more on filenames
here.

Any pre-existing file with the same name will be overwritten, unless option APPEND
is used. If PIPE<stop> is used, the output is re-directed to the screen.

Example

You may want to keep a print of some variables in an output file:

READ adambank;
PIPE ex.out;
PRT fy ul;
PIPE <stop>;

The file ex.out now contains the variable print. If you instead use PIPE <append>

ex.out;, the existing ex.out file will be appended to.

The following illustrates piping to html:

PIPE <html> out.html;
TELL '<p>This is the first line</p>';
TELL '<p>This is the second line</p>';
PIPE <stop>;

Afterwards, you may open out.html in a web browser to see what it looks like. If you

need to pause and continue piping, you may use this:

PIPE text.txt;
TELL 'a';
PIPE<pause>;
TELL 'b';
PIPE<continue>;
TELL 'c';
PIPE <stop>;

After this, the file text.txt only contains 'a' and 'c', but not 'b'. If you put TELL

statements between PIPE<continue> and PIPE<pause> statements, you will make
sure that only the TELL's end up in the file.

276 Gekko 3.0 user manual

T-T Analyse

Note

When piping, any error messages are also piped to the file. You may consult the
'traffic lights' in the lower right corner of the Gekko window, in order to see if an
error occurred and the program aborted (in that case, the light will be red - a running
program is shown as yellow).

Related options

OPTION folder pipe = [empty];
OPTION interface mute = no;

277Gekko commands

T-T Analyse

3.59 PLOT

Gekko uses gnuplot 5.1 internally for plotting. The gnuplot engine
may crash if fed with illegal syntax or nonsensical data.
Unfortunately, the gnuplot error messages seem hard to extract
into Gekko, but you may use PLOT<dump> and feed the
gnuplot.gp file into gnuplot 5.1 to inspect the error messages.

You can create plots of variables with the PLOT command, see demo graphs. The
PLOT arguments have the same syntax as PRT/MULPRT, SHEET and CLIP. You can
store plot options/settings in external .gpt files, so that you can easily reuse the
styling. PLOT uses the free open-source gnuplot 5.1 internally, and the
settings/options of the PLOT command and corresponding .gpt files are named to
match gnuplot naming conventions. PLOT can create an .emf, .svg, .png or .pdf file
silently, if the FILE= option is used. The .emf files are practical for MS Office
applications, including Word. The .svg format is practical for html pages, and should
usually be preferred over .png for such pages. Gnuplot supports many output file
formats (so-called 'terminals'), so more formats may be added if needed.

You may use <bank=... ref=...> to locally change the databanks used, instead of
using OPEN and CLOSE.

Note: You may use the in-built XML Notepad editor to edit the .gpt files, cf. the XEDIT
command. You can use a global .gpt file via "OPTION plot using = ... ;".

Note that Gekko 3.0 supports plotting (and printing) series with mixed frequencies.

PLOT uses the same internal component as PRT, so regarding operators and other
details, also see the PRT help page.

Syntax

PLOT <period operator PLOTCODE=... DUMP NOMAX mainOptions BANK=...
REF=... MISSING=...> elements USING=... FILE=... ;

 elements: element1, element2, ...

 element: expression label <elementOptions>

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

http://www.gnuplot.info/
http://www.t-t.dk/gekko/gallery/g.html
http://gnuplot.sourceforge.net/gnuplot_cvs.pdf

278 Gekko 3.0 user manual

T-T Analyse

The more general options shown above are the following (cf. the 'Main options' table
below for all the plot-related options):

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

operator (Optional). 'Long': abs, dif, pch, gdif, or 'short': n, d, p, dp, m, q,

mp, r, rd, rp, rdp

variables Name of the variable(s) printed. Several variables can be printed
at once using var1, var2, var3, You may also use lists or
expressions.

PLOTCODE
=

(Optional). The contents of this string must be gnuplot code (for
instance 'set' commands separated by semicolon), and the contents
is sent to gnuplot and inserted just before the gnuplot 'plot'
statement.

DUMP (Optional). With option <dump>, Gekko will put two gnuplot files in

the working folder: gnuplot.gp (the gnuplot script), and

gnuplot.data (the gnuplot data). The gnuplot script can be run

inside gnuplot 5.1 with the following command: load

'gnuplot.gp' (note the quotes).

NOMAX (Optional). Do not restrict the number of curves, cf. OPTION plot

elements max.

BANK (Optional). A bankname where variables are looked up. For
instance PLOT <bank = b1> x; is equivalent to PLOTb1:x;. See

also <REF = ...>. These options can be convenient instead of

opening and closing banks.

REF (Optional). A bankname where reference variables are looked up.
For instance PLOT <bank = b1 ref = b2 m> x; uses banks b1 and

b2 for the multiplier. See also <BANK = ...>. These options can be

convenient instead of opening and closing banks

MISSING= (Optional). With <missing = ignore>, PLOT will deal with missing

array subseries and missing data values like GAMS, treating them
as zero for sums and mathematical expressions, or skipping the
printing of a subseries if it does not exist. The following options are
set locally and reverted afterwards: option series array print
missing = skip; option series array calc missing = zero;

option series data missing = zero. See also the appendix

page on missings.

279Gekko commands

T-T Analyse

USING= (Optional). Indicates a .gpt file (xml template) to style your plot.
You may use '*' as filename to select from .gpt files in the working
folder. If no extension is provided, .gpt is added automatically. See
also OPTION plot using =

Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.

FILE= (Optional). Use extension emf (default), png, svg or pdf.

The resulting file is in .emf format as default. Such a file can be
imported into many Windows programs such as Word and others.
You may use a filename with explicit extension .png/.svg/.pdf
instead, and PLOT will produce the file in that format. The .svg files
are very useful for insertion into html document.
Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.

You may use an operator to indicate which kind of data transformation you would like
on your variables, for instance PLOT<d>, PLOT<q>, PLOT<pch>. As in the PRT

command, you may also use element-specific operators (for instance PLOT unemp,

gdp<p>;). See the PRT command regarding the use of operators.

In addition to the above options, you may put graph-options inside either the main
option field (PLOT <...>), or inside the element option fields (PLOT x1<...>,

x2<...>). These options can alternatively be stored in an external xml-based .gpt

file, for instance PLOT x1, x2 using=p; will use the file p.gpt to style the graph.

The structure of the .gpt file corresponds to the distinction between PLOT main
options and element options. Cf. the example section below.

Main options

Located inside the PLOT<...> option field, or in .gpt files directly inside the

<gekkoplot> tag. The first column of the table is before the '=', and the second

column of the table is after, for instance PLOT <type = linespoints>;. Some of the

right-hand side expressions may require quotes around them, for instance PLOT<font

= 'Verdana'>;, not PLOT;. If in doubt, try using quotes.

type The most used of the following are the line-types linespoints

and lines, together with boxes (column chart).

280 Gekko 3.0 user manual

T-T Analyse

· linespoints, lines: Normal lines, with or without point

markers.
· boxes: bar chart/histogram. If several timeseries are boxes,

these will be clustered, unless the stacked option is set.
· filledcurves: lines where the area below each line is an

area. If the stacked option is set, the areas are stacked instead
of overlayed.

· steps: Step-wise lines, a bit box-like.

· points: Just the point markers, no lines.

· dots: Just tiny dots.

· impulses: vertical lines instead of boxes.

Quotes may be omitted.

dashtype '1':normal, '2':dashed, '3':dotted, ... (default: '1'). More. Quotes
should be used.

linewidth A number. Default: 3.

linecolor You may use named colors (for instance 'red') or color codes
known from html (for instance '#0000FF'). Default: color is
taken from the palette setting. Quotes should be used.

pointtype An integer. These points are shown for each period, if the
linetype is linespoints or points.

· 1:'+'
· 2:'x'
· 3:'*'
· 4:box
· ... etc.

Default: 7 (circle). More.

pointsize A number. The size of the points. Default: 0.5.

fillstyle String. Only relevant for linetype boxes. You may use many

combinations, for instance 'empty', 'solid', 'solid 0.5' (50%
transparent), 'solid border', 'pattern 0', 'pattern 1', etc. To
provide a black border around the boxes, use for instance 'solid
1.0 border linetype -1'. Default: 'solid'. More. Quotes should be
used.

title The title of the entire plot. Quotes should be used.

http://gnuplot.sourceforge.net/demo_canvas/dashtypes.html
http://cheron.nico.free.fr/Gnuplot.html
http://gnuplot.sourceforge.net/docs_4.2/node234.html

281Gekko commands

T-T Analyse

subtitle A subtitle underneath the title. Quotes should be used.

font Set for instance 'Verdana', 'Arial', 'Times', 'Courier New'
Default is 'Verdana'. Quotes should be used.

fontsize Default is 12.

bold Use this option to indicate bold font type for different elements.
Choose from 'title', 'ytitle', 'xtics', 'ytics', 'key', or indicate several
of these separated with commas, for instance 'title, ytitle, key'.
Quotes should be used.

italic Use this option to indicate italic font type for different elements.
Choose from 'title', 'ytitle', 'xtics', 'ytics', 'key', or indicate several
of these separated with commas, for instance 'title, ytitle, key'.
Quotes should be used.

tics You may choose between 'in' or 'out'. Default: 'out'. Quotes
should be used. Regarding number formatting, see OPTION plot

decimalseparator =

grid Choose between yes|no|xline|yline. If yes, both vertical and

horizontal lines are shown. If xline, only vertical lines are

shown. If yline, only horizontal lines are shown. Default: yes.

Quotes can be omitted.

gridstyle This sets how gridlines are formatted, stated in gnuplot syntax.
Quotes should be used.

· Default is the following, which are light grey dashed lines:
'linecolor rgb "#d3d3d3" dashtype 3 linewidth 1.5'.

· The gridstyle 'linecolor black dashtype 2 linewidth 2.0'

will provide black dashed lines which look ok in Word.
· To emulate the solid grey style of Gekko 2.2.4 and earlier, use
 'linecolor rgb "#f0f0f0" linetype 1 linewidth 1'.

In general, the same dashed lines can look quite different in
different "environments". So there may be differences in the
Gekko window versus inside Word versus pdf (exported from
Word) versus html (via svg) versus pdf (exported from html)
versus printed from Word or a browser. In general, there will be
small differences between the .emf, .svg, .png and .pdf files. For
html pages, please use .svg instead of .png for better quality.

key In gnuplot, the legend is called 'key'. This sets how the legend is
to be displayed, stated in gnuplot syntax. Default is the
following, which is outside of the plot area, at the bottom center:

282 Gekko 3.0 user manual

T-T Analyse

'out horiz bot center Left reverse'. Quotes should be

used.

To remove the key completely, you can use gnuplot-code 'set

key off': PLOT<plotcode='set key off'>;.

palette You may use a comma-separated list of named colors (for
instance: "red, blue, green", or rgb color codes (like "#0000FF,
#FFFF00, #00FFFF"). Default is this: "red, web-green, web-blue,
orange, dark-blue, magenta, brown4, dark-violet, grey50, black"
(these are gnuplot internal color names). More. Quotes should
be used.

stack If the element is set active (<stack>), boxes are stacked instead

of clustered, and filledcurves are stacked instead of overlayed.

Default: no.

boxwidth The width of the boxes. Set to 1 for max width. Default: 0.75.

boxgap The gap between clusters of boxes (only relevant if you are
using two or more boxes at the same time). Default: 2, that is, a
gap of what two boxes would fill.

separate With the separate option, lines and boxes are separated, so that

all lines (non-boxes) are shown at the top of the plot (with labels
on the left y axis), whereas all boxes are shown at the bottom of
the plot (with labels on the right y2 axis). For instance, this is
practical for residual plots, so that the residuals do not interfere
with observed/fitted lines. The option will override any y2

options regarding the lines. This functionality is Gekko-specific
and does not yet work for stacked boxes (option boxstack),

where the scaling will not be precise (this will be fixed in a
future version). Default: no.

xline Vertical line at the given period. Several lines may be given. For
instance: <xline>2020q2</xline>.

xlinebefore Vertical line between the given period and the period before.
Several lines may be given. For instance:
<xlinebefore>2020q2</xlinebefore>.

xlineafter Vertical line between the given period and the period after.
Several lines may be given. <xlineafter>2020q2</xlineafter>

x(2)zeroaxis The xzeroaxis is the horiontal axis corresponding to y=0, and

the x2zeroaxis is the axis corresponding to y2=0 (the right-

http://ayapin-film.sakura.ne.jp/Gnuplot/Primer/Misc/colornames.html

283Gekko commands

T-T Analyse

hand side y-axis). These xzeroaxes will only be shown if the y or

y2 values change sign. Default for xzeroaxis is yes, and default

for x2zeroaxis is no.

ymirror Mirror the left y axis on the right side. You may choose between
'0':none, '1':only tics, '2':tics with labels, and '3': tics with labels
+ axis label. If the y2 axis is used, the ymirror setting is

ignored.

y(2)title A title for the y or y2 axis. Quotes should be used. If the title
should break, you may use a '\n', for instance
PLOT<ytitle='Balance\nof payments'>;.

y(2)line Horizontal line at the given y- or y2-value. Several lines may be
given. For instance: <yline>150</yline>.

y(2)max Fixed max for the y or y2 values. Will overrule any maxhard or
maxsoft values. Can cut off data points.

y(2)maxhard All values > maxhard are filtered out, but all values < maxhard
are shown. This setting is practical for filtering out outliers.
Think of 'hard' as being capable of cutting off data points.

y(2)maxsoft All values are shown, but the axis will not scale down below
ymaxsoft. This keeps a sensible scale, even if the y or y2 values
are very small. Think of 'soft' as being incapable of cutting off
any data points.

y(2)min Fixed min for the y or y2 values. Will overrule any minhard or
minsoft values. Can cut off data points.

y(2)minhard All values < minhard are filtered out, but all values > minhard
are shown.This setting is practical for filtering out outliers. Think
of 'hard' as being capable of cutting off data points.

y(2)minsoft All values are shown, but the axis will not scale up above
yminsoft. This keeps a sensible scale, even if the y or y2 values
are very small. Think of 'soft' as being incapable of cutting off
any data points.

label A free-floating label is inserted at the given position. Several
labels may be given. Quotes should be used. [Not available yet]

arrow An arrow is inserted between the given positions. Several arrows
may be given. [Not available yet]

284 Gekko 3.0 user manual

T-T Analyse

Element options

Located in the element options, for instance PLOT x1<...>, x2<...>, or in .gpt files

inside the <lines> tag (which contains <line> tags).

type See under the main options.

dashtype See under the main options.

linewidth See under the main options.

linecolor See under the main options.

pointtype See under the main options.

pointsize See under the main options.

fillstyle See under the main options.

y2 Set y2 to indicate the you want the series shown at the
y2 axis (right-hand y axis).

Example using PLOT options versus gpt file

For instance, you may produce a graph with dashed lines using this:

PLOT <type=lines linecolor='blue'> rfy<dashtype='1'>,
rfcp<dashtype='2'>, rfm<dashtype='3'>, rfe<dashtype='4'>;

Here, in the main option field, the linetype is stated (type=lines), including the

linecolor (color='blue'). These can also be stated individually in the elements

options, if needed. In the element options, four dashtypes are given, for instance
dashtype = '1'.

Instead of the above PLOT statement, you may use:

PLOT rfy, rfcp, rfm, rfe using=p;

together with the following .gpt file (xml):

285Gekko commands

T-T Analyse

<gekkoplot>
 <type>lines</type>
 <linecolor>blue</linecolor>
 <lines>
 <line>
 <dashtype>1</dashtype>
 </line>
 <line>
 <dashtype>2</dashtype>
 </line>
 <line>
 <dashtype>3</dashtype>
 </line>
 <line>
 <dashtype>4</dashtype>
 </line>
 </lines>
</gekkoplot>

As you can see, the structure in the first PLOT statement corresponds to the structure
of the .gpt file. You may also combine PLOT options and gpt files: in that case, the
PLOT options will override the gpt options. So for instance, PLOT rfy, rfcp,

rfm<color='red'>, rfe using=p; would make the third line red instead of blue.

Other examples

The command

PLOT <p> x1, x2;

plots percentage growth of the timeseries x1 and x2 from the first-position databank.

FOR %i = fY, fX, fE;
 PLOT {%i} file=graph_{%i};
END;

This creates three graphs that are put into three different .emf files.

You may 'piggyback' gnuplot code along with the PLOT command, for instance:

PLOT <plotcode = 'set xtics rotate by 90'> fy, fe, fcp;

This rotates the x-tic labels. If you need to state several gnuplot statements, you can
separate them with ';'.

286 Gekko 3.0 user manual

T-T Analyse

Plot file editor

At the moment, Gekko uses xml files to store the plot settings. In the longer run,
another format might be chosen, and an graphical interface to change these settings
might be provided.

Until then, it is recommended that you use the in-built XML Notepad editor to edit the
XML files, cf. the XEDIT command (if used, choose 'View' --> 'Expand All' to unfold all
XML nodes). You may also use Notepad (cf. the EDIT command), but it is
recommended to use a specific XML editor for editing the tables. Using a simple text
editor like Notepad entails some potential problems; there will be no check that the
XML syntax is correct. Also, the XML syntax represents some characters in a special
way: notably the '<' , '>', and '&' characters (these should be written '<', '>',
and '&').

If the file is not in valid XML syntax, Gekko will complain that the file is invalid and
abort.

Note

PLOT produces a graph by means of the open-source program gnuplot as an
underlying engine. You do not need to install anything in order to use PLOT (the
Gekko installation files contain gnuplot).

In the graph window, you may change the so-called operators by clicking on the radio
buttons (or multiplier checkbox). This way, you can quickly change to for instance
percentage growth rate etc. You may copy-paste the graph to e.g. a word-processor
like Word by clicking the ‘Copy’ button. There are also options to save the graph as a
emf/svg/png/pdf files.

You may close the PLOT graph window by pressing the 'Esc' button.

Per default, PLOT will place annual and undated data at the x-tics, and quarterly and
monthly data between x-tics. See OPTION plot xlabels ... options, also if you

prefer to use 15, 16, 17 etc., instead of 2015, 2016, 2017, etc.

Please note that the same graph may look different in different "environments". The
Gekko graph window shows an .emf file, and the same .emf file may look a bit
different when imported into Word (or converted to pdf or printed from Word). Also, a
.svg version of the graph may look different in html. The differences apply to, for
instance, dashed lines and fonts. Both .emf, .svg and .pdf are vector formats,
whereas .png is a raster format (bitmap).

See the rotate() function if you need to plot for instance age profiles of array-series
that are defined in the age dimension.

Planned enhancements:

http://www.gnuplot.info/

287Gekko commands

T-T Analyse

· Stacked curves and histograms shown as shares (summing to 1 or 100), perhaps
using operator <s> for shares.

· Indexed data, for instance showing all lines as index 2015=1, perhaps using
operator <i> for index.

· Options <a>, <ad>, and <ap> For instance, "PLOT<a>x1, x2;" would be the same
as "PLOT x1, @x1, x2, @x2;", showing values from the Reference databank.

· Multi-plots.
· 3D-plots.
· Scatterplots.
· Free-floating labels and arrows.
· Outputting in more file formats like latex, etc.
· It is the intention to make it possible to use R (using its plot function) as the

graphing engine, too. Outputting R code instead of gnuplot code would not be too
difficult. But gnuplot works ok, and is a small program that can be easily bundled
with the Gekko package.

Related options

OPTION plot decimalseparator = period; [comma|period]
OPTION plot lines points = yes; [yes|no]
OPTION plot new = yes; [yes|no]
OPTION plot using = [filename];
OPTION plot xlabels annual = at; [at|between]
OPTION plot xlabels nonannual = between; [at|between]
OPTION plot xlabels digits = 4; [2|4]

Related commands

PRT, SHEET, CLIP, TABLE, XEDIT, EDIT, CUT

288 Gekko 3.0 user manual

T-T Analyse

3.60 PROCEDURE

PROCEDURE is used to define user-defined procedures. Such procedures do not
return variables like a user-defined FUNCTION, but are instead used in a similar way
to in-built Gekko commands. A procedure without arguments is similar to running a
command file, cf. RUN.

You may decorate a procedure with a <>-option field containing an optional time
period. Procedures allow optional parameters with default values, and the procedure
may prompt (ask) the user about these parameters, if f? is used instead of f, where

f is the name of the procedure.

Syntax

PROCEDURE procname <date t1, date t2>, type1 var1 label1 = default1,
type2 var2 label2 = default2, ...;
 body ;
END;

t1, t2 (Optional). You may state optional time period parameters inside <>-
brackets, for instance PROCEDURE f <date %t1, date %t2>, series

x; after which %t1 and %t2 are assigned to for instance 2020 and 2030

in the call f <2020 2030 z;. If the procedure is called without <>-

brackets, for instance f z; , the parameters %t1 and %t2 are assigned

to the local/global time period instead. Using <>-brackets in a
procedure call does not in itself change the local time period inside the
procedure: use for instance the BLOCK structure to do that. See
examples.

type1,
...

Types of variables: series, val, date, string, list, map, matrix. You

may also use the special name type for parameters, which behaves

100% as a string inside the procedure, but where the single quotes

are omitted when calling the procedure from outside (the shorter call f

y is used instead of f 'y').

var1, .
..

The parameters/variables/expressions

label1,
...

(Optional). A label for the parameter, used if the procedure is promting
(called with f?). See more about prompting below.

default
1, ...

(Optional). A default value for the parameter. If the parameter is
omitted, the default value is used. If the procedure is asked to prompt
(called with f?) and the parameter is omitted, the default value is

shown in the dialog box. In the dialog box, Enter or Escape will return

289Gekko commands

T-T Analyse

the default value, and fire up the next dialog box (for the next optional
parameter). If a ; is entered in the dialog box, all the remaining

parameters attain their default values, and no more dialog boxes are
shown. For string input, the use of quotes (') in the input box is

optional. At the moment, only val, date and string types can be used

for prompting input boxes.

procna
me

The procedure name. The name cannot be the same as an existing
Gekko command name.

body The procedure body, that is, the commands to be performed. If the body
contains a RETURN statement, the procedure will abort at that point
(just like a normal command file, cf. RUN).

Tip: if you need to stop execution at a particular line, try inserting a line with a non-
existing function like for instance stop();. This will abort the program in a clean way

and make it possible to inspect variables etc.

When calling the procedure, the arguments are separated with blanks, not commas.

How to use a library of Gekko functions/procedures in 3.0?

In Gekko 3.0, the OPTION library file = ...; is obsolete. Instead, you can just

put your user-defined functions/procedures in for instance a file called lib.gcm.

Afterwards, you can define a gekko.ini file containing the line RUN lib.gcm; so that

lib.gcm is always run at Gekko startup, or after a RESTART. See the lib.gcm
example on the RESTART help page. In Gekko 3.0, user functions/procedures are
always available after they have been defined, as long as the use is chronologically
after the definition.

Procedure hints

If a procedure has syntax errors, you may try to out-comment the PROCEDURE
statement and corresponding END statement for better error messages. Procedure
arguments do not reside in any databanks, so if you have a procedure like
PROCEDURE f series x; RUN data.gcm; END; you cannot expect to use x inside

the data.gcm command file, for instance expecting it to reside in the first-position
databank (regarding procedure arguments, in many cases using the name type is

more practical than the series type).

Negative arguments: beware that when calling a procedure, the arguments are
blank-separated, for instance PRINTVARS x y z;. This will look for a procedure

PRINTVARS with 3 arguments. But if, for instance, one of the arguments is

negative, some care must be taken. For instance, PRINTVARS x -y z; will look for

a procedure PRINTVARS with 2 arguments, since x-y is interpreted as one variable

290 Gekko 3.0 user manual

T-T Analyse

(expression). In such cases, you may consider using a FUNCTION without return
value, like PRINTVARS(x, -y, z);, or use a parenthesis to avoid the subtraction,

as in PRINTVARS x (-y) z;.

Examples

The following examples illustrate the use of PROCEDURE. This procedure has no
arguments, and functions rather like a .gcm file (cf. RUN):

procedure now;
 tell currentTime();
end;
//----------------
now;

The following procedure multiplies two values, and prints out the result:

procedure mulval val %x, val %y;
 tell '';
 tell string(%x*%y);
end;
//----------------
mulval 3 4; //12

Note that the mulval arguments are separated with blanks, not commas. The
following procedure adds three periods to the date 2000, printing out 2003:

procedure add3 date %x;
 tell '';
 tell string(%x+3);
end;
//----------------
add3 2000a1;

The following procedure prints out 'sunshine':

procedure shine string %x;
 tell '';
 tell %x + 'shine';
end;
//----------------
shine 'sun';

291Gekko commands

T-T Analyse

If you prefer to call the procedure with shine sun; instead of shine 'sun';, you

may use the name type:

procedure shine name %x;
 tell '';
 tell %x + 'shine'; //%x behaves completely as a string
end;
//----------------
shine sun; //the name type only has to do with how the procedure
is called

The following procedure adds 'a' to a list, printing the elements 'x1', 'x2', 'a':

procedure adda list #x;
 #add = #x + 'a';
 print #add;
end;
//----------------
#xx = x1, x2; //or: #xx = ('x1', 'x2');
adda #xx;

Dividing pairs of series:

procedure div list #x, list #y;
 for val %i = 1 to #x.len();
 prt {#x[%i]}/{#y[%i]};
 end;
end;
//----------------
create a1, a2, b1, b2;
series a1 = 10; series a2 = 20;
series b1 = 15; series b2 = 25;
div ('a1', 'a2') ('b1', 'b2'); //you cannot use "div a1, a2 b1,
b2;" here.

The following multiplies two matrices:

procedure mulmatrix matrix #x, matrix #y;
 print #x * #y;
end;
//----------------
#a = [1, 2; 3, 4];
#b = [9, 8; 7, 6];
#z = [1, 1; 1, 1];
mulmatrix #a #b+#z;

This following procedure divides two series and prints the result:

292 Gekko 3.0 user manual

T-T Analyse

procedure divser series x, series y;
 prt x/y;
end;
//----------------
time 2000 2001;
create xx, yy;
xx = 2;
yy = 3;
divser xx yy;

Alternatively, the same kind of procedure can be made with name types:

procedure divser name %x, name %y;
 prt {%x}/{%y};
end;
//----------------
time 2000 2001;
create xx, yy;
xx = 2;
yy = 3;
divser xx yy;

Using name instead of series type has some advantages if, for instance, you wanted

to pick out the second series from the Ref databank instead. In that case, you could
just use prt {%x}/@{%y}; instead of prt {%x}/{%y}; inside the procedure body.

Local period example

procedure f <date %t1, date %t2>;
 block time %t1 %t2;
 y = 100;
 end;
end;

TIME 2001 2001;
f; //y will be set to 100 in 2001
f <2003 2003>; //y will be set to 100 in 2003
PRT <2001 2003 n> y;

//Result:
// y
//2001 100.0000
//2002 M
//2003 100.0000

When calling f;, the global time period is used for %t1 and %t2, whereas when calling

f <2003 2003>;, we get %t1 = %t2 = 2003 inside the procedure. See also the similar

example regarding user-defined functions.

293Gekko commands

T-T Analyse

Promt and default values example

Gekko procedures allow default values, and prompting regarding these.

procedure f val %x1, val %x2 'parameter 2' = 1, val %x3 'parameter
3' = 2;
 tell string(10000 * %x1 + 100 * %x2 + %x3);
end;
f 9 3 4; //--> 90304
f 9 3; //--> 90302
f 9; //--> 90102
f? 9 3; //enter 5 into the dialog box --> 90305
f? 9; //enter 6 and 7 into the dialog boxes --> 90607
f? 9; //enter 6 and ';' into the dialog box --> 90602

Beware that f or f? will fail with an error, since the first parameter is required. As

shown regarding the last procedure call, you may terminate a sequence of input
boxes with ;, which means the default values are used for the current and following

parameters. Pressing Enter or Escape returns the default value, and opens up the

next input box. For prompt input, only the variable types val, date, string and name

are supported at the moment (for name type, use for instance ... , name %x2
'parameter 2' = 'x', ...).

Note

Procedures and user functions do not live in databanks, and are hence not affected by
CLEAR, CLOSE, READ, etc., but are removed with RESTART or RESET. See also
FUNCTION if you need to use return variables.

If a procedure is defined without <>-brackets to indicate time, it may still be called
with <>-brackets. In that case, the time period inside the brackets is just ignored.

If you need to run the same piece of code many times (for instance inside a loop),
defining and calling a procedure is efficient. Running a .gcm file entails some fixed
loading, parsing and compiling costs each time it is called. These costs are not
present when calling a procedure.

You can at most use 14 arguments, else use maps to bundle incoming arguments. Per
default, all arguments are passed by value, not by reference (cf. OPTION system

clone). This means that procedures cannot have so-called side-effects on the

incoming arguments.

It is planned to introduce the type namelist in addition to the name type, so that an

argument like (a, b, c) can mean ('a', 'b', 'c') internally.

294 Gekko 3.0 user manual

T-T Analyse

Related options

OPTION library file = [filename];

Related commands

FUNCTION, RUN

295Gekko commands

T-T Analyse

3.61 PRT

The PRT command prints variables or expressions (you may use P, PRI or PRINT as
synonyms for PRT). Regarding series, the output can be transformed and formatted in
different ways: transformations are done with so-called operators (for instance p or

pch for percent change). Formatting includes transposing the result ('rows' option),

setting width, decimals etc. The MULPRT command is very similar to PRT, but
compares data in the first-position and reference databanks. You may use the more
detailed DISP command, if you need more specific information regarding a series
(data period, label, etc.: DISP also allows for equation browsing, if a model is loaded).

For variables taken from other banks than the first-position databank, you may use
colon (':') to indicate the bankname, and for series you may use '!' to indicate a
frequency different from the current frequency (for instance b2:x!q will print the

quarterly series x!q, taken from the bank b2). You may use @x to indicate variables

taken from the Ref (reference) databank (alternatively, you can use ref:x), and you

may use <bank=... ref=...> to locally change the databanks used, instead of first

using OPEN and then CLOSE. An array-series y can be printed with PRT y;, where

Gekko will print out all the elements in all dimensions. Otherwise PRT y[#i]; may be

used to print all #i (a list of strings) elements in a dimension, or y['a'] or the

shorter y[a] can be used to print single elements.

PRT can also print out other variable types than series, for instance PRT b2:#m; will

print out #m, where #m could for instance be a list) from bank b2. Scalars can be

printed with for instance PRT %v;, where %v could for instance be a value. To

show/count the number of variables of a particular type, you may use VAL ?, DATE ?

, STRING ?, SERIES ?, LIST ?, MAP ?, MATRIX ?, or MEM (for scalars).

Please note that after any PRT, you may click the Copy-button in the main window to
copy-paste the print to Excel or other spreadsheets (CLIP will do the same thing, else
see SHEET). Note that Gekko 3.0 supports printing (and plotting) series with mixed
frequencies.

Syntax

PRT < period operators decimals width ROWS FILTER=... TITLE=...
 COLLAPSE=... NOMAX BANK=... REF=... SPLIT MISSING=... > elements
 FILE=filename;

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

296 Gekko 3.0 user manual

T-T Analyse

where:

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

operator
s

operator operator ...

operator 'Long': abs, dif, pch, gdif, or 'short': n, d, p, dp, m, q, mp, l, dl, r,

rd, rp, rdp, rl, rdl

decimals DEC=number | NDEC=number | PDEC=number

width WIDTH=number | NWIDTH=number | PWIDTH=number

elements element element ...

element variable label < operators decimals width >

details:

operator
s

(See tables in examples section). Long operators: abs, dif, pch or

gdif. These can be switched off by means of prefix no (for instance

nopch), or added to existing default operators by means of underscore

(for instance _dif). Default operators are abs and pch (absolute level

and percentage growth is printed). Short operators: d, p and dp for

time-transformations, and m, q and mp for multiplier-transformations.

Prefix the time-transformations with r for reference values. See

OPTION print prt

element The variable can be a variable name, a list (for instance {#m}), or an

expression. A label can be provided (must be a string, and will be
ignored for lists). Operators here will override other operators
(globals ones, or those set on the PRT statement), so element-
operators are local to the particular element.

DEC Sets number of decimals, will apply to all kinds of numbers.

NDEC Sets number of decimals for non-percentage numbers. See also
OPTION print fields ndec....

297Gekko commands

T-T Analyse

PDEC Sets number of decimals for percentage numbers. See also "OPTION

print fields pdec...

WIDTH Sets width, will apply to all kinds of numbers.

NWIDTH Sets width for non-percentage numbers. See also OPTION print

fields nwidth....

PWIDTH Sets width for percentage numbers. See also OPTION print fields

pwidth....

ROWS If set, the result will be transposed, i.e., with variables running
downwards. Corresponds to TRANSPOSE=yes for SHEET and CLIP.

FILTER A timefilter can be activated or deactivated (see TIMEFILTER
command). With <FILTER> or <FILTER=yes>, the current timefilter is

used. With <NOFILTER> or <FILTER=no>, any filtering is deactivated.

The filter type can also be changed locally, for instance
<FILTER=hide> hides the out-filtered periods, whereas <FILTER=avg>

averages the out-filtered periods. See OPTION timefilter....

TITLE A title in quotes. You can use HEADING as alias.

COLLAPS
E

(Optional). This option will collapse quarterly or monthly data into
annual averages or totals. Use PRT<collapse>, PRT<collapse=avg>

or PRT<collapse=total>. You may set the collapse globally, cf.

OPTION print collapse = [avg|total|none];. It only works when

OPTION print freq = pretty;, which is default.

NOMAX (Optional). Do not restrict the number of variables, cf. OPTION print

elements max.

BANK (Optional). A bankname where variables are looked up. For instance
PRT <bank = b1> x; is equivalent to PRT b1:x;. See also <REF =

...>. These options can be convenient instead of opening and closing

banks.

REF (Optional). A bankname where reference variables are looked up. For
instance PRT <bank = b1 ref = b2 m> x; uses banks b1 and b2 for

the multiplier. See also <BANK = ...>. These options can be

convenient instead of opening and closing banks.

SPLIT (Optional). If set, the variables or expressions delimited by comma
are shown separately. In this way, PRT x, y; is shown as if it had

been PRT x; PRT y;. This may be practical for comparisons of data

298 Gekko 3.0 user manual

T-T Analyse

with similar columns, for instance PRT <split> x[#i], @x[#i];. In

that case, you may prefer to use for instance the <missing = m>

option, so that all columns (#i) are shown (and are hence aligned),

regardless of whether the subseries exist or not.

MISSING
=

(Optional). With <missing = ignore>, PRT will deal with missing

array subseries and missing data values like GAMS, treating them as
zero for sums and mathematical expressions, or skipping the printing
of a subseries if it does not exist. The following options are set locally
and reverted afterwards: option series array print missing =
skip; option series array calc missing = zero; option

series data missing = zero. See also the appendix page on

missings.

FILE (Optional). A filename that the print is put into.
Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,

or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.

Operators

There are two kinds of operators available. The easiest to remember are the 'long'
ones: namely abs, dif, pch and gdif:

'Long' operators for PRT

abs Absolute level: x

dif Absolute time change: x-x[-1]

pch Growth rate: (x/x[-1] -1)*100

gdif Change in growth rate: (x/x[-1] -1)*100 - (x[-1]/x[-2] -1)*100

As default, PRT always prints out corresponding to PRT<abs pch>, i.e., printing out

the absolute level and the growth rate. These default options can be altered in
OPTION print prt ... (see 'Related options' below). For instance, to only print the

level of a variable, use PRT<abs>, to only print the growth rate, use PRT<pch>, and to

print absolute time change, use PRT<dif>. You can alternatively switch off options

with prefix no, for instance PRT<nopch> (same as PRT<abs>) etc. In addition, you can

use the 'glue' prefix '_' to add options to existing options. For instance, PRT<_dif>

corresponds to PRT<abs dif pch>, because dif is added to the default operators

299Gekko commands

T-T Analyse

(abs and pch). You may put the codes after individual elements, for instance PRT

var1<pch> var2<dif>, to have var1 displayed as pch and var2 displayed as dif.

Codes put on an element override more general codes put directly after PRT, so
PRT<pch> var1 var2<dif> yields the same result.

As a supplement to these 'long' operators, there are some more advanced (and
shorter) operators of type d, p, m, q etc. These are perhaps less mnemotechnic, but

more concise (the @ below indicates values taken from the reference databank):

'Short' operators for PRT

n Absolute level: x. Equivalent to no use of operators.

d Absolute time change: x-x[-1]

p Growth rate: (x/x[-1] -1)*100

dp Change in growth rate: (x/x[-1] -1)*100 - (x[-1]/x[-2] -1)*100

m Absolute multiplier: x-@x

q Relative multiplier: (x/@x-1)*100

mp Multiplier in growth rate: (x/x[-1] -1)*100 - (@x/@x[-1] -1)*100

l Log: log(x). [New in 3.0.3].

dl Log-difference: log(x)-log(x[-1]). [New in 3.0.3].

r Absolute level in reference databank: @x. Code 'rn' is equivalent.

rd Absolute time change in the reference databank: x-x[-1]

rp Growth rate in reference databank: (@x/@x[-1] -1)*100

rdp Change in growth rate in reference databank: (@x/@x[-1] -1)*100 -
(@x[-1]/@x[-2] -1)*100

rl Log: log(@x)

rdl Log-difference: log(@x)-log(@x[-1])

There is the following logic to the above codes. The important codes to remember are
d for absolute time change, p for percent time change, m for absolute multiplier, and q

for relative multiplier. Then the combination dp is easily read as time change in

growth rate, and mp as multiplier difference in growth rate. Log-transformations are

300 Gekko 3.0 user manual

T-T Analyse

done with l or dl operators. This covers the first and second sections of the above

table. The third section is just the first section with prefix r (for reference databank),

and shows that same transformations as in the first section, just for the reference
databank values instead of the first-position databank values. Of course, you can
always write PRT <p> @gdp; instead of PRT <rp> gdp;, but for longer expressions

and lists, the prefix r comes in handy.

Formatting, filters etc.

In addition to the above transformations, the print can be formatted regarding the
width of each data column, and the number of decimals. Width and decimals can be
set in the PRT option field, or in element option fields. In the PRT option field, you
may indicate the width and number of decimals like this: PRT<width=10 dec=3>, or

you may set absolute and percentage fields individually: PRT<nwidth=10 ndec=0

pwidth=6 pdec=1>. This will yield absolute fields 10 characters wide with no

decimals, and percentage fields 6 characters wide with 1 decimal. The width and
decimals formatting can also be applied individually on each element, for instance
PRT gdp<n dec=0> pgdp<p dec=1>, printing gdp in levels with no decimals, and pgdp

as growth rate with 1 decimal.

The output can be transposed by means of the rows keyword, for instance

PRT<rows>gdp pgdp;. This is handy for printing a long list of timeseries, or for copy-

pasting the cells to a spreadsheet by means of the copy-button in the Gekko
interface.

Finally, you can use a timefilter (see TIMEFILTER) in the PRT option field. This is
convenient for suppressing individual observations when printing long time periods.
First, you need to select the filtered periods, and then you can use for instance
PRT<filter> or PRT<nofilter>. More advanced use is PRT<filter=avg> in which

case the out-filtered periods are aggregated into the shown periods (rather than
simply skipped). See examples below.

Mixed frequencies

PRT can print out series of mixed frequencies in the same 'table'. For instance:

TIME 2001 2002;
xx1 = 10, 20;
OPTION freq q;
xx2 = 1, 2, 3, 4, 5, 6, 7, 8;
OPTION freq a;
PRT xx1, xx2!q; //or: xx1!a, xx2!q

The following is printed:

301Gekko commands

T-T Analyse

 xx1 % xx2!q %
 2001
 q1 1.0000 M
 q2 2.0000 100.00
 q3 3.0000 50.00
 q4 4.0000 33.33
 a 10.0000 M

 2002
 q1 5.0000 25.00
 q2 6.0000 20.00
 q3 7.0000 16.67
 q4 8.0000 14.29
 a 20.0000 100.00

You may mix frequencies !a, !q and !m as you like, and mixed frequencies work for
PLOT, too.

Examples

A simple example:

TIME 2009 2012;
x = 100, 110, 120, 110;
p = 1.00, 1.02, 1.04, 1.06;
PRT <2010 2012> x, x/p 'real';

This gives the following result, with both absolute levels and percentage growth:

 x % real %
 2010 110.0000 10.00 107.8431 7.84
 2011 120.0000 9.09 115.3846 6.99
 2012 110.0000 -8.33 103.7736 -10.06

The label for x/p is given as a string after the expression. Please use a space to

delimit variable and label. If a model is loaded, and x is a model variable, the first '%'

would become '(E)%', because (E) or (X) are used to indicate endogenous or
exogenous variables. Using operator p inside the option brackets would provide you

with the growth rates alone (the long operator pch has the same effect):

PRT <p> x, x/p;

The print can alternatively be transposed with the <rows> option like this:

PRT <2010 2012 p rows> x, x/p;

302 Gekko 3.0 user manual

T-T Analyse

gives:

 2010 2011 2012
 x 10.00 9.09 -8.33
 x/p 7.84 6.99 -10.06

You may mix variables, lists, expressions and operators as you wish (just separate
the elements with commas):

TIME 2009 2012;
xa = 10, 12, 11, 14;
xb = 6, 5, 7, 6;
TIME 2010 2012;
#m = xa, xb; //or: #m = ('xa', 'xb');
PRT <n> xa, xa[-1]*xb/xb[-1], xa/xa[2009], {#m};

Please note that the list #m is inside {}-curlies, because we are referring to the

variables corresponding to the strings in the list. This prints out absolute time-
differences in these variables/lists/expressions:

 xa[

 xa -1]*xb/xb[-1] xa/xa[2009] xa
 xb
 2010 12.0000 8.3333 1.2000 12.0000
 5.0000
 2011 11.0000 16.8000 1.1000 11.0000
 7.0000
 2012 14.0000 9.4286 1.4000 14.0000
 6.0000

If xa and xb are understood as, for instance, sectors a and b, you may instead use a

list of these sector names, and then use x{#m} to auto-unfold into the variable names

xa and xb.

TIME 2009 2012; xa = (10, 12, 11, 14); xb = (6, 5, 7, 6); TIME 2010
2012;
%i = 'a';
#m = a, b; //or: ('a', 'b')
PRT <n> x{%i}; //prints xa
PRT <n> x{#m}; //prints xa, xb

Multiple operators can be used in one option field, as this example shows:

PRT <n p r rp m q> fy;

303Gekko commands

T-T Analyse

This corresponds to a hand-made version of the MULPRT<v> statement, printing
levels/growth in the first-position and reference databanks in addition to the
multiplier differences (absolute and relative). As you see, this PRT statement contains
multiplier differences (codes m and q), so by means of using short operators you are

free to mix multiplier values into the print.

Formatting can be applied in the following way:

PRT <nwidth=10 ndec=0 pwidth=6 pdec=1> fy;

This prints out the absolute levels and percentage growth rates (this way of printing
is default, see OPTION print prt...), with width 10 and no decimals for the levels,

and width 6 and 1 decimal for the growth rates. You may use formatting on each
element, for instance:

PRT fy, fx, fm<ndec=0 pdec=1>;

In that case, only the last variable (fm) has a different number of decimals. Fixed

periods can be indicated in brackets (for instance [2005] means that 2005-values are

taken). Different databanks may be indicated:

PRT fy, @fy, old:fy, old:{#m};

This prints out the variable fy from the first-position databank, fy from the Ref

(reference) databank (@-indicator), fy from a databank with the name old, and

variables corresponding to the list of strings #m, all taken from the old databank. The

latter is opened by means of the OPEN command (note that you can use F2 to see the
list of open databanks).

Wild-card lists (inside braces {...}) may be used instead of regular lists:

PRT {'fx*2'};

This will print out all variables starting with fX and ending with 2 in the first-position

databank (use '?' as a single-character wild-card). In come commands, you may use
for instance fx*2 directly instead of {'fx*2'}, but in PRT this would be ambiguous (is

fx*2 a wildcard, or is it fx multiplied by 2?).

You may insert labels or a heading into the PRT statement, the former only for non-
list items.

PRT fy 'GDP', ul 'Unemployment' heading = 'Scenario A';

To filter out periods, first define a TIMEFILTER. For instance:

304 Gekko 3.0 user manual

T-T Analyse

TIMEFILTER 2003, 2005..2008, 2010..2015 by 2;

This way, the periods 2004, 2009, 2011 and 2013 will be hidden, whereas all other
periods are shown. Note that TIMEFILTER defines the periods positively, i.e. the
periods that are to be included when printing. If you print now, these four periods will
just be skipped. To temporarily disable the filter in the print, use PRT<nofilter>. To

have the skipped periods aggregated into the shown periods, use PRT<filter=avg>.

For instance:

PRT<2003 2015 filter=avg>fY;

gives the following:

 fY [%]
 2003 1314180.0000 0.38
 2004-2005 1360794.5000 2.37
 2006 1423985.0000 3.39
 2007 1446530.0000 1.58
 2008 1430309.0000 -1.12
 2009-2010 1367633.0000 -1.79
 2011-2012 1447238.5625 2.99
 2013-2014 1501831.8125 1.67
 2015 1534174.6250 1.45

For e.g. 2004-2005, the average for these two periods is shown. For the absolute
level (the 'fY' column), a simple average is used, whereas for the percentage column
('[%]'), a more complicated averaging of growth rates is performed, in order to yield
a consistent average growth rate for these two periods.

Looping over lists in combination with PRT is pretty straightforward. You may write:

FOR string %i = yf, x;
 FOR string %j = nf, nz;
 PRT f{%i}{%j};
 END;
END;

This will print the series fyfnf, fyfnz, fxnf, fxnz. If you are using Gekko

interactively, you can obtain non-executing linebreaks by means of Ctrl+Enter, and
you execute the block of commands by means of marking the block before pressing
[Enter]. Alternatively, and better, RUN the commands from a command file.

The example above can be done more easily (and will print them in one print):

#i = yf, x;
#j = nf, nz;
PRT f{#i}{#j};

305Gekko commands

T-T Analyse

Note

If a model is loaded (see MODEL), the PRT command indicates '(E)' for endogenous,
and '(X)' for exogenous variables. Missing values are shown with a 'M' instead of
numbers. If some variable is missing in the databank (or the databank does not
exist), an error message will be issued.

Note that PRT <m> mybank:x; prints out the difference mybank:x - @x (and PRT <r>

mybank:x; prints out @x), where @x is x in the Ref (reference) databank. So when

printing a multiplier involving a named (OPEN) databank, Gekko will look for the
same variable in the reference databank, in order to compute the multiplier.

You may change what is printed as default via the OPTION print prt ... options

(see 'Related options' below). For instance you may want to switch off printing of
percentage growth permanently: OPTION print prt pch = no.

You may use P, PRI or PRINT instead of PRT. You may use diff instead of the dif

operator.

Related options

Relevant options regarding the PRT statement:

OPTION freq a; [a|q|m]
OPTION print collapse = none; [avg|total|none]; //show aggregates for
quarters and months
OPTION print freq = pretty; [pretty|simple]; //for quarters and
months
OPTION print filewidth = 130;
OPTION print width = 100;
OPTION print fields ndec = 4;
OPTION print fields nwidth = 13;
OPTION print fields pdec = 2;
OPTION print fields pwidth = 8;
OPTION print prt abs = yes;
OPTION print prt dif = no;
OPTION print prt pch = yes;
OPTION print prt gdif = no;
OPTION series array print missing = error; [error|m|zero|skip]
OPTION series data print missing = error; [error|m|zero|skip]
OPTION series normal print missing = error; [error|m|zero|skip]
OPTION timefilter type = hide;
OPTION timefilter = no;

306 Gekko 3.0 user manual

T-T Analyse

Related commands

MULPRT, PLOT, SHEET, CLIP, DISP, DECOMP

307Gekko commands

T-T Analyse

3.62 R_EXPORT

The R interface has three logical parts: R_FILE, R_EXPORT, and R_RUN, and these
commands should appear in that order. The R_FILE command points to an existing R
file, into which data is inserted. R_EXPORT inserts Gekko data (matrices) into the R
file. And R_RUN runs the R file, and returns R-matrices from R back to Gekko.

R_EXPORT exports matrix data from Gekko to R. If you need to export timeseries
data, you must first convert the timeseries to matrices by means of the pack()
function.

Syntax

R_EXPORT < TARGET=... > matrix1, matrix2, ... ;

TARGET = (Optional string). If for instance < target = 'data1' >, the

matrices are inserted at the exact location in the R file, where
there is a line starting with gekkoimport data1. If the option

is not given, the matrices are inserted at the top of the R file
(this is often sufficient, the target logic is intended for larger R
programs)

Example

To export the matrices #m1 and #m2, inserting them at the top of the R file (pointed to

in the R_FILE command), you may use the following:

R_EXPORT #m1, #m2;

If you need to insert the matrices at a particular location in the R file, you may use
the following:

R_EXPORT <target = 'data1'> #m1, #m2;

This will insert the matrix data at the exact location in the R file, where there is a
line starting with gekkoimport data1. See a practical example under R_RUN.

Note

308 Gekko 3.0 user manual

T-T Analyse

You can also use EXPORT<r> to export matrices to a file suitable for R.

Related commands

 R_FILE, R_RUN, OLS, MATRIX

309Gekko commands

T-T Analyse

3.63 R_FILE

The R interface has three logical parts: R_FILE, R_EXPORT, and R_RUN, and these
commands should appear in that order. The R_FILE command points to an existing R
file, into which data is inserted. R_EXPORT inserts Gekko data (matrices) into the R
file. And R_RUN runs the R file, and returns R-matrices from R back to Gekko.

The R_FILE command points to an existing R file (with extension .r) to be used when
R is called.

Syntax

R_FILE filename ;

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.

Example

To initiate a R session with the R file ols.r located in the working folder, use:

R_FILE ols.r;

Inside this .r file, you can now use special gekkoimport and gekkoexport statements,

please see the practical example under R_RUN.

Related options

 R_EXPORT, R_RUN, OLS, MATRIX

310 Gekko 3.0 user manual

T-T Analyse

3.64 R_RUN

The R interface has three logical parts: R_FILE, R_EXPORT, and R_RUN, and these
commands should appear in that order. The R_FILE command points to an existing R
file, into which data is inserted. R_EXPORT inserts Gekko data (matrices) into the R
file. And R_RUN runs the R file, and returns R-matrices from R back to Gekko.

So the R_RUN command starts up R, runs (in R) the R file pointed to by the R_FILE
command, and returns to Gekko while obtaining back matrix data from R.

If you just need to export matrices to R, try the EXPORT<r> command.

Syntax

R_RUN <MUTE> ;

MUTE (Optional). With this option set, R is run silently in Gekko.
Alternatively, R output is shown in the Gekko main window.

Examples

The example below estimates (in R) a linear least squares model with five
parameters. You may consult the OLS section to see the same parameters calculated
via the OLS solver, or the MATRIX section to see the same parameters calculated via
linear algebra.

First, put the following R file into your working folder:

--------------------------- ols.r

gekkoimport data1 # Gekko data (matrices x and y) is
inserted here
fit <- lm(y ~ x) # ols estimation
summary(fit) # prints output
beta <- fit$coefficients # estimated parameters
yfit <- fit$fitted.values # predicted values for y
gekkoexport(beta) # writes beta vector back to Gekko
gekkoexport(yfit) # writes fitted values back to Gekko

Next, you can run the following program in Gekko:

311Gekko commands

T-T Analyse

RESET; CLS;
CREATE lna1, pcp, bul1;
SERIES <1998 2010> lna1 = data('166.223000 173.221000 179.571000
 187.343000 194.888000 202.959000
 209.426000 215.134000 222.716000 230.520000 238.518000
246.654000 254.991000') ;
SERIES <1998 2010> pcp = data('0.9502030 0.9699920 1.0000000
 1.0235000 1.0401100 1.0605400
 1.0754700 1.0977800 1.1121200 1.1314800 1.1513000
1.1717600 1.1871600') ;
SERIES <1998 2010> bul1 = data('0.0684791 0.0591698 0.0560344
 0.0535439 0.0535003 0.0631703
 0.0649875 0.0578112 0.0473207 0.0404508 0.0467488
0.0472923 0.0475191') ;
%t1 = 2000;
%t2 = 2010;
TIME %t1 %t2;
CREATE s0, s1, s2, s3, s4;
SERIES s0 = dlog(lna1);
SERIES s1 = dlog(pcp);
SERIES s2 = dlog(pcp.1);
SERIES s3 = bul1;
SERIES s4 = bul1.1;
MATRIX #x = pack(%t1, %t2, s1, s2, s3, s4);
MATRIX #y = pack(%t1, %t2, s0);
R_FILE ols.r;
R_EXPORT <target = 'data1'> #x, #y; //puts the data into the
'gekkoimport data1' section in ols.r
R_RUN; //returns matrices #beta and
#yfit from R
PRT #beta;
SERIES s0fit = #yfit[.., 1].unpack(%t1, %t2);
PLOT s0, s0fit;

The program prints R output on the screen, and plots actual and predicted values.
The #beta vector looks like this:

#beta
 1
 1 0.0298
 2 0.1445
 3 0.6139
 4 0.1867
 5 -0.3509

Some of the output from R shown in Gekko is the following (cf. the same example in
the OLS section):

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 0.029804 0.008942 3.333 0.0157 *
 x1 0.144517 0.227011 0.637 0.5479

312 Gekko 3.0 user manual

T-T Analyse

 x2 0.613875 0.236473 2.596 0.0409 *
 x3 0.186740 0.202534 0.922 0.3921
 x4 -0.350908 0.203182 -1.727 0.1349

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 0.003462 on 6 degrees of freedom
 Multiple R-squared: 0.625, Adjusted R-squared: 0.3751
 F-statistic: 2.5 on 4 and 6 DF, p-value: 0.1516

Note that in this example, the <target= 'data1'> option in R_EXPORT and the

corresponding gekkoimport data1 in the ols.r file are not really necessary, since

the data could just be put at the top of the R file anyway. The code that is injected
into the R file before it is executed looks like the following:

x = c(0.0304674549413991, 0.0232281261192072,
0.0160983506716728,)
dim(x) = c(11, 4)
y = c(0.0360024370055795, 0.0423704884205201,
0.0394838732643257,)
dim(y) = c(11, 1)

And the file that R produces for Gekko to consume looks like the following (this is
actually what the gekkoexport() function in R does):

R2Gekko version 1.0

name = beta
rows = 5
cols = 1
0.02980389
0.1445173
0.6138751
0.1867401
-0.3509083

This text-based way of interchanging data back and forth works fine, as long as the
datasets are not too voluminous. This interface is more stable than COM-based
automation, and interchange of values, text, etc. could also be provided.

Note

Note that with RUN<mute>, you will not see any potential R errors on the screen. So

please do not use <mute> when you are still debugging the R program.

Note that at the moment, the gekkoexport() function only takes one
argument/matrix at the time.

313Gekko commands

T-T Analyse

You need to have R installed on your computer. Gekko will try to auto-detect the
location of the R files on your system.

Related options

OPTION r exe folder = ... ; //you may use this, if the auto-detection of the location
of R fails

Related commands

 R_FILE, R_EXPORT, OLS, MATRIX, EXPORT<r>

314 Gekko 3.0 user manual

T-T Analyse

3.65 REBASE

REBASE calculates an index series by dividing every observation of an existing series
by a single observation or an average of several observations of the same timeseries.
A bank name and/or prefix can be indicated, and the index value can be stated
(default: 100).

Syntax

REBASE < BANK=... PREFIX=... INDEX=... > variables date1 date2 ;

variables A list of variable names (may include bank names)

date1 Starting date for the observations.

date2 (Optional). Ending date for the observations. If not indicated,
date1 is used as ending date.

BANK (Optional). A databank name indicating where the timeseries are
located.

PREFIX (Optional). A prefix name for the resulting timeseries.

INDEX (Optional). The value of the index in the index period(s). Default
= 100.

· If a databank name is not provided, the variable is not searched for in other
databanks than the first-position databank.

Note: If the timeseries is quarterly or monthly, date1 is annual (a year), and date2 is
not stated, Gekko will use the first period of the year as start date, and the last
period of the year as end date. If the timeseries y is quarterly, REBASE y 2010; is the

same as REBASE y 2010q1 2010q4;.

Example

RESET;
MODE data;
TIME 2010 2012;
y = 2, 3, 4;
REBASE <prefix=i1> y 2011;

315Gekko commands

T-T Analyse

PRT <n> y, i1y;
REBASE <prefix=i2> y 2011 2012;
PRT <n> y, i2y;

The result is the following:

Rebased 1 variables

 y i1y
 2010 2.0000 66.6667
 2011 3.0000 100.0000
 2012 4.0000 133.3333

Rebased 1 variables

 y i2y
 2010 2.0000 57.1429
 2011 3.0000 85.7143
 2012 4.0000 114.2857

In the first one (i1y), the index series has the value 100 in 2011. In the second one

(i2y), the index series has an average of 100 in 2011 and 2012 (the average of

85.7143 and 114.2857 = 100).

Related commands

SERIES, SPLICE

316 Gekko 3.0 user manual

T-T Analyse

3.66 READ

The READ command puts variables from a .gbk file (or other formats) into the first-
position databank. A .gbk file is a Gekko-specific binary databank format that stores
series, values, dates, strings, lists, maps, and matrices.

Before reading, the first-position databank is cleared, so after reading, the first-
position databank will correspond to the file (this behavior may be altered with the
<merge> option). After reading (optionally merging) data from the file into the first-

position databank, the reference databank is always constructed as an exact copy of
the first-position databank (a 'clone').

Because READ clears the first-position databank, it may often be practical to store
variables in the Global databank. It can be practical to put general settings etc. in
that bank, for instance default periods, often-used lists, etc. Variables in the Global
databank will survive READ and CLEAR commands, and are in that sense long-lived.

It should be noted that if a model has been loaded, the READ command will auto-
create any model variables not present in the .gbk file (and fill these variables with
missing values). Because of this, in command files it may often be convenient to put
the MODEL statement before the READ statement.

READ is intended for .gbk files, and can be thought of as a strong version of IMPORT.
In contrast to IMPORT, READ clears the first-position databank, reads all data
regardless of the global time period (unless a time period or <respect> is used), and
finally makes Ref a clone of the first-position databank. There are the following
equivalences: READ = CLEAR<first> + IMPORT<all> + CLONE, and the inverse:
IMPORT = READ<first merge respect>.

Syntax

READ < period ALL FIRST REF MERGE > filename TO bankname;

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,

or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.
If the filename is set to '*', you will be asked to choose the file in
Windows Explorer. The extension .gbk is automatically added, if it is
missing.

period (Optional). Without a time period indicated, Gekko will read all the
data for all observations in the file. When a period is indicated, the
read data(bank) is truncated.

317Gekko commands

T-T Analyse

FIRST Reads the file into the first-position databank (#1 on the F2 window
list).

REF Reads the file into the reference databank (shown as REF on the F2
window list).

MERGE (Optional). If MERGE is set, the data is merged into the existing first-
position databank.

RESPECT (Optional). With this option, if no period is given, the global period is
used.

TO (Optional). If TO bankname is indicated, Gekko will put the data into a

seperate 'named' databank alongside the Work and Ref databanks.
For instance, after READ adambk TO a;, you may refer to the

variables by means of colon, for instance PRT a:var1;. If you use

READ adambk TO *;, the bankname will be the same as the file name.

It should be noted that the databank will be read-only (protected)
when opened like this (READ ... TO ... is essentially the same as

an OPEN command)

Examples

Reading a .gbk file called adambk.gbk is done with

READ adambk;

or by writing

READ *;

and then selecting the databank. Note that after such a READ of data into the first-
position databank, the reference databank will always be created as an excact copy of
the first-position databank. This behavior is practical for modeling purposes. You can
merge with existing data in the first-position databank like this:

READ <merge> adambk;

This merges adam.gbk with any pre-existing data in the first-position databank. Full

or relative path names are possible:

318 Gekko 3.0 user manual

T-T Analyse

READ otherbanks\adam3;

This will look for adam3.gbk in the subfolder otherbanks, relative the the Gekko

working folder.

Use the TO keyword like this:

READ forecst2 TO f2;

This reads forecst2.gbk into the named databank f2. After this, you may use for

instance PRT f2:gdp; to print out the timeseries gdp from this databank. This

databank will be read-only. You may use READ forecst2 TO *; if you wish to use the

filename as databank name. It is possible to use READ * TO *;. Using READ ... TO

... is essentially the same as an OPEN command.

Note

When reading, extension .gbk is automatically added if it is missing. Global time
settings do not affect the READ command, so all the data in the .gbk file is read into
the first-position databank regardless of how the timeperiod is set in Gekko. (Use
READ<respect> to restrict the read data to the global time period).

Annual, quarterly, monthly and undated data may co-exist as series in the same .gbk
file, together with other variables types.

The gbk format is currently 1.2 (corresponding to Gekko 3.0) and comes in the
following versions:

gbk file format versions

1.0 (July 2011). The file extension is .tsdx. Inside this zip-file there is a .tsd
file, and a xml file with meta-information (does not state the databank
format number, which is implicitly “1.0”). Only supports timeseries. Can
be read by Gekko 1.3.1 and later.

1.1 (November 2012). The file extension is .tsdx or .gbk. Inside there is a
binary protobuffer file (either with extension .bin (older) or .data
(newer)), and a xml file with meta-information, where databankVersion =
“1.1”. Only supports timeseries. Can be read by Gekko 1.5.8 and later.

1.2 (November 2018). The file extension is .gbk. Inside there is a binary
protobuffer file (databank.data) and a xml file with meta-information
(DatabankInfo.xml), where databankVersion = “1.2”. It supports seven
variable types: timeseries (including array-series), val, date, string, list,
map, matrix. Can be read by Gekko 3.0 and later..

319Gekko commands

T-T Analyse

The option copylocal below copies the targeted file to a temporary file on the user's

local hard disk before reading. This copying is typically very fast, and afterwards
reading the temporary file is faster and more reliable, if the targeted file is located on
a network drive. In general, this is a recommended option that alleviates some
potential network problems.

The .gbk file may contain information regarding its corresponding model, last
simulation period etc. If so, when READing the databank, a link to this model info is
provided. This can be practical when in doubt about when the variables in a given
databank were simulated, the simulation period, the model name and signature, etc.

To convert .tsd (or other formats) into a .gbk file, just read it with IMPORT<tsd>;, and

WRITE it. Please note that a .tsd file operates with 8 significant digits (or less), so
there will typically be a loss of precision compared to a .gbk file (which is in double-
precision).

Related options

OPTION databank create auto = no; [yes|no]
OPTION databank create message = yes; [yes|no]
OPTION databank file copylocal = yes;
OPTION databank file gbk version = 1.1; [1.0|1.1]
OPTION folder bank = [empty];
OPTION folder bank1 = [empty];
OPTION folder bank2 = [empty];
OPTION solve data create auto = yes; [yes|no]

Related commands

IMPORT, EXPORT, WRITE, OPEN, CLONE, DOWNLOAD

320 Gekko 3.0 user manual

T-T Analyse

3.67 RENAME

RENAME changes names of variables inside a databank. If the rename operation
involves two different databanks, the variable is moved between the banks (and
possibly also renamed, as in for instance RENAME bank1:x as bank2:y).

Note that 'naked' wildcards are allowed in this command, so you may for instance use
the shorter a*b instead of {'a*b'}.

Syntax

RENAME < BANK=... > variables1 AS variables2;

BANK= (Optional). A databank name indicating where the
timeseries are located.

variables1 Variable name(s) or list(s)

variables2 Variable name(s) or list(s)

If a databank name is not provided, the variable is not searched for in other
databanks than the first-position databank.

Example

Consider the two series a1 and a2 residing in the first-position databank. If we want

to rename those into b1 and b2, we could use:

RENAME a1, a2 AS b1, b2;

Lists can be used instead:

#a = a1, a2; //or: ('a1', 'a2')
#b = b1, b2;
RENAME {#a} AS {#b}; //without the {}-curlies, the #a list itself
is renamed to #b!

Rename works across banks, too, in reality moving the variable:

RENAME b1:x AS b2:x; //moving between banks

321Gekko commands

T-T Analyse

Wildcards are used like this:

RENAME x*2 AS y_*;

All variables starting with x and ending with 2 will obtain prefix y_.

See the similar COPY command for more examples. RENAME is in reality similar to a
COPY where the original object is deleted after copying. Also see the INDEX command
and the wildcard page regarding the syntax rules of wildcards.

Note

When using two lists of names, the lists must have corresponding (equal) length.

If preferred, you may use RENAME ... TO ... instead of RENAME ... AS

Related commands

COPY, DELETE

322 Gekko 3.0 user manual

T-T Analyse

3.68 RESET

The RESET command is used to reset the workspace, similar to closing and reopening
the Gekko application. With RESET, Gekko will not try to run any gekko.ini files to
reload models, databanks, options, etc. (use RESTART to do that).

Please note that when resetting, the frequency is always set to annual, and the time
period is set from t-10 to t, where t is the current year. See the RESTART command,

if you need frequency or time settings and other things like mode to persist after
resetting.

Examples (clearing workspace)

Use this syntax to reset the workspace:

RESET;

Clears the workspace (i.e. all Gekko RAM objects, including user functions and
procedures). It does not run gekko.ini from the program and/or working folders, even
if these files exist.

Note

The INI command can be used to run Gekko.ini files after a RESET (RESET followed
by INI is equivalent to RESTART).

Related commands

RESTART, INI, DELETE, CLOSE

323Gekko commands

T-T Analyse

3.69 RESTART

The RESTART command is used to restart the workspace, similar to closing and
reopening the Gekko application, and running any gekko.ini files present in the
program folder (where gekko.exe is located) or working folder. The gekko.ini files
may reload models, databanks, options, etc. (use RESET to avoid doing that).

Beware that when restarting, the frequency is always set to annual, and the
timeperiod is set from t-10 to t, where t is the current year. If you need frequency

or time settings to persist after a restart, you may put these into a gekko.ini file.

If you need persistent variables (settings) that survive CLEAR, READ, etc., you may
put these in the Global databank. Beware the RESTART and RESET also clear the
Global and Local databanks.
.

NOTE: RESTART is equivalent to RESET; INI;, and can be convenient in interactive

sessions, where a RESTART command may reload a given model/bank, etc. Note
however, that RESTART will not fail, if a gekko.ini file is not found. This can have
unintended consequences if the gekko.ini file is inadvertently deleted, so as a safer
alternative to RESTART in command files, the user may put RESET; RUN

gekko.ini; as the first line in the user's main Gekko command file. In that case,

Gekko will abort with an error, if the gekko.ini file is not found.

Syntax

RESTART;

Examples

Use this syntax to restart the workspace:

RESTART;

Clears the workspace (i.e. all Gekko RAM objects, including user functions and
procedures), and runs gekko.ini from the program and/or working folder if these files
exist.

You might put the following commands into gekko.ini (this file would typically be
located in your working folder):

//gekko.ini file for sim-mode
//---------------------------------

324 Gekko 3.0 user manual

T-T Analyse

CLS;
MODE sim;
OPTION folder model \models;
OPTION folder bank \databanks;
OPTION solve method = newton;
OPTION freq = q; //a (annual) is default
TIME 2012q1 2020q4;
MODEL mymodel;
READ mydatabank;
//---------------------------------

So in the gekko.ini file, put an (optional) a CLS command first, set the mode, and
then OPTION commands including time settings. Finally MODEL and READ commands
(best in that order).

If you need to start up in data-mode, you could use the following file, also typically
put inside the working folder:

//gekko.ini file for data-mode
//---------------------------------
CLS;
MODE data;
global:%path = 'm:\common\databanks';
OPTION folder bank {global:%path};
OPTION freq = q; //a (annual) is default
TIME 1990q1 2015q4;
RUN lib.gcm; //library of procedures/functions
//---------------------------------

//lib.gcm
//---------------------------------
PROCEDURE openbank name %bank;
 OPEN {global:%path}\{%bank};
END;
//---------------------------------

In this example, a string %path is put into the Global databank, so that it can be

accessed during the entire session. With OPTION folder bank pointing to some

central databank repository, existing databanks can be easily opened with OPEN,
without indicating the full file path.

You may, alongside gekko.ini in the working folder, also put a lib.gcm command

file with user-defined functions and procedures. If you RUN that file from the
gekko.ini file, you will always have your user-defined functions/procedures at hand
after a RESTART. In this example, after a RESTART, you may use the procedure
openbank bk2;, which will open up m:\common\databanks\bk2.gbk.

As mentioned, you may put a gekko.ini file in the program folder (where gekko.exe

is located, cf. Help --> About... in the Gekko main window). This file is always run

325Gekko commands

T-T Analyse

before any other commands (including any gekko.ini in the working folder), so a

gekko.ini in the program folder could contain general settings that change

seldomly, like mode, frequency, time period, paths, etc..

Note

The RESET command clears up in the same way as RESTART, but will skip any
existing gekko.ini file.

The INI command can be used to run the gekko.ini file separately (RESTART is the

same as RESET followed by INI).

Note: With OPTION interface remote = yes, Gekko may be remote-controlled from

a special remote.gcm command file in the working folder (cf. OPTION).

Related commands

RESET, INI, DELETE, CLOSE

326 Gekko 3.0 user manual

T-T Analyse

3.70 RETURN

RETURN returns from a command file or function/procedure (i.e., does not execute
the remainder of the file). It will return to any 'parent' command file calling that
particular 'child' command file (or to the command prompt if there are no 'mother'
command files). If you wish to return from all command files at once, use the STOP
command instead.

Syntax

RETURN ; //return from command file

If RETURN is used to return from a FUNCTION (that is, if the function returns one or
more variables), it must use the following syntax:

RETURN expression ;

Note

If you wish to comment out a section of the command file, you may use // to

comment out a single line, or /* followed by */ to comment out an arbitrary section

(for instance spanning multiple lines).

Related commands

STOP, EXIT

327Gekko commands

T-T Analyse

3.71 RUN

The RUN command runs a file Gekko commands (also called a command file). The
default extension for command files is .gcm. You may also run commands from
outside Gekko, either via gekko.exe or via remote control (cf. below).

See also PROCEDURE, which can be thought of as a command file that also accepts
arguments. If you need to call a command file many times, for instance from inside of
a loop, calling a procedure instead will often run much faster because re-parsing and
re-compiling can be skipped.

Syntax

RUN filename;

filenam
e

Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,

or be stated without a path. Filenames containing blanks and
special characters should be put inside quotes. See more on
filenames here.
The extension .gcm is automatically added, if it is missing. If the
filename is set to '*', you will be asked to choose the file in
Windows Explorer.

Tip: if you need to stop execution at a particular line, try inserting a line with a non-
existing function like for instance stop();. This will abort the program in a clean way

and make it possible to inspect variables etc.

Example

You may run the command file scenario.gcm like this:

RUN scenario;

Or, if located in the sub-folder \scenarios:

RUN scenarios\scenario1;

This will run scenario1.gcm in the subfolder \scenarios (relative to the working

folder). You may also use a wildcard * to open a dialog box for choosing the .gcm file:

328 Gekko 3.0 user manual

T-T Analyse

RUN *;

The extension .gcm is added automatically if not provided. Other extensions may be
used, just use them:

RUN gekko.ini;

will run the gekko.ini file (same as the INI command).

gekko.exe parameters

This is for more advanced users, but you may start up gekko.exe with parameters.
Gekko accepts commands as arguments, so for instance Gekko can be started up like
this (execute this from the system shell where gekko.exe is located, or from the .bat
file starting up Gekko):

gekko.exe -folder:c:\adam\2019 -noini RUN scenario;

With the first parameter -folder: you can indicate the starting folder when starting

up gekko.exe this way. Please avoid blanks after the -folder:, and if the path

contains a blank, enclose the path in quotes ("c:\my folder\adam"). With the -

noini parameter you can indicate that you do not wish any gekko.ini files to run

when starting up Gekko. After this, you may write Gekko statements separated by
semicolons (';'). So above, we are starting up Gekko in the C:\adam\2010 folder,

without running a possible ini file, and executing the statement RUN scenario; (that

is, running the file scenario.gcm in the working folder). You may stop Gekko after

running scenario.gcm by issuing an EXIT statement, for instance:

gekko.exe -folder:c:\adam\2010 -noini RUN scenario; EXIT;

Or alternatively end scenario.gcm with an EXIT statement. This way, the session can

run completely without user intervention.

If you do not state a -noini, Gekko will first run the gekko.ini file, and then run the

statements given as arguments to gekko.exe. [New in 3.0.3]

Remote control

329Gekko commands

T-T Analyse

With OPTION interface remote = yes;, Gekko may be remote-controlled from a

special remote.gcm command file in the working folder (cf. the description under

OPTION). This is handy if you need to remote-control an existing Gekko instance
from some other program, for instance a text editor. The above-mentioned
gekko.exe parameters starts up a new Gekko instance, so you can use remote

control to avoid that. You may try the following:

1. Start up Gekko normally
2. Type OPTION interface remote = yes;

3. With an external text editor create a file named remote.gcm, containing the line

TELL 'Hello from remote control';. Put this file in the Gekko working folder.

4. Try changing the TELL line in remote.gcm to something else: Gekko will respond

to that change.

Note that if you start with (3) above, and then fire up Gekko, Gekko will not run the
remote.gcm file. Gekko only reacts when it detects changes in such a file.

Note

In older Gekko versions, command files typically had extension .cmd. In the versions
leading up to Gekko 2.0, the extension was .gek.

If a Gekko .gcm file fails mysteriously, try setting the technical OPTION code split

= 0; (this will cost a little bit of speed).

If you need to run the same piece of code many times (for instance inside a loop),
consider using a PROCEDURE instead of calling RUN on a file. Running a .gcm file
entails some fixed loading, parsing and compiling costs each time it is called. These
costs are not present when using a procedure (only when it is loaded, not when
called).

Related options

OPTION folder command = [empty];
OPTION folder command1 = [empty];
OPTION folder command2 = [empty];
OPTION folder working = [empty];
OPTION interface debug = dialog; [dialog|none]
OPTION interface remote = no; [yes|no]
OPTION interface sound = no; [yes|no]
OPTION interface sound type = bowl; [bowl|ding|notify|ring]
OPTION interface sound wait = 60;
OPTION option system code split = 10; //If Gekko fails mysteriously,
try setting this to 0 (costs a little bit of speed)

330 Gekko 3.0 user manual

T-T Analyse

Related commands

RETURN, STOP, PROCEDURE

331Gekko commands

T-T Analyse

3.72 SERIES

The SERIES (or SER) command alters timeseries variables (often just called 'series').
Series variables have no starting symbol like '%' (scalars) or '#' (collections), but
they may include a frequency indicator ('!'), for instance x!q for x in a quarterly

version. When Gekko starts up, the default frequency is annual, so x will be

understood as x!a.

Compatibility note regarding lags:
Since series calculations are treated more like vector operations in Gekko 3.0,
lags no longer accumulate period-for-period, if the left-hand side variable is
present with lags on the right-hand side (so-called "lagged endogenous"). So a
series expression like x = x[-1] + 1; no longer accumulates automatically

(augments x with 1 for each period); instead the alternatives x ^= 1; or x <d>=

1; could be used. If accumulating behavior is needed, the <dyn> option can be set,

for instance x <dyn> = x[-1] + 1;, or for several series statements a block

structure can be used: BLOCK series dyn = yes; ... ; END;. Setting dynamic

mode affects speed negatively, and should therefore not be set unless needed.

Gekko has to kinds of timeseries: normal series and array-series. Array-series
allow the use of multidimensional indexes, for instance x['a', 'b'], picking out a

subseries with 'a' in the first dimension and 'b' in the second dimension. This could

be for instance input-output cells, indicating the providing ('a') and receiving ('b')

sector of intermediate goods. Array-series are quite similar to the map collection, but
with special capabilities convenient for series data. The sub-series x['a', 'b'], or

the shorter notation x[a, b], is internally a normal series. Therefore, an array-series

can be thought of as a container that contains a collection of normal series that can
be accessed via the indexes.

Normal series (including array-subseries) will use the global time setting regarding
the time period they are calculated over (cf. TIME), unless a local time period is
indicated in the <>-option field.

If []-brackets are used to the right of a series variable, for a normal series it may
either indicate a date (x[2025] or x[2020q3]) or a lag/lead (x[-2] or x[+1]). For an

array-series, the []-index is used to pick out elements, for instance x[a, b]. These

may be combined, like x[a, b][2025]. Beware that lags and leads must start with

the symbol - or +, respectively, otherwise they are not interpreted as leads (so if %i

= 1, you must use x[+%i], not just x[%i]). For integer lags like x[-1] or x[-2], you

may use the shorter form x.1 and x.2, too.

To put values into a series, you can use a list of values on the right-hand side, for
instance x = 1, -2, 3; (the list of values could also be put inside a parenthesis). If

you need to use blank-separated numbers, you can use the data() function, for
instance x = data('1 -2 3');.

If you need to use alias names for series, you can use an #alias list to assign one

name to another. Cf. the last part of this help page.

332 Gekko 3.0 user manual

T-T Analyse

Note that a bank-less variable like for instance x on the right-hand side of a SERIES

expression may be searched for in other databanks than the first-position databank,
cf. the databank search page.

Syntax

SERIES <period operator KEEP=... LABEL=... SOURCE=... UNITS=...
STAMP=... DYN MISSING=...> variable = expression;
variable[date] = expression; //updating for one period
variable[indexes] = expression; //array-series
f(variable) = expression; //left-side function: dif(), pch(),
dlog(), log()
SERIES ?; //show/count series in open databanks

SERIES SERIES keyword may be omitted

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or

%per1 %per2+1.

operator The operator can be d, p, m, q, mp, l or dl. See the 'Operators'
section below.

KEEP= If <keep=p> is used, Gekko will keep the growth rate of the left-

hand series intact after the period over which the series is updated.
For instance, SERIES <2020 2025 m keep=p> x = 100; will add

100 to x over the period 2020-25. The keep=p setting makes sure

that the growth rate of x regarding 2026 and later observations is

the same as before the update.

LABEL= (Optional). Label (string) for the series, cf. DOC.

SOURCE= (Optional). Source (string) for the series, cf. DOC.

UNITS= (Optional). Units (string) for the series, cf. DOC.

STAMP= (Optional). Stamp (string) for the series, cf. DOC.

DYN (Optional). With this option, lagged endogenous variables like in
the expression x = x[-1] + 1; accumulate over time. Entails a

speed penalty, so please do not use if not needed (x ^= 1; or <d>

x = 1; could be used instead).

333Gekko commands

T-T Analyse

MISSING= (Optional). With <missing = ignore>, SERIES will deal with

missing array subseries and missing data values like GAMS,
treating them as zero for sums and mathematical expressions. The
following options are set locally and reverted afterwards: option
series array calc missing = zero; option series data

missing = zero. See also the appendix page on missings.

variable Left-side name

expression Any expression

In addition to = (assignment), the following variants can also be used (see the

'Operators' section below):

· += add to existing

· -= subtract from existing

· *= multiply to existing

· /= divide from existing

· ^= set absolute time change

· %= set percent time change

· #= add to percent time change

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).

Types of series

Normal series

Normal series look like the following example:

x = 100;

In that case, 100 is assigned to each observation in the global time period (cf. TIME).
Different values for each observation can be assigned like this:

TIME 2021 2023;
x = 100, 110, 90;

334 Gekko 3.0 user manual

T-T Analyse

The right-hand side in this example is a list of values. You can indicate a local time
period in the <>-option field:

TIME 2020 2030;
SERIES <2021 2023 label='Gekko-variable'> x = 100, 110, 90;
<2021 2023 label='Gekko-variable'> x = 100, 110, 90; //the same:
the SERIES keyword may be dropped
x <2021 2023 label='Gekko-variable'> = 100, 110, 90; //the same:
the option field may be moved

The local time period overrules the global period. If the three values corresponded to
quarters for a quarterly series x, the command x!q = 100, 110, 90; could be used.

Alternatively, one could change the global frequency first like this: OPTION freq q;

x = 100, 110, 90;. In that case, you do not need to use the frequency indicator x!q

explicitly, since !q is added implicitly to x in all places where the frequency is not

stated. Note that the example above sets the label of x to 'Gekko-variable' (cf. also

DOC).

The right-hand side of a series variable can be any legal Gekko expression that
evaluates to a series, or anything that evaluates to a list of values of a suitable
length. For list values, you may repeat them using rep, for instance y = 1, 2 rep

2, 3; is equal to y = 1, 2, 2, 3;. The last value in a list may be indicated with rep

* which will repeat the item a suitable number of times, if the left-hand side is a

series. For instance: y <2021 2025> = 1, 2, 3 rep *;, where the series will get

values 1, 2, 3, 3, 3 over the period 2021-25.

Series names may be composed with {}-curlies, representing characters. For
instance:

TIME 2010 2012;
a = 100; b = 200; xa = 1; xb = 2;
%i = 'b';
#i = ('a', 'b'); //or: #i = a, b;
PRT <n> {%i}, {#i}, x{%i}, x{#i}; //the elements of #i have 'x'
prepended

Result (the four PRT arguments are shown in different colors):

 b a b xb
 xa xb
 2010 200.0000 100.0000 200.0000 2.0000
 1.0000 2.0000
 2011 200.0000 100.0000 200.0000 2.0000
 1.0000 2.0000
 2012 200.0000 100.0000 200.0000 2.0000
 1.0000 2.0000

Array-series

335Gekko commands

T-T Analyse

The dimensions of an array-series need to be stated when it is constructed.
Afterwards, indexes are used to refer to its elements:

x = series(2); //two dimensions
x[a, b] = 100; //or: x['a', 'b'] = 100;
x[a, o] = 200; //or: x['a', 'o'] = 200;

As seen, you may use the shorter x[a, b] instead of the more strict x['a', 'b'],

when the elements are simple names, for instance not containing blanks or special
symbols.

When dealing with timeseries given in some logical structure apart from time (for
instance input-output cells), name composition is often used, for instance using the
name convention xab and xao instead of x[a, b] and x[a, o]. Using array-series,

there are convenient summing functions like sum(#j, x[a, #j]), summing up the

second dimension of the array-series x (for instance, with #j = ('b', 'o'), the

index x[a, #j] will correspond to x[a, b], x[a, o]). The same kind of logic can

also be implemented with name-conventions, for instance sum(#i, xa{#j}), where

xa{#j} will correspond to xab, xao. Still, array-series can be very practical in order

to organize timeseries in some non-time structure/dimensions, and an array-
subseries like for instance x[a, b] can be used in the same way as a normal

timeseries xab. Also, with array-series there is no risk of name-collisions. For

instance, x[ab, c] is clearly different from x[a, bc], whereas a simple naming

convention will produce the same name, xabc. This can be remedied with, for

instance, underscores (x_ab_c vs. x_a_bc), but in that case why not just use array-

series?

Elements that are simple numbers represented as strings may have values added or
subtracted, for instance x[#a+1], where #a could be a list of strings representing

ages, like ('18', '19', ..., '80').

You may perform simple mathematical operations on array-series without indexes,
for instance p * x in the above example, being equivalent to p[#i, #j] * x[#i,

#j]. Such possibilities (array-series algebra) will be augmented.

Operators and left-side functions

The following tables presents the different operators:

Type Operat
or

Example Result Note

Absolute ^= x ^= 1200; x = x[-1] + 1200 Same as <d>. or dif(x)

 = 1200;. See also the

<dyn> option.

336 Gekko 3.0 user manual

T-T Analyse

Relative %= x %= 3.5; x = x[-1]
*(1+3.5/100)

Same as <p> or pch(x)

= 3.5;. See also the

<dyn> option.

Absolute += x += 1200; x = x + 1200 Same as <m>. You can

also use -= to subtract

values.

Relative *= x *= 1.03; x = x*1.03 Similar to <q>. You can

also use /= to divide

with values.

Change
in
relative

#= x #= 2.1; x = x[-1]*(x0/x0[-
1] + 2.1/100)

Same as <mp>. See also

the <dyn> option.

In the formula regarding the # operator, x0 is the original timeseries, and x is the

new one. Alternatively, the so-called 'short' operators may be used:

Type Option Example Result Note

Absolute <d> x <d>= 1200; x = x[-1] + 1200 Same as ^=. or dif(x) =

1200;. See also the

<dyn> option.

Relative <p> x <p>= 3.5; x = x[-1]
*(1+3.5/100)

Same as %= or pch(x) =

3.5;. See also the

<dyn> option.

Absolute <m> x <m>= 1200; x = x + 1200 Same as +=. You can

also use -= to subtract

values.

Relative <q> x <q>= 3; x = x*(1+3/100) Similar to *=. You can

also use /= to divide

with values.

Change
in
relative

<mp> x <mp>= 2.1; x = x[-1]*(x0/x0[-
1] + 2.1/100)

Same as #=. See also

the <dyn> option.

Log <l> x <l>= 5; x = exp(5) Same as log(x) = 5;.

Relative <dl> x <dl>= 0.035; x = x[-1]
*exp(0.035)

Same as dlog(x) =

0.035;.

Left-side functions:

Type Option Example Result Note

Absolute dif()
diff()

dif(x) = 1200; x = x[-1] + 1200 Same as ^= or <d>=. See

also the <dyn> option.

337Gekko commands

T-T Analyse

You may use diff() as
synonym.

Relative pch() pch(x) = 3.5; x = x[-1]
*(1+3.5/100)

Same as %= or <p>=. See

also the <dyn> option.

Log log() log(x) = 5; x = exp(5) Same as <l>=.

Relative dlog() dlog(x) =
0.035;

x = x[-1]
*exp(0.035)

Same as <dl>=.

Examples, normal series

Create a deflated price index (not an existing variable):

TIME 2010 2013;
CREATE p1, p, rp1; //only necessary in sim-mode
p1 = 1.00, 1.12, 1.15, 1.14;
p = 1.00, 1.02, 1.04, 1.06;
rp1 = p1/p;
PRT rp1;

Create a series with a given growth rate:

CREATE x; //only necessary in sim-mode
TIME 2011 2013;
x <2010 2010> = 1; //uses a local time period
x %= 2.5; //uses x is set to grow with 2.5 percent
annually
x <p>= 2.5; //same as above, alternative syntax
pch(x) = 2.5; //same as above, alternative syntax
PRT x; //grows with 2.5% p.a.

Change compared to the reference bank:

CREATE x; //only necessary in sim-mode
TIME 2011 2013;
x = 1, 2, 3;
CLONE; //Ref bank made as copy of Work
bank
x <q> = 10; //or: x *= 1.10;
PRT <n r m q> x; //level, ref-value, difference,
%difference
PRT <n> x, @x, x-@x, 100*(x-@x)/@x; //same info, done manually

In the last PRT, @x is short for ref:x, that is, x from the Ref databank.

338 Gekko 3.0 user manual

T-T Analyse

To set for instance a growth rate equal to another growth rate, you can use the <p>
operator:

y <p> = pch(x); //or: y %= pch(x), or: y = y[-1] * x/x[-1]

To change only one period, you may use:

tg[2020] = %v; //%v is a scalar value

This will only set the 2020-value, and will work regardless of what the global sample
might be. Used like this, at the same time stating a local period inside the <>-option
field is not legal (or meaningful). Note that when using SERIES with []-brackets like
this, a scalar value (or expression) is expected on the right-hand side of the
equation. The above command is functionally equivalent to the following:

tg <2020 2020> = %v

The $-operator can be used after any expression, and works like an implicit IF-
statement. For instance:

y = 3 $ ('b' in #m and %v == 10)

In this case, y will be 3 if 'b' is a member of #m and %v has the value 10. Else, y will

obtain the value 0. The $-operator can be used to switch between values inside a
period, for instance:

RESET; MODE data;
TIME 2001 2005;
x = 10, 10, 11, 12, 10;
y1 = 110 $ (x == 10) + 111 $ (x <> 10);
y2 = iif(x, '==', 10, 110, 111);

The second-last SERIES (y1) illustrates the use of the $-operator for switching, and

y1 will contain the numbers 110, 110, 111, 111, 110 (the 10's are replaced with 110,
and all other values are replaced with 111). The last SERIES (y2) illustrates how to
perform the same operation using the iif() function. The operation could alternatively
be performed with FOR and IF statements, looping explicitly over each period, but
using the $-operator or the iif() function is much more convenient here.

Adding 1000 to a series jx can be done with the + operator, or the <m> option:

jx <2010 2010> += 1000;
jx <2010 2010 m> = 1000; //same result

339Gekko commands

T-T Analyse

Instead of updating with raw numbers, you may use scalar variables instead (in this
case, you have to use parentheses to indicate the list, because the elements are not
simple numbers):

%f1 = 0.02;
tg <2010 2012> += (%f1, 2*%f1, 0.01);

Using a list #m:

TIME 2010 2012;
#m = x1, x2; //or: ('x1', 'x2')
{#m} = 100, 80, 110;
{#m} <2010 2012> *= 1.02; //x1 and x2 become 2% larger, could also
use <q> option
PRT {#m};

Note that 1.02 is implicitly used for all three periods (you do not need to write
(1.02, 1.02, 1.02)). Note also the {}-curlies in {#m} = (100, 80, 110);. Without

the curlies, #m would become a list of the three values 100, 80, 110, which is not
the intention. In <2010 2012> {#m} *= 1.02;, without the curlies, the expression

would fail, since a list does not implement the *= operator. Finally, in PRT {#m};,

without the curlies, Gekko would print the strings 'x1' and 'x2', not the series x1 and

x2.

If you use <keep=p>, Gekko will keep the same growth rate in the data, after the

time period where the variable is changed.

y <2007 2007 m keep=p> = 0.01;

This way, y has 0.01 added in 2007 (because of the <m> operator), and in all the

subsequent years of data, the old growth rate in y is preserved (which is what the
keep option does). Note that keep=p updates the series outside of the indicated

period.

In sim-mode, you must first create a non-existing variable, but if the variable name
starts with 'xx', it is automatically created:

xxvar = 27; //works in sim-mode without prior CREATE

If convenient, you may also use wildcard lists:

{'j*'} <2010 2010> = 0;

This sets all variables in the Work databank beginning with 'j' to 0, for the given
period.

340 Gekko 3.0 user manual

T-T Analyse

You may set timeseries in other databanks than Work, for instance:

bank1:x = 100;

This will set the variable x to 100 in the bank bank1 (cf. the OPEN command),

provided that the bank is unlocked. If you need to change timeseries in the reference
databank, you may use the @-indicator for convenience:

@fy *= 1.03;
<q> @fy = 3; //same

This will increase the variable fy in the Ref databank with 3% over the global sample

period.

Examples, array-series

Array-timeseries comply rather tightly with GAMS syntax, to interface more naturally
with GAMS files (gdx). But array-timeseries have many other uses, for instance when
downloading multi-dimensional data, or reading data from px-files (PC-Axis), cf. the
IMPORT command.

An array-series can be thought of as a super-series, containing sub-series in one or
more dimensions, where these sub-series are accessed with (lists of) simple names.
For instance, x may be a one-dimensional array-series, containing the sub-series

x[a] and x[b]. These sub-series are like any other normal timeseries, just stored

inside the array-series. In this sense, x can be thought of as a kind of special map,

allowing multiple dimensions, and designed for series access. In older versions of
Gekko (prior to 2.3.1), such dimensions would typically be handled by means of
naming conventions, for instance using normal series x_a, and x_b instead of x[a]

and x[b].

You may use single quotes for element access, so x[a] = x['a'], x[b] = x['b'], etc.

Using quotes is the strict form, and using quotes, the element names may include
any characters, for instance x['ab ? x22'].

The following is an example of the use of array-series. In the example, #i and #j are

lists of strings containing the sets of names spanning the dimensions, in this case a 3
x 3 structure [#i, #j] like this:

[a, a] [a, b] [a, o]
[b, a] [b, b] [b, o]
[o, a] [o, b] [o, o]

https://www.gams.com/

341Gekko commands

T-T Analyse

The last part of the example below illustrates how to use default sets (via the map
#default). In order for default sets to work, the array-series must contain domain

information.

#i = a, b, o; //or: ('a', 'b', 'o')
#j = a, b, o;
#j0 = a, o;
x = series(2); //two dimension
p = series(2); //two dimensions
x[#i, #j] = 100; //all elements = 100
p[#i, #j] = 2; //all elements = 2
PRT <n> x; //prints all elements of
the array-series x, the <n> avoids printing percentage growth
PRT <n> p * x; //same as p[#i, #j] *
x[#i, #j], simple array-series algebra is possible
PRT <n> x[a, #j]; //or: x['a', #j], prints
the elements with 'a' in the first dimension
PRT <n> x[#i, #j]; //prints all elements,
similar to PRT x;
y = sum((#i, #j), x[#i, #j]); //the sum of all
elements, y = 900
z = sum(#j, x[a, #j] $ (#j in #j0)); //the sum of those #j
that are in #j0 (that is, middle column 'b' is skipped), z = 200
x.setdomains(('#i', '#j')); //domains set, necessary
for #default logic
p.setdomains(('#i', '#j')); //domains set, necessary
for #default logic
#default = map(); //#default is a map type
#default.#j = #j0; //chose elements of #j to
print
PRT x; //will omit printing
middle column 'b' in set #j
PRT <split> x; //splits the output

The summing up with sum() is sometimes called a 'roll-up operation', aggregating
rows/columns, whereas for instance x[a, #j] would be a so-called 'slice operation'.

Regarding domains, it is easy to remove a single element from a list of strings with
for instance #i.remove(%s), where %s is a string. To remove several elements from a

list of strings, you may use #i - #j. Hence these $-conditionals can be used for easy

removal/skipping of elements:

z = sum(#j, x['a', #j] $ (#j in #j.remove('b')));
z = sum(#j, x['a', #j] $ (#j in #j - ('b', 'o')));

To print an array-series x1, use either:

DISP x1; //shows info
regarding dimensions, elements, etc.
DISP x1[a, b]; //shows info for
the the sub-series

342 Gekko 3.0 user manual

T-T Analyse

PRT x1; //will print out
all elements
PRT x1[#i, #j]; //prints out the
elements in lists #i and #j (combined)

If you need non-existing array-timeseries elements to be implicitly understood as
having value 0, you can use OPTION series array calc missing = zero;. In that

case, you may use for instance sum(#j, x1[#i, #j]), even if some of the

combinations (subseries) of #i and #j do not exist in x1.

In general, you may print or plot an array-series without indicating the dimensions.
You can assign lists to array-series dimensions and afterwards control which elements
are printed/plotted via a special map with the name #default. This can be practical if

you typically only want to see some of the elements of an array-series, but not all.

#s = ('e1', 'e2');
a = series(1); //array-series with 1 dimension
a[#s] = 100; //sets a[e1] = a[e2] = 100
a.setdomains(('#s',)); //assigns #s to dimension 1 of the
array-series
p <n> a; //prints a[e1] and a[e2]
#default = map(); //defines map #default and puts it
in the global databank
#default.#s = ('e1',); //or in one line: #default = (#s =
('e1',))
p <n> a; //now, because of #default, only
a[e1] is printed

It can often be practical to put the #default map into the Global databank (that is:

global:#default = ...), so that it is generally available irrespective of potential

OPEN or READ statements. The #default map shown above will restrict all

printing/plotting of array-series that have #s assigned to a dimension as its domain.

Alias names

It is possible to assign one variable name to another via a special list with the name
#alias. This can be practical if, for instance, the users are used to one kind of

variable names, but are for instance using a model with another kind of variable
names.

option interface alias = yes; //this option must be set
global:#alias = #(listfile alias); //reads alias.lst from
file
c = series(1); c[a] = 100; c[b] = 200;
y = 300;
prt x1, x2, x3;

343Gekko commands

T-T Analyse

The #alias list could look like the following file:

--------------- alias.lst --------------------
x1; c[a]
x2; c[b]
x3; y
--

This file is read as a list of lists, equivalent to #alias = (('x1', 'c[s]'), ('x2',

'c[b]'), ('x3', 'y'));. The print prints out x1, x2, and x3 as 100, 200, and 300,

respectively, even though the 'real' values are stored inside c[a], c[b], and y.

Details, x = x[-1] + ... type, and <dyn> option

In Gekko 3.0, series operations are handled more vector-like than in Gekko 2.4 and
before, so for example two series are added in one operation, similar to adding two
vectors. This affects the use of lags in expressions with "lagged endogenous":

TIME 2021 2024;
x = 100;
x <2022 2024> = x[-1] + 1; //result: 101, 101, 101, not 101, 102,
103

Here, we might have expected 101, 102, 103, but lags do not accumulate like this in
Gekko 3.0. In this case, x can be thought of as the vector [100, 100, 100, 100] over
the period 2021-24. The lag of this vector is then [M, 100, 100, 100], where the
elements are shifted one position to the right, and where 'M' is missing value. Add 1
to this: [M, 101, 101, 101], and it is seen why the result is 101 over the period
2022-24. To produce the 'right' result, use the ^= operator or <d> instead:

TIME 2021 2024;
x = 100;
x <2022 2024> ^= 1; //result: 101, 102, 103. Alternatively, the
<d> operator could be used.

The 'problem' (surprises) with such dynamic definitions only appears when the left-
hand side variable itself appears with a lag on the right-hand side. So an expression
like x = y/y[-1] - 1 has no such problems.

To mitigate this issue, for instance when copy-pasting model equations containing
"lagged endogenous" variables in some of the equations. For such cases, the option
<dyn> can be used, or a block like BLOCK series dyn = yes; ... ; END; can be

used. Please only use this when relevant: setting the option entails a speed penalty.
Example:

344 Gekko 3.0 user manual

T-T Analyse

TIME 2021 2024;
x = 100;
x <2022 2024 dyn> = x[-1] + 1; //result: 101, 102, 103

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

In general, you may put the option field to the left of, or to the right of the left-hand
side variable. These variants are all equal: SERIES <2010 2020> y = 100; SERIES y

<2010 2020> = 100; <2010 2020> y = 100; y <2010 2020> = 100; The last one

is perhaps more readable than the second-last one.

In addition to operators += and *=, you can also use their inverse counterparts: -=

and /=. So x -= 2; is the same as x = x - 2;, and x /= 2; is the same as x = x /

2;. This is standard in most computer languages. But please note that x ^= 2; is not

the same as x = x ^ 2;, that is, x in the second power.

If any of the right-hand side variables are not found (searching depends upon mode),
the command will exit with an error, unless you set OPTION series array calc

missing = ...; or OPTION series normal calc missing = ...;. If some of the

variables have missing values (shown as 'M' when printing), the left-hand side will
become missing as well (for the periods affected).

You may use m() to indicate a missing value, for instance y = m();.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

Related options

OPTION freq = a; [a|q|m|u]
OPTION databank create auto = no; [yes|no]
OPTION series array calc missing = error; [error|m|zero]
OPTION series dyn = no; [yes|no]
OPTION series normal calc missing = error; [error|m|zero]

345Gekko commands

T-T Analyse

Related commands

CREATE, DOC, PRT, VAL, EXPORT<gcm>, EXPORT<flat>

346 Gekko 3.0 user manual

T-T Analyse

3.73 SHEET

You can transfer variables to Excel by means of the SHEET command. SHEET has the
same syntax as the PRT, PLOT and CLIP commands, including the use of operators.
You may also use SHEET to import data from individual cells via SHEET<import>. The
sheet cells can be converted to timeseries, but can alternatively be loaded as a list,
map or matrix for further processing (see examples).

Per default, SHEET uses an internal 'engine' to read and write Excel files. This engine
does not depend upon Excel being installed. In order to read the older .xls format,
you may use OPTION sheet engine = excel (cf. OPTION).

Excel note: if you encounter "dates" with integer numbers larger than 20000, this
may be because Excel shows the dates as numbers rather than dates. You may try
to change the format of the date cells: right-click, "Format cells", "Date".

For export of timeseries, SHEET uses the same internal component as PRT, so
regarding operators and other details, also see the PRT help page.

Syntax

SHEET < period IMPORT operator TITLE=... STAMP=... SHEET=...
 CELL=... DATES=... NAMES=... COLORS=... ROWS COLS APPEND=...
 LIST MAP MATRIX MISSING DATEFORMAT=... DATETYPE=... BANK=...
REF=... MISSING=... > variables FILE=... ;

period (Optional). Local period, for instance 2010 2020,

2010q1 2020q4 or %per1 %per2+1.

IMPORT (Optional). Use SHEET<import> to obtain data from
Excel. (If you need to obtain data arranged in
rows/columns with labels, see IMPORT<xlsx>).

SERIES (default): in this case, the variables must
be a comma-separated list (or a list like {#m}). With

this option, you may use SHEET= (select the

sheet), CELL= (point to the starting cell),

ROWS/COLS (select the orientation of the

data/timeseries), and FILE (the filename). After this,

Gekko will read the data into the variables. If the
orientation is row-wise (which is default), Gekko will
use the n x k cells starting at the CELL location,
where n is the number of variables, and k is the
number of time periods. See example under
'Examples' below.

347Gekko commands

T-T Analyse

LIST, MAP or MATRIX: You can state one collection
name like for instance #m. Additionally, you may use

SHEET=..., CELL=..., ROWS/COLS (select the

orientation of the data, COLS is transposed), and

FILE (the filename). After this, Gekko will read the

data into the given collection:
· List: The data is loaded as a list of rows, where

each row is a sub-list of elements representing the
columns. The cells can be of any type, including
null (empty). For instance, #m[2][3] will represent

row 2, column 3 of the sheet (that is, the cell C2).

See example under 'Examples' below.
· Map: The data is loaded as a map, where the keys

represent the cells. The cells can be of any type,
including null (empty). For instance, #m['%c2'] or

#m.%c2 will represent the cell C2 (stored as the

scalar %c2).

· Matrix: The data is loaded as a matrix, where all
the cells must be of value type. If you use the
MISSING option, any empty cells will be filled with

missing values (M), otherwise they are filled with
0's. See example under 'Examples' below.

· List and map: note that string cells will be stripped
(blanks at beginning and end are removed).

· List and map: [New in 3.0.6].

operator (Optional). 'Long': abs, dif, pch, gdif, or 'short': n,

d, p, dp, m, q, mp, r, rd, rp, rdp

TITLE (Optional). A title for the sheet. You can use
HEADING as alias.

STAMP (Optional). If 'yes', a time stamp is inserted at the
top

variables Name of the variable(s) printed. Several variables
can be printed at once using, var1, var2 You may
also use lists or expressions.

FILE (Optional). SHEET will optionally create an Excel file
silently without opening Excel (the filename will be
[filename].xls or [filename]xlsx, and is put into the
Gekko working folder)
Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path.

348 Gekko 3.0 user manual

T-T Analyse

Filenames containing blanks and special characters
should be put inside quotes. See more on filenames
here.

SHEET The name of the sheet for your data, for instance
'Data1'

CELL The cell where data starts, for instance 'C4', default
is 'A1'.

DATES [yes|no]: If 'yes', dates are shown (is 'yes' per
default)

NAMES [yes|no]: If 'yes', names are shown (is 'yes' per
default)

COLORS [yes|no]: If 'yes', colors are shown (is 'yes' per
default)

ROWS [yes|no]: If 'yes', the timeseries are printed in rows
(default), use the COLS option to transpose.

COLS [yes|no]: If 'yes', the timeseries are printed in
columns (transposed).

APPEND [yes|no]: If 'yes', the table is appended to an existing
Excel workbook (is 'no' per default)

MATRIX [yes|no]: Used with SHEET<import> to import a
matrix, see example below.

MISSING [yes|no]: Used with SHEET<import matrix>. Cells
with no content are set to missing instead of 0.

DATEFORMAT=
DATETYPE=

(Optional). These options control the date format for
.xlsx and .csv files. DATEFORMAT can be either

'gekko' (default) or a format string like 'yyyy-mm-

dd', and the latter may contain a first or last

indicator, for instance 'yyyy-mm-dd last', which

indicates for quarterly or monthly data that the last
day of the quarter or month is used. DATETYPE can

be either 'text' or 'excel'. In the former case, the

dates are understood as text strings (for instance
'2020q3' or '2020-09-30' for a quarterly date), and

in the latter case (not relevant for .csv files), the
date is understood as an Excel date, which basically

349Gekko commands

T-T Analyse

counts the days since January 1, 1900. This number
would correspond to 44104 for the date 2020-09-31,
and can be shown in Excel in different ways
depending upon date format settings, language
settings, etc., but the internal number itself is
unambiguous. [New in 3.0.5].

BANK (Optional). A bankname where variables are looked
up. For instance PRT <bank = b1> x; is equivalent

to PRT b1:x;. See also <REF = ...>. These options

can be convenient instead of opening and closing
banks.

REF (Optional). A bankname where reference variables
are looked up. For instance PRT <bank = b1 ref =

b2 m> x;" uses banks b1 and b2 for the multiplier.

See also <BANK = ...>. These options can be

convenient instead of opening and losing banks.

MISSING= (Optional). With <missing = ignore>, SHEET will

deal with missing array subseries and missing data
values like GAMS, treating them as zero for sums
and mathematical expressions, or skipping the
printing of a subseries if it does not exist. The
following options are set locally and reverted
afterwards: option series array print missing =
skip; option series array calc missing =

zero; option series data missing = zero. See

also the appendix page on missings.

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

You may use a 'operator' to indicate which kind of data transformation you would like
on your variables, for instance SHEET<d>, SHEET<q>, SHEET<pch>. As in the PRT

command, you may also use element-specific operators (for instance SHEET unemp,

gdp<p>;). See the PRT command regarding the use of operators.

Examples

An example could be:

350 Gekko 3.0 user manual

T-T Analyse

SHEET x1, x2;

Shows the two variables in Excel (if Excel is installed). Or more advanced:

SHEET x1 'GDP', x2 'Unemployment' FILE = scenarioA;

This produces the file scenarioA.xlsx silently. SHEET produces a table in Excel, with

variables running downwards and periods running rightwards. Missing values are
converted to missing values in Excel (#N/A). SHEET should work regardless of Excel

macro settings, decimal separator etc., on Excel 2003 and upwards.

To illustrate the options, consider this example:

SHEET < m SHEET='Raw' CELL='d1' DATES=no NAMES=no COLORS=no
COLS=yes APPEND=yes> fm/fy 'Imports', fe/fy 'Exports'
FILE=adam.xlsx ;

This will print an absolute multiplier (operator m) of the two expressions (with labels),

to the Excel workbook adam.xlsx (appending to the pre-existing file). The data will

be put into the sheet Raw, in cell D1, without dates, labels and colors, and with the

data running downwards in columns.

To illustrate how to transfer raw cell data in an out of Excel, consider this example:

RESET; TIME 2001 2002;
xx1 = 1001, 1002;
xx3 = 3001, 3002;
SHEET <2001 2002 sheet='test' cell='C5' dates=no names=no
colors=no> xx1, xx3 file=testing;
RESET; TIME 2001 2002;
SHEET <2001 2002 import sheet='test' cell='C5'> xx1, xx3
file=testing.xlsx;
PRT xx1, xx3;

The first SHEET command will produce the file testing.xlsx, with the sheet test

inside, where the data is starting at the cell C5. Note that you need DATES=no and

NAMES=no to only get the raw data. The data looks like this (starting at cell C5):

1001 1002
3001 3002

The last SHEET command imports data from the sheet test from testing.xlsx, and

puts the cells back into the variables (timeseries) xx1 and xx3. To import the Excel

data from the previous example into a matrix instead, you may use this:

351Gekko commands

T-T Analyse

SHEET <import matrix sheet='test' cell='C5'> #m file=testing.xlsx;
PRT #m;

You may use EXPORT to export a matrix to Excel, EXPORT <xlsx> #m file =

m.xlsx;.

If you need to perform custom transformations of an Excel spreadsheet, you may load
the cells as a list or map, for further processing. Consider this spreadsheet
(data.xlsx, download here).

Name Share jan-20 feb-20 mar-20

Total 100 100.4 100.4 100.4

Total imports 45 104.2 103.1 101.4

011 Meat 10 100.6 99.9 101.7

022 Milk 5 97.4 100.1 98.9

112 Beverages 20 100.2 100.1 100.3

121 Tobacco 10 101.0 97.6 97.2

Total exports 55 99.6 99.6 99.5

011 Meat 20 99.7 98.6 94.6

022 Milk 10 100.0 98.9 99.2

112 Beverages 15 101.0 101.1 101.1

121 Tobacco 10 100.4 101.5 101.3

The dates shown are Excel dates, representing January, February, and March 2020,
respectively (Excel stores these internally as the numbers 43831, 43862, and 43891
= days since January 1, 1900). If the frequency is set to monthly, Gekko will convert
these Excel dates to the Gekko dates 2020m1, 2020m2, and 2020m3. We wish to

extract the rows with three-digit codes as timeseries with suitable names, for
instance "011 Meat" should becomes pm011 if found under imports, else pe011, and in

addition we with to extract the fixed shares as for instance s_pm011.

In the above sheet, all rows have the same number of columns, but in contrast to a
matrix, this is not guaranteed. The following program loops through the rows and
extracts the data (including series labels):

option freq m; //so that Excel dates are read as months
time 2020 2020;
sheet<import list> #m file=data.xlsx;
%rows = #m.length(); //number of rows
%cols = #m[1].length(); //number of cols
%t1 = date(#m[1][3]); //start date
%t2 = date(#m[1][%cols]); //end date
%ie = 1; //imports or exports
for val %i = 1 to %rows; //loop the rows
 if(#m[%i][1].index('total exports') == 1); %ie = 2;
end; //exports type
 if(#m[%i][1].length() >= 3); //name with three chars or more
 %code = #m[%i][1][1..3]; //%code = first three characters
 if(%code.isnumeric() == 1); //if these chars are digits

http://www.t-t.dk/gekko/examples/data.xlsx

352 Gekko 3.0 user manual

T-T Analyse

 #numbers = #m[%i][3..]; //fetch the row cells into a list
 %namestart = 'pm';
 %label = 'Imports, ';
 if(%ie == 2);
 %namestart = 'pe';
 %label = 'Exports, ';
 end;
 %name = %namestart + %code; //name like 'pm011'
 {%name} <%t1 %t2 label = %label + #m[%i][1]> =
#numbers; //put the data into a series pm011 = ...
 s_{%name} = timeless(#m[%i][2]); //shares, using timeless
series
 end;
 end;
end;

disp pm011;

Instead of #m[%i][%j], you may alternatively use #m[%i, %j], but beware that a

range like #m[%i1..%i2, %j] is not the same as #m[%i1..%i2][%j], cf. the

explanations here. A map containing the cells could also have been used, but in this
case, a nested list is easier. Instead of timeless series like s_pm011, values like %

s_pm011 could have been used. Result:

 2020m1 2020m2 2020m3
pm011 100.5700 99.9485 101.7121
pm022 97.3908 100.1147 98.9306
pm112 100.2375 100.1348 100.2966
pm121 100.9756 97.6316 97.1969
pe011 99.7357 98.5820 94.6168
pe022 99.9656 98.8769 99.1864
pe112 100.9782 101.1213 101.1087
pe121 100.4187 101.4881 101.3085
s_pm011 10.0000 10.0000 10.0000
s_pm022 5.0000 5.0000 5.0000
s_pm112 20.0000 20.0000 20.0000
s_pm121 10.0000 10.0000 10.0000
s_pe011 20.0000 20.0000 20.0000
s_pe022 10.0000 10.0000 10.0000
s_pe112 15.0000 15.0000 15.0000
s_pe121 10.0000 10.0000 10.0000

Note

The EXPORT (or WRITE) commands can also output series as an Excel workbook, but
cannot append to an existing spreadsheet. SHEET, however, has more options to
control the workbook. Gekko will produce a macro/vba-enabled spreadsheet, if the
file extension is .xlsm.

353Gekko commands

T-T Analyse

In Excel 2007 and newer, you can click on a cell inside the table and select 'Insert'
and 'Line' from the 'Charts' ribbon, and a chart will be produced (with the correct
legend, labels etc.).

Related options

OPTION sheet collapse = none; [avg|total|none]; //show aggregates for quarters and
months
OPTION sheet cols = no;
OPTION sheet engine = internal; //use 'excel' for the older .xls format
OPTION sheet freq = simple; [pretty|simple]; //for quarters and months
OPTION sheet mulprt abs = yes;
OPTION sheet mulprt gdif = no;
OPTION sheet mulprt lev = no;
OPTION sheet mulprt pch = no;
OPTION sheet mulprt v = no;
OPTION sheet prt abs = yes;
OPTION sheet prt dif = no;
OPTION sheet prt gdif = no;
OPTION sheet prt pch = no;
OPTION sheet rows = yes;
OPTION interface excel modernlook = yes; [yes|no]
OPTION interface excel language = danish; [danish|[empty]]

Related commands

 CLIP, PRT, PLOT, EXPORT

354 Gekko 3.0 user manual

T-T Analyse

3.74 SIGN

This command prints out information regarding the model signature in the model file
(.frm), and the 'true' hash code corresponding to the model file (and whether they
are identical). You can use the SIGN command to obtain the hash code for signing a
new (or changed) model. (If the model is unsigned, click the link 'more' to obtain a
comment line with signature that can be copy-pasted into the .frm file.)

The hashcode is a kind of check-sum or fingerprint regarding .frm files. The
signatures are technically so-called MD5 hashes, and can be put into .frm file as
commentaries (for example: "// Signature: fp88RzyZfJNaoTi3I4X3Ww"). This string
of 22 characters and digits (note: the hash code is case-sensitive!) identifies a
specific model file, so altering the model file will result in a different hash code. The
motivation behind the signatures is two-fold: (a) To be able to make sure that an
official model version has not accidently been changed, and (b) The signatures are
used to identify models for caching (faster loading). When calculating the signature
(hash code), empty lines and comment lines are ignored (except for comments
containing model block identifiers '###'), so you may insert empty lines or comments
any way you like in the .frm file and preserve the signature (any variable list after
the VARLIST; or VARLIST$ tag will be ignored in the hashcode, too). But changing the

equations (FRML) in any way will result in a new hash code. The hash code is
technically 128 bits, and this means that the probability of two different model files
having the same hash code is 2^(-128) = 2.9E-39 (that is, effectively zero).

Syntax

SIGN;

Examples

To obtain a signature for a (unsigned) model loaded with the MODEL command, type:

SIGN;

You will get an output similar to this:

No signature was found in model file (more)
 - Signature in model file : [not found]
 - True model file hash code : fp88RzyZfJNaoTi3I4X3Ww

Try clicking the 'more' link to obtain a line similar to this:

 // Signature: fp88RzyZfJNaoTi3I4X3Ww

355Gekko commands

T-T Analyse

This line can be copy-pasted into the .frm file (typically at the top), which signs the
mode. After this, you will be told that the model signature is OK when loading the
(unaltered) model with the MODEL command.

Note

You may put other meta-information into the model file (.frm). As of now, Info,

Date, and Signature fields are supported. For instance:

// Info: Model used for forecasting 2012-2030
// Date: 7-11-2012 15:37:00
// Signature: fp88RzyZfJNaoTi3I4X3Ww

Gekko will complain if this format deviates, for instance the Info field is to be written

with capital 'I', with no blank before the colon, and one blank after the colon. This
rigorousness regarding form is to make it easy to spot the information in different
.frm files. The Info and Date fields will be displayed when loading the model (MODEL

command).

Related commands

MODEL, SIM

356 Gekko 3.0 user manual

T-T Analyse

3.75 SIM

SIM solves the model dynamically, i.e. lagged endogenous variables use simulated
values. The simulated values are placed in the first-position bank, thereby
overwriting previous values of the endogenous variables. The default solving method
is Gauss-Seidel. If Gauss-Seidel poses problems, for instance because of bad values
in some of the variables, you may try setting OPTION solve failsafe = yes;. This

will pinpoint the exact time period and variable that first produces an invalid value.
Failsafe has a small speed overhead. For harder problems, you may need to use the
Newton method.

You may solve goals/means by indicating these with the ENDO/EXO commands. The
Newton method is used in that case, but please note that you need to use SIM<fix>

in order for such goals/means to bind. When goals are removed later on (UNFIX
command), the solve method reverts to Gauss-Seidel.

SIM may also solve a model with leaded endogenous variables. The Fair-Taylor ('fair')
method is used in that case, or you may use the more powerful Newton-Fair-Taylor
(called 'nfair' in Gekko). See the OPTION solve forward method =

Gekko will try to calculate some reasonable starting values for the endogenous
variables, by means of looking at lagged values regarding these. If you wish to use
the current (non-lagged) values as starting values, you should use OPTION solve

data init = no;. For static models (for instance CGE models) that are simulated

over a single time period, init = no should be used.

Syntax

SIM < period FIX STATIC RES AFTER >;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

FIX Tells Gekko to enforce any goals/means stated by the ENDO/EXO
commands. It is mandatory to use SIM<fix> in such cases (if a normal

SIM is used, the goals/means are ignored).

STATIC Changes in endogenous variables are not transferred from period to
period via lags. See also the OPTION solve static = yes.

RES The SIM<res> command (residual check) performs a one-step-ahead

static single-equation simulation of the entire model, i.e. the result of
one equation does not affect other equations, nor does results of
previous periods affect following periods.

357Gekko commands

T-T Analyse

The difference between actual historical values and a static single
equation solutions are the equation residuals. Residuals are used to
measure how well the model equations forecasts historically. SIM<res>

is widely used for testing historical data against the model, or for
testing a model against a historical databank. Gekko offers
functionality to print results to files for subsequent inspection. See the
menu item 'Utilities' --> 'Check residuals…' (output is grouped
according to formula codes and/or model sections, and can be
ordered).

AFTER SIM<after> calculates three kinds of variables: (a) those designated

with a formula beginning with ‘Y’, (b) all auto-generated variables of J-
and Z-type, and (c) all table variables (variables defined after the
AFTER; or AFTER$ line in a model file).

Since Y-type variables are typically also J- and Z-variables, one can
think of SIM<after> as a way to compute all reversed J- and Z-

variables independently of the SIM command (the SIM command
computes these after simulation), in addition to computing table
variables. See the MODEL command for more on J- and Z-variables.

On a well-specified model, reading a historical databank, and issuing a
SIM<after> statement on the historical period should ideally make it

possible to simulate on the historical period and replicate the
endogenous variables.

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Examples

To increase all exogenious prices by 1% in 2011-2020, and inspect the effects on
private consumption (pcp) and wages (lna):

READ lang11;
#pm = pm01, pm2, pm3r, pm59, pm7b, pm7y, pms, pmt;
#pe = pee2, pee59, peet, peesq;
TIME 2011 2020;
{#pm} *= 1.01;
{#pe} *= 1.01;
SIM;
MULPRT pcp, lna;

The result shows the difference between the values after simulation (first-position
bank) and values in the reference databank (lang11.gbk) for the variables pcp and

lna. Here, it is assumed that lang11 already is simulated over the period 2011-20.

358 Gekko 3.0 user manual

T-T Analyse

If you need to solve goals/means, you can use the ENDO and EXO commands to
change status of exogenous and endogenous variables, and perform a SIM
afterwards. In that case, the solve method will be automatically changed to the
Newton algorithm (and changed back if the goals/means are removed).

There are many options regarding SIM: please see under OPTION (in the OPTION

solve ... section). Or type OPTION solve ?;. A single-equation static simulation

can be performed with the SIM<res> command (for instance to check historical

residuals).

If you want to change to the Newton algorithm manually, you can use OPTION solve

method = newton;. It typically runs a bit slower, but is generally much more robust

(and precise). With OPTION newton robust = yes, the Newton method activates a

remedy against illegal starting values, like the logarithm to a negative number etc.

Static simulation (one period does not affect the next period) can be obtained by
setting OPTION static = yes.

Related options

See the OPTION help page for details.

OPTION solve data create auto = yes; [yes|no]
OPTION solve data ignoremissing = no; [yes|no]
OPTION solve data init = yes; [yes|no]
OPTION solve data init growth = yes; [yes|no]
OPTION solve data init growth min = -0.02;
OPTION solve data init growth max = 0.06;
OPTION solve failsafe = no; [yes|no]
OPTION solve forward dump = no; [yes|no]
OPTION solve forward fair conv = conv1; [conv1|conv2]
OPTION solve forward fair conv1 rel = 0.0001;
OPTION solve forward fair conv1 abs = 0.0001;
OPTION solve forward fair conv2 trel = 0.0001;
OPTION solve forward fair conv2 tabs = 1.0;
OPTION solve forward fair damp = 0.0;
OPTION solve forward method = fair; [fair| nfair | none]
OPTION solve forward fair itermax = 200;
OPTION solve forward fair itermin = 10;
OPTION solve forward method = fair; [fair | nfair];
OPTION solve forward nfair conv = conv1; [conv1|conv2]
OPTION solve forward nfair conv1 rel = 0.001;
OPTION solve forward nfair conv1 abs = 0.001;
OPTION solve forward nfair conv2 trel = 0.001;
OPTION solve forward nfair conv2 tabs = 1.0;
OPTION solve forward nfair damp = 0.0;
OPTION solve forward nfair itermax = 200;

359Gekko commands

T-T Analyse

OPTION solve forward nfair itermin = 0;
OPTION solve forward nfair updatefreq = 200;
OPTION solve forward stacked horizon = 5;
OPTION solve forward terminal = const; [const|growth|none]
OPTION solve forward terminal feed = internal; [internal|external]
OPTION solve gauss conv = conv1;
OPTION solve gauss conv1 rel = 0.0001;
OPTION solve gauss conv1 abs = 0.0001;
OPTION solve gauss conv2 trel = 0.0001;
OPTION solve gauss conv2 tabs = 1.0;
OPTION solve gauss conv ignorevars = yes; [yes|no]
OPTION solve gauss damp = 0.5;
OPTION solve gauss dump = no; [yes|no]
OPTION solve gauss itermax = 200;
OPTION solve gauss itermin = 10;
OPTION solve gauss reorder = no; [yes|no]
OPTION solve method = gauss; [gauss|newton]
OPTION solve newton backtrack = yes; [yes|no]
OPTION solve newton conv abs = 0.0001;
OPTION solve newton invert = lu; [lu|iter]
OPTION solve newton itermax = 200;
OPTION solve newton robust = yes; [yes|no]
OPTION solve newton updatefreq = 15;
OPTION solve print details = no; [yes|no]
OPTION solve print iter = no; [yes|no]
OPTION solve static = no; [yes|no]

Related commands

MODEL, EXO, ENDO, READ, WRITE, CLONE, MULPRT

360 Gekko 3.0 user manual

T-T Analyse

3.76 SMOOTH

SMOOTH replaces missing values inside a timeseries with values generated by means
of a particular (user-chosen) method.

Syntax

SMOOTH <period> var1 = var2 type;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4 or %

per1 %per2+1.

var1 The new corrected variable

var2 The variable that contains missings/holes

type The type of smoothing, choose between:

· LINEAR. Linear interpolation.
· GEOMETRIC. Geometric interpolation.
· REPEAT. Repeats last known observation.
· SPLINE. Cubic splines.
· OVERLAY. Insert another series into the holes.

The methods are as follows:

LINEAR Use linear interpolation (adds a fixed amount for each period in
the hole(s)).

GEOMETRIC Use geometric interpolation (multiplies with a fixed amount for
each period in the hole(s)).

REPEAT Set the values to the last known value before the hole(s).

SPLINE Uses cubic splines to fill the hole(s).

OVERLAY Uses another timeseries to fill the hole(s).

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).

361Gekko commands

T-T Analyse

Example

For instance:

CREATE ts, ts1; //only necessary in sim-mode
ts <2002 2004> = 2, 3, 4;
ts <2008 2010> = 12, 11, 10;
tsb <2004 2008> = -1, -2, -3, -4, -5;
SMOOTH ts1 = ts LINEAR;
SMOOTH ts2 = ts GEOMETRIC;
SMOOTH ts3 = ts REPEAT;
SMOOTH ts4 = ts SPLINE;
SMOOTH ts5 = ts OVERLAY tsb;

As you can see, the timeseries ts has a hole in the middle, namely the observations

2005-2007 (inclusive). Using the SMOOTH command, these three observations are
filled out. Below, the four different interpolation methods are shown (interpolated
values in red):

 ts ts1 ts2 ts3
 ts4 ts5
 2002 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000
 2003 3.0000 3.0000 3.0000 3.0000
 3.0000 3.0000
 2004 4.0000 4.0000 4.0000 4.0000
 4.0000 4.0000
 2005 M 6.0000 5.2643 4.0000
 6.1349 -2.0000
 2006 M 8.0000 6.9282 4.0000
 8.8696 -3.0000
 2007 M 10.0000 9.1180 4.0000
 11.1694 -4.0000
 2008 12.0000 12.0000 12.0000 12.0000
 12.0000 12.0000
 2009 11.0000 11.0000 11.0000 11.0000
 11.0000 11.0000
 2010 10.0000 10.0000 10.0000 10.0000
 10.0000 10.0000

Regarding the GEOMETRIC method, note that the growth rate of ts2 is constant

(31.61%) in the three interpolated years. In this case, SPLINE provides the most
realistic hole-filling, since it takes the curvature of the ts timeseries into

consideration.

Note

362 Gekko 3.0 user manual

T-T Analyse

See the hpfilter() function regarding the smoothing of timeseries without holes.

Related options

OPTION calc ignoremissingvars = no; [yes|no]

Related commands

SPLICE

363Gekko commands

T-T Analyse

3.77 SPLICE

SPLICE is used to combine two timeseries into one.

Syntax

SPLICE var = var1 var2 ;
SPLICE var = var1 period var2 ;

var The new timeseries made from the variables on the right-hand side of
=.

var1,
var2

The two timeseries that are to be spliced into the one stated on the left-
hand side of =.

period (Optional). The period that should be used as overlap to splice the two
timeseries.

· If a variable on the right-hand side of = is stated without databank, Gekko may look

for it in the list of open databanks (if databank search is active, cf. MODE).

Example

The following example illustrates the use of SPLICE:

TIME 2002 2010;
CREATE ts1, ts2, ts0a, ts0b; //only necessary in sim-mode
ts1 <2002 2006> = 2, 3, 4, 5, 6;
ts2 <2004 2010> = 41, 42, 43, 44, 45, 46, 47;
SPLICE ts0a = ts1 ts2;
SPLICE ts0b = ts1 2006 ts2;
PRT <n> ts1, ts2, ts0a, ts0b;
PRT <p> ts1, ts2, ts0a, ts0b;

In this case, the ts1 observations up to and including 2006 are used, whereas the

observations from 2007-2010 are generated by multiplying the ts2 values with a

correction factor (so that their levels fit with the levels of ts1).

364 Gekko 3.0 user manual

T-T Analyse

In the first SPLICE, all three common observations (2004, 2005 and 2006) are used
to create the correction factor, whereas in the second SPLICE, only 2006 is used to
compute the correction factor.

Levels:

 ts1 ts2 ts0a ts0b
 2002 2.0000 M 16.8000 14.3333
 2003 3.0000 M 25.2000 21.5000
 2004 4.0000 41.0000 41.0000 28.6667
 2005 5.0000 42.0000 42.0000 35.8333
 2006 6.0000 43.0000 43.0000 43.0000
 2007 M 44.0000 44.0000 44.0000
 2008 M 45.0000 45.0000 45.0000
 2009 M 46.0000 46.0000 46.0000
 2010 M 47.0000 47.0000 47.0000

Percentage growth:

 ts1 ts2 ts0a ts0b
 2002 M M M M
 2003 50.00 M 50.00 50.00
 2004 33.33 M 62.70 33.33
 2005 25.00 2.44 2.44 25.00
 2006 20.00 2.38 2.38 20.00
 2007 M 2.33 2.33 2.33
 2008 M 2.27 2.27 2.27
 2009 M 2.22 2.22 2.22
 2010 M 2.17 2.17 2.17

Related commands

SMOOTH

365Gekko commands

T-T Analyse

3.78 STOP

The command returns from all command files immediately, returning to the command
prompt. This command can be used for debugging, if the user wishes to run a system
of command files up to a specific point, and examine the results up to that specific
point.

To stop/abort a program while it is running, you can use the red stop button in the
user interface.

Syntax

STOP ;

Example

STOP;

The similar RETURN command does not return from all command files. The EXIT
command effectively issues a STOP, and then afterwards closes the Gekko
application.

Related commands

RETURN, EXIT

366 Gekko 3.0 user manual

T-T Analyse

3.79 STRING

The STRING command is used to assign a string to a scalar variable of string type.
String names always start with the symbol %, like the other scalar types val and date.

Using the STRING keyword is no longer mandatory in Gekko 3.0.

A string can be used to refer to a variable via the {}-curlies. For instance, if %s =

'b2:x!q', the expression {%s} will refer to the variable b2:x!q (a quarterly series

with name x, taken from the b2 bank). See also the syntax diagrams.

Strings are often used as list elements, for instance #m = ('a', 'b', 'c'). In that

case, PRT #m; will print these three strings, whereas PRT {#m}; will print the series

a, b, and c.

When inserting or concatenating strings, it is best practice to use so-called string
interpolation, using {}-curlies. If %a = 'cat' and %c = 'black', it is more readable

to use 'The {%a} is {%c}' than 'The ' + %a + ' is ' + %b. This also complies

with name-composition, and hence a composed name like a{%b}c is easy to transform

into a string, just add quotes: 'a{%b}c'.

Syntax

%s = expression;
STRING %s = expression;
STRING ?; //print string scalars

It is no longer legal to use for instance STRING s = 'abc';, omitting the '%'. Also,

using {i} as short for {%i} is no longer legal either.

Strings can be added together (concatenated) with the + operator.

A string (or list of strings) representing variable names may be manipulated by
means of Gekko's inbuilt functions to handle these. Variable names here include
bank, frequency, indexes, etc., and examples of such functions could be setBank(),
removeBank(), replaceBank(), setFreq(), removeFreq(), setNamePrefix(), etc. There
are many more of such functions, see the functions section, under
‘Bank/name/frequency/index manipulations’.

For instance, if you have a list #m = ('x', 'y');, you may use PRT {#m}; to print

out x and y, PRT {#m.setBank('b')}; to print out b:x and b:y, or PRT

{#m.setFreq('q')}; to print out x!q and y!q (here, PRT b:{#m}; and PRT {#m}!q;

will work, too).

There are quite a few string functions, where strings can be combined in different
fashions.

String combining functions

367Gekko commands

T-T Analyse

Function
name

Description Examples

[x]-index Index: returns the
character at position x.
Returns: string

%s = 'abcd';
PRT %s[2]; //'b'

[x1..x2]-
index

Index: returns the range of
characters from position x1
to x2 (both inclusive). You
may omit x1 or x2.
Returns: string

%s = 'abcd';
PRT %s[2..3]; //'bc'

concat(s1,
s2)

Appends the two strings:
same as s1 + s2.
Returns: string

%s = concat('He', 'llo');
Result: 'Hello'.

endswith(s1,
s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%v = endswith('abcde',
'cde');
Returns: 1

index(s1, s2) Searches for the first
occurrence of string s2 in
string s1 and returns the
position. It returns 0 if the
string is not found. The
search is case-insensitive
Returns: val

%v = index('onetwothreetwo',
'two');
Returns: 4.
%v = index('oneTWO', 'two');
Returns: 4.

isAlpha(s) Returns 1 if all the
characters are letters
(alphabet). [New in 3.0.5].

%v = isAlpha('aBc');
Returns: 1

isLower(s) Returns 1 if the string
contains no uppercase
characters. [New in 3.0.5].

%v = isLower('abc12');
Returns: 1

isNumeric(s) Returns 1 if all the
characters are of numeric
value. [New in 3.0.5].

%v = isNumeric('123');
Returns: 1

isUpper(s) Returns 1 if the string
contains no lowercase
characters. [New in 3.0.5].

%v = isUpper('ABC12');
Returns: 1

368 Gekko 3.0 user manual

T-T Analyse

length(s) The length of the string
(number of characters).
You may use len() instead
of length().
Returns: val

%v = %s.length();

lower(s) The string in lower-case
letters.
Returns: string

%s = lower('aBcD');
Result: 'abcd'.

prefix(s1,
s2)

If s1 is a string, it has the
string s2 prefixed
(prepended).
Returns: string

%s1 = %s2.prefix('a');

replace(s1,
s2, s3)
replace(s1,
s2, s3, max)

In the string s1, the
function replaces all
occurrences of s2 with s3.
Replacement is case-
insensitive.

If max > 0, the
replacement is performed
at most max times.

Returns: string

%s = replace(%s1, %s2);
//or: replace(%s, %s1, %s2)

split(s1, s2)
split(s1, s2,
removeempt
y, strip)

Splits the string s1 by
means of the delimiter s2.
Empty elements are
removed per default, and
the resulting strings are
stripped (blanks are
removed from the start and
end of the strings). The last
two options are 1, 1 per

default (set to 0 or 1), see

examples. [New in 3.0.6]

%s = 'a, b,c,,d, , e';
#m1 = %s.split(',');
//--> ('a', 'b', 'c', 'd',
'e')
#m2 = %s.split(',', 1, 1);
//--> ('a', 'b', 'c', 'd',
'e');
#m3 = %s.split(',', 0, 1);');

//--> ('a', 'b', 'c', '',
'd', '', 'e')
#m4 = %s.split(',', 1, 0);');

//--> ('a', ' b', 'c', 'd',
' ', ' e')
#m5 = %s.split(',', 0, 0);');

//--> ('a', ' b', 'c', '',
'd', ' ', ' e')

startswith(s1
, s2)

Returns 1 if the string s1
starts with the string s2,

%s = 'abcde';
%v = s%.startswith('abc');
Returns: 1

369Gekko commands

T-T Analyse

else 0. The comparison is
case-insensitive.
Returns: val

strip(s) Removes blank characters
from the start and end of
the string.
Returns: string

%s1 = %s2.strip(); //or:
strip(%s1)

stripstart(s) Removes blank characters
from the start of the string.
Returns: string

%s1 = %s2.striptart(); //or:
stripstart(%s1, %s2)

stripend(s) Removes blank characters
from the end of the string.
Returns: string

%s1 = %s2.stripend(); //or:
stripend(%s1, %s2)

substring(s,
start,
length)

The piece of the string
between character number
start and length (these
must be integer values).

You can alternatively use a
'slice', using []-notation,
see example.

Returns: string

%s = %s1.substring(3, 2);
//or: substring(%s1, 3, 2)
%s = %s1[3 .. 5];
//a slice from pos 3 to 5
(both inclusive)

suffix(s1, s2) If s1 is a string, it has the
string s2 suffixed
(appended)
Returns: string

%s1 = %s2.suffix('a');

upper(s) The string with upper-case
letters.
Returns: string

%s = upper('aBcD'); Result:
'ABCD'.

In addition, there are some functions that fetch different kinds of meta-data (as
strings) from the system or databanks, see under functions.

Examples

Concatenation:

370 Gekko 3.0 user manual

T-T Analyse

%s1 = 'ab';
%s2 = 'cd';
%s3 = %s1 + %s2; //result: 'abcd'

You may wish to use strings to control file names.

%path = 'folderA' ;
%bank = 'prognosis' ;
READ c:\{%path}\{%bank};

Gekko supports automatic in-substitution of any expression inside {}-curlies. For
instance:

%s1 = 'b';
%s2 = 'a' + %s1 + 'c'; //result: 'abc'
%s3 = 'a{%s1}c'; //result: 'abc', easier to type and read

In general, in such cases, it is better and more readable to use {}-curlies, instead of
concatenating with +. Using {}-curlies both for name-composition (like a{%s1}b) and

string substitution (like 'a{%s1}b') makes it easy to move composed names in and

out of strings, because the syntax is the same.

The tilde (~) can be used to avoid in-substitution of {}-curlies. Tilde can also be used

to allow single quotes inside a string:

%s1 = 'blue';
%s2 = 'the' + %s1 + 'car'; //result: 'the blue car'
%s3 = 'the {%s1} car'; //result: 'the blue car'
%s4 = 'the ~{%s1} car'; //result: 'the {%s1} car'
%s5 = 'the ~'blue~' car'; //result: 'the 'blue' car'

You may put any valid Gekko expression inside the {}-braces, as long as it can be
evaluated to a string:

TIME 2020 2022;
x = 55000000;
%date = 2021;
%s1 = 'value in {%date} is {x[%date]/1e6}
M'; //result: 'value in 2021 is 55 M'
%s2 = 'value in ' + %date + ' is ' + x[%date]/1e6 + '
M'; //same, but more cumbersome to write and read

Strings are often used in loops, to loop over variables, see FOR.

If you need to convert a string to a date or value, you must convert it explicitly with
the date() and val() conversion functions, for instance:

371Gekko commands

T-T Analyse

%s1 = '2010';
%s2 = '123.45';
%d = date(%s1);
%v = val(%s1);

Note: whole lists of strings can be converted into lists of dates or values with the
dates() and vals() functions.

TELL examples

Below are some examples regarding the use of strings in the TELL command (TELL
prints the string on the screen):

%s1 = 'Value in ';
%d1 = 2010;
%s2 = ' is: ';
%v1 = 113.45;
%v2 = 10;
%s3 = %s1 + %d1 + %s2 + (%v1 + %v2);
TELL %s3;
TELL 'Value in ' + %d1 + ' is: ' + (%v1 + %v2);
TELL 'Value in {%d1} is: {%v1 + %v2}';

This will print Value in 2010 is: 123.45 three times, so the three last TELLs are

equivalent. When adding the scalars, it should be noted that scalar dates and scalar
values are automatically converted to strings when added to a string with the +

operator. So there is no need to use %s3 = %s1 + string(%d1) + %s2 + string(%

v1);.

If you need to write curly braces like {%d1} literally, preprend the symbol ~ to

indicate that Gekko should not try to in-substitute. For example:

TELL 'The scalar name is ~{%d1}';

This will print 'The scalar name is {%d1}' on the screen, and not try to evaluate the
inside of the {}-curlies. If you need to format values, you can either use the
format() function, or use global formatting of {}-curlies via OPTION string

interpolate format val = For instance. See more regarding format()

function in the Gekko functions chapter (the code '6:0.00' means a 6 character wide
field, where the number has exactly two decimals).

%v11 = 1/3; %v12 = 1/4; %v21 = 1/5; %v22 = 1/6;
TELL '{format(%v11, '6:0.00')},{format(%v12, '6:0.00')}';
TELL '{format(%v21, '6:0.00')},{format(%v22, '6:0.00')}';
//since the formatting is the same, you can use an option:

372 Gekko 3.0 user manual

T-T Analyse

OPTION string interpolate format val = '6:0.00';
TELL '{%v11},{%v12}';
TELL '{%v21},{%v22}';

// result:
// 0.33, 0.25
// 0.20, 0.17

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

If you need to convert a VAL or DATE scalar to a STRING type, use the string()
conversion function.

Gekko 3.0 will no longer in-substitute scalars outside {}-curlies, for instance the
string 'name is %name' will not work as intended (use 'name is {%name}').

Also, in Gekko 3.0 you can no longer use {s} instead of {%s} to refer to the name

corresponding to a scalar string. Obviously, using for instance x{i}{j} instead of x{%

i}{%j} inside a loop is easier on the eyes, but there are several drawbacks. See the

end of this page regarding the drawbacks.

See also the format() function and OPTION string interpolate format val = ... ;
regarding {...}-formatting of values inside strings.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

Related options

OPTION string interpolate format val = "";

Related commands

DATE, VAL

373Gekko commands

T-T Analyse

3.80 SYS

The SYS command provides access to the system shell (in Windows sometimes called
the DOS prompt). Gekko will wait until the SYS command finishes before it continues.

Syntax

SYS <MUTE> commands;

MUTE (Optional). With this option set, the system shell runs silently in
Gekko. Alternatively, the system shell output (and error messages)
is shown in the Gekko main window.

commands A string with windows system shell commands. You may use SYS
without arguments. In that case, the system shell opens up as a
separate window.

Example

The SYS command can be used for file managing:

SYS 'copy file1.txt file2.txt';

or for more complex tasks or jobs

SYS 'start /wait gnuplot p1.prg';

If you need to use a percent symbol that may look like a scalar variable, preprend the
symbol '~' to indicate that Gekko should not try to in-substitute the scalar. For
example:

SYS 'set path3 = ~%path2% \"source\"';

If ~ is not used, Gekko will complain that the scalar %path2 cannot be found.

SYS;

374 Gekko 3.0 user manual

T-T Analyse

Opens up the system shell in a separate window.

Note

Note the use of single quotes when using SYS.

Scalar variables will be in-substituted in a SYS-command, unless a '~' is prepended
before the '%'. Cf. also the TELL command.

375Gekko commands

T-T Analyse

3.81 TABLE

The TABLE command is used to call tables (.gtb files) designed in a special XML
format. This format is designed for ease of use regarding most types of tables with
the time dimension running outwards, and different variables running downwards.
Table output can be either text or html. The latter is default since it often provides
more readable output.

When a table (text or html) has been printed, you may use the 'Copy' button to copy
the cells to the clipboard, for successive pasting into e.g. a spreadsheet like Excel.
Copying the table this way includes full precision of all numbers, but formatting will
be lost.

For html tables shown in the 'Menu' tab in the Gekko window, the user may click the
link 'Transform options' to transform the data (for instance, percentage growth).

Tables can also be called from menus (see MENU).

Note that you may use scalar-variables (for instance STRINGs) inside the xml
elements. If you want to insert a scalar into a text field, enclose the scalar in {}-
curlies, for instance <txt>Table regarding the year {%year}</txt>.

Note: You may use the in-built XML Notepad editor to edit the .gtb file, cf. the XEDIT
command.

Syntax

TABLE < period operator HTML WINDOW=main > tablename ;

period (Optional). Time period.

operator (Optional). Can be m for multiplier or r for Ref databank. The m code

works as if two tables were subtracted, one made with no operator
('Work'), and one made with r operator (Ref). No other codes are
possible at the moment (operator n can also be used, but is the same

as omitting an operator).

HTML (Optional). If html is indicated, the table will be printed in html

format, instead of in text format. It will be shown in the 'Menu' tab
(unless the WINDOW=main option is active).

WINDOW
=

(Optional). If WINDOW=main is indicated, output will be put into the

main window, even if the table is of html type. In that case, html
codes will be printed on the screen. This can be used together with

376 Gekko 3.0 user manual

T-T Analyse

PIPE<html>, in order to insert a html table inside a html file. You

may use TELL to insert other html lines into the html file.

tablenam
e

Name of the table to be printed (extension .gtb can be omitted)

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

The Gekko table system can be used in two ways: either via a simple XML syntax to
describe the appearance of the tables, or via a more matrix-like syntax where the
tables' elements are assigned one by one (like filling in a matrix). For most tables
with time running horizontally and variables vertically, the XML syntax is much
easier to use.

Example:

Table printed: 30-04-2018 14:53:30

| Table 1. Supply balance, Million DKK, current prices
 |

+--
-
| | 2005 2006 2007 2008
 2009 2010 |

+--
-
| GDP Y | 1554520 1605530 1676300 1734800
 1796410 1849360 |
| Imports M | 674748 716544 748044 771898
 802542 806695 |
| Total (Y+M) Yst | 2229270 2322080 2424340 2506700
2598950 2656050
+--
-

In this table (shown in text format), there is a column with descriptions ('GDP' etc.),
followed by a column with variable names ('Y' etc.). The table can easily be
constructed by means of XML syntax. The XML tables use syntax that resemble the
way tables are made in HTML syntax, specifically the use of the colspan attribute to

merge cells horizontally. Data-columns (for instance the period 2005-10 above) are
conceptually treated as a single (expandable) column, and formatting can be set on
many levels.

To start out with a concrete example, the above table was constructed by means of
the following code:

377Gekko commands

T-T Analyse

<?xml version="1.0" encoding="Windows-1252"?>
<gekkotable>
 <tableversion>1.0</tableversion>
 <table varformat="f9.0">
 <cols>
 <colborder/>
 <col txtalign="left"></col>
 <col txtalign="right"/>
 <colborder/>
 <col type="expand" txtalign="center"/>
 <colborder/>
 </cols>
 <rows>
 <rowborder/>
 <row>
 <txt colspan="3">Table 1. Supply balance, Million DKK,
current prices</txt>
 </row>
 <rowborder/>
 <row>
 <txt/>
 <txt/>
 <date/>
 </row>
 <rowborder/>
 <row>
 <txt>GDP</txt>
 <txt>$</txt>
 <var>Y</var>
 </row>
 <row>
 <txt>Imports</txt>
 <txt>$</txt>
 <var>M</var>
 </row>
 <row>
 <txt>Samlet tilgang (Y+M)</txt>
 <txt>$</txt>
 <var>Yst</var>
 </row>
 <rowborder/>
 </rows>
 </table>
</gekkotable>

Inside the <table> tag (where the real defining of the table begins), the columns are

first defined inside the <cols> tag. You may visualize the above table as the following

3-column table:

 ========== | ====== | ========
 COL1 | COL2 | COL3
 ========== | ====== | ========
 | |

378 Gekko 3.0 user manual

T-T Analyse

| Heading spanning 3 columns.... |
-----------------------+-----------
| | Periods |
-----------------------+-----------
Description1 var1	Data
Description2 var2	Data
Description2 var3	Data
-----------------------+-----------

In the XML defintion above, inside the <cols> tag, the columns are defined. First

there is a <colborder>, corresponding to the left table border. Next there is a <col>

tag, with default text alignment set to left, followed by a similar tag with text

alignment set to right. These correspond to the "description" and "variable name"

columns in the table. Next, there is a <colborder> to separate descriptions/variable

names from the data, followed by a <col> of type expand. This column is expandable,

and expands into as many columns as there are time periods. The <cols> definitions

end with a <colborder>, corresponding to the right table border.

Regarding the <rows>, these are given one by one by means of <row> tags. Each

<row> expects 3 items, since there are 3 columns defined in the <cols> section. The

first item in <rows> is a <rowborder>, however, so these are added analogously to

the <colborders> under the <cols> tag. The first <rowborder> corresponds to the

top table border, and the next item is a <row> with a <txt> item inside. The <txt>

spans all 3 colums, so the vertical border between column 2 and 3 will be hidden in
this row. Next, there is a <rowboarder>, and then the date row begins. This row is

filled with two empty <txt> items (think of these ase placeholders), and then a

<date> tag corresponding to the third column. This puts dates corresponding to the

time period into this section of the table. Afterwards, there is a <rowborder>.

Next is variables, and these are given by means of two <txt> tags and one <var>

tag. The <txt> tags put text into the description and variable name fields, and the

<var> tag identifies the variable (or expression) to print out. So we have these tags

regarding the first variable row:

<txt>GDP</txt>
<txt>$</txt>
<var>Y</var>

The $ is a special code implying that this piece of text is to be taken from the

following <var> field. The text could alternatively have been given by means of

<txt>Y</txt>, but this way of doing it would produce a lot of duplicate variable

names in the file. To avoid duplication (and reduce the error rate when editing
variable names), it is convenient to use the $-codes. The two next rows are added in

a similar fashion, and finally a <rowborder> tag concludes the table.

It should be noted that there are three different item types: <txt>, <var> and

<date>. These are formatted differently, and to format them you may use attributes

379Gekko commands

T-T Analyse

corresponding to the type, for instance varformat, varalign, or txtalign. Such

attributes are inherited, and can be put on different levels of the table, more
specifically on the following tags (in that order):

· in <table> (applies to the whole table).

· in <col> (applies to the specific column>.

· in <rowformat> (applies to all following rows, until next <rowformat> overrides it).

· in <row> (applies to the specific row)

· or in the element itself (for instance in the <txt> or <var> tags).

For instance, in the example there is the following format given: <table

varformat="f9.0"> .This applies to the whole table (since there are no other

varformats in the table), and it means that variables are to be written with a width

of 9 characters, and without any decimals. Lower level formats override higher levels,
so for instance a specific row might be formatted differently. For instance <row

varformat="f9.2"> could be used if that particular row were a percent change,

where two decimals might be the most desirable format.

Regarding borders, parts of these can be hidden in different ways. The easiest way is
to use column spanning, as in the example above. Since the table heading ("Table

1. Supply balance") spans three columns, the inner vertical border after the

second column is not shown. To remove all vertical borders for a particular row (or
successive rows), you may use the tag <colborderhide> inside the <rows> tag. This

will remove all vertical borders for the following rows, until a <colbordershow> is set.

To remove only specific borders, you may use
<colboderhide>inner<colborderhide>, or <colboderhide>outer<colborderhide>

(this hides inner or outer borders). You may also indicate the borders to remove by
means of a comma-separated list of integers: <colboderhide>1,2<colborderhide>.

This will hide the first and second vertical borders.

List of different tags and attributes

In general, the tags (for instance <txt>) can be thought of as contaning data,

whereas the attributes (for instance txtalign="left") can be thought of as

containing formatting. So the tags, or more precisely the elements inside the tags
(for instance the element GDP in <txt>GDP</txt>) can be thought of as the content

of the table, whereas the attributes describe how the content is formatted/shown.

Tags:

· <col>: defines a column: set attribute type="expand" for data columns. You may

define a special kind of column showing only one (indicated) period.
· <colborder>: defines a vertical border separating columns

· <colborderhide>: hides vertical borders, content can be "inner", "outer", or list

of integers
· <colbordershow>: shows vertical borders (if some of them have been hidden)

· <cols>: inside this tag, columns are defined one by one, including their type, and

any borders separating them
· <row>: indicates a new row, content is defined inside the <row>

· <rowborder>: indicates a horizontal border

380 Gekko 3.0 user manual

T-T Analyse

· <rowformat>: sets format that is to apply to all rows until next <rowformat>

· <rows>: inside this tag, rows are defined one by one, including horizontal borders

etc.
· <subcolborder>: is used to show (grey) borders between columns inside a time

period. This tag is set inside a <col> tag. Example: <subcolborder period="%

per1"/> or <subcolborder period="2030"/>.

Attributes:

· colspan (example: colspan="2"), used inside a <row> tag to span/merge columns.

Similar to the way cells are merged horizontally in HTML tables. Note that code like
<text colspan="3">AAA</txt> <txt>BBB</txt> would make 'BBB' appear in the

fourth column, so the <text colspan="3"> tag really represents three <txt> tags.

· datealign (left/middle/right): used inside <table>, <col>, <rowformat>, <row>,

or <date>. Horizontal alignment of dates in a <date> tag.

· period (example period="#target_year"). Used inside a <col> tag to indicate

that only that particular period is to be shown, regardless of other time settings.
Handy for a column with special kinds of indicators etc. The attribute is also used
inside <subcolborder>, to indicate the period after which a gray line is to be

inserted. Example: <col period="#target_year" txtalign="center"

varformat="f8.3"/>.

· txtalign (left/middle/right): used inside <table>, <col>, <rowformat>, <row>,

or <txt>. Horizontal alignment of text in a <txt> tag.

· type (example: type="span"): used inside a <col> tag to indicate that it is

expandable (for instance data columns). Only columns of "expand" type are

allowed to auto-expand into more columns, corresponding to the number of time
periods the table is called with.

· vardisplay (example: vardisplay="p"): used inside <table>, <col>,

<rowformat>, <row>, or <var>. Sets operator regarding <var> tag. These should be

given as Gekko operators, for instance "p" for percent growth rate, "q" for
multiplier percentage difference, "n" for levels etc (cf. the PRT/PLOT/SHEET
commands).

· varformat (example: varformat="f12.2"): used inside <table>, <col>,

<rowformat>, <row>, or <var>. Sets the print format for <var> tags. For instance,

"f12.2" means floating point, width = 12 characters, and 2 decimals. Integers (no
decimals) can be set as for instance "f12.0". If you need to round off to, for
instance, the nearest hundreds, you may use negative decimals places, for instance
varformat = "f9.-2". A number like 12345 would then be printed as 12300.

· varscale (example: varscale="0.001"): used inside <table>, <col>,

<rowformat>, <row>, or <var>. All data in the given context is scaled/multiplied by

the value given.

Editing the table

It is recommended that you use the in-built XML Notepad editor to edit the XML files,
cf. the XEDIT command (if used, choose 'View' --> 'Expand All' to unfold all XML
nodes). You may also use Notepad (cf. the EDIT command), but it is recommended to
use a specific XML editor for editing the tables. Using a simple text editor like
Notepad entails some potential problems. There will be no check that the XML syntax

381Gekko commands

T-T Analyse

is correct, e.g. that a tag like <row> is always closed by means of a corresponding

</row> tag. Also, the XML syntax represents some characters in a special way:

notably the < , >, and & characters (these should be written <, >, and &).

If the file is not in valid XML syntax, Gekko will complain that the file is invalid and
abort.Internally, when executing a XML table, the XML is translated into "normal"
Gekko code (heavily using table objects) which is then executed in the same way as a
normal command file.

Example

Call the table table1.gtb, for the annual period 2012-2016:

TABLE <2012 2016> table1;

To have it printed in HTML instead, and as multiplier differences (operator m), use:

TABLE <2012 2016 m html> table1;

To edit the .gtb file using Notepad, you may use EDIT table1.gtb;, but it is

preferable to use a dedicated xml editor, which can be called with XEDIT:

XEDIT table1.gtb;

Note

In order to copy-paste a html table to Excel, the most reliable way is to use the copy-
button in the Gekko user interface. There is an option to paste decimal separators as
commas instead of periods (OPTION interface excel decimalseparator).

Alternatively, you may right-click the html-table and paste from that menu, but that
way you will lose non-shown decimals in the table cells.

In html tables, if you hover over a number, a label will appear with full decimals.

You can use a TIMEFILTER to omit periods for a more readable table.

If a variable is missing, and if OPTION table ignoremissingvars = yes (default),

the values will be shown as missings ('M'), instead of Gekko reporting an error.

382 Gekko 3.0 user manual

T-T Analyse

Gekko will look for the table in first the working folder, and then in the folders
denoted with OPTION folder table, OPTION folder table1 and OPTION folder

table2 (in that order). If the table is called from a .html menu, the URL path of the

table call will be included too (after OPTION folder table2). So if preferred for

menu systems, you may put your table (.gtb) files next to your menu (.html) files.

The functions bankfilename() and banktime() may be used to decorate a table with
filename/date of the underlying databank.

If you need to insert blank spaces in <txt>-fields in a html table (for instance to

manually control the width of a column), you can use the special xml-code
&nbsp; (if written in a text editor like Notepad), for instance three blanks:

<txt>Gdp&nbsp;&nbsp;&nbsp;</txt>. If the code is written via XEDIT,

you should write the code as . These special codes will only work for html

tables: for txt tables they will show up as noise. For txt tables, you can just use
normal blanks, for instance: <txt>Gdp </txt>.

There is an automatic table conversion tool from the older PCIM table format to the
new XML format. See the menu: 'Utilities' --> 'Converters' --> 'PCIM converters' -->
'Convert PCIM tables...'.

Related options

OPTION folder table = [empty];
OPTION folder table1 = [empty];
OPTION folder table2 = [empty];
OPTION interface table operators = yes; [yes|no]
OPTION table decimalseparator = period; [period|comma]
OPTION table html font = Arial;
OPTION table html fontsize = 72;
OPTION table html datawidth = 5.5;
OPTION table html firstcolwidth = 5.5;
OPTION table html secondcolwidth = 5.5;
OPTION table html specialminus = no; [yes|no]
OPTION table ignoremissingvars = yes; [yes|no]
OPTION table mdateformat = '';
OPTION table stamp = yes; [yes|no]
OPTION table thousandsseparator = no; [yes|no]
OPTION table type = html; [txt|html]

Related commands

MENU, PLOT, XEDIT, EDIT

383Gekko commands

T-T Analyse

384 Gekko 3.0 user manual

T-T Analyse

3.82 TARGET

TARGET is used by the GOTO statement, to transfer execution to the point following
right after the label.

Syntax

TARGET name;

The label must be name-like, that is, alphanumeric characters including underscore
(and not starting with a digit). You can not use scalars or expressions etc. as labels.

Examples

See the GOTO help file.

Related commands

GOTO

385Gekko commands

T-T Analyse

3.83 TELL

The TELL command prints a text string in the output window. TELL will abort with an
error if the argument is not a string, which can guard against unintended errors. PRT
will also print scalar strings, but TELL is convenient for messages.

Syntax

TELL < NOCR > message ;

message (Optional). The text to print (remember single quotes). Can be an
expression that can be evaluated as a string.

NOCR (Optional). Indicates that no newline is inserted (no carriage return)

Examples

The TELL command can be used to print text strings, for instance for messages:

TELL; //blank line
TELL 'First line';
TELL 'Second line';

Use <nocr> if you need to join text:

TELL <nocr> 'The ';
TELL <nocr> 'fox is ';
TELL 'red.';

Below some examples, where scalars are inserted into the TELL statement
in different ways:

%s1 = 'Value in ';
%d1 = 2010;
%s2 = ' is: ';
%v1 = 113.45;
%v2 = 10;
%s3 = %s1 + %d1 + %s2 + (%v1 + %v2);
TELL %s3;
TELL 'Value in ' + %d1 + ' is: ' + (%v1 + %v2);
TELL 'Value in {%d1} is: {%v1 + %v2}';

386 Gekko 3.0 user manual

T-T Analyse

This will print Value in 2010 is: 123.45 three times, so the three last TELLs are

equivalent. When adding the scalars, it should be noted that scalar dates and scalar
values are automatically converted to strings when added to a string with the +

operator. So there is no need to use %s3 = %s1 + string(%d1) + %s2 + string(%

v1);.

If you need to write curly braces like {%d1} literally, preprend the symbol ~ to

indicate that Gekko should not try to in-substitute. For example:

TELL 'The scalar name is ~{%d1}';

This will print 'The scalar name is {%d1}' on the screen, and not try to evaluate the
inside of the {}-curlies. If you need to format values, you can either use the
format() function, or use global formatting of {}-curlies via OPTION string

interpolate format val = For instance. See more regarding format()

function in the Gekko functions chapter (the code '6:0.00' means a 6 character wide
field, where the number has exactly two decimals).

%v11 = 1/3; %v12 = 1/4; %v21 = 1/5; %v22 = 1/6;
TELL '{format(%v11, '6:0.00')},{format(%v12, '6:0.00')}';
TELL '{format(%v21, '6:0.00')},{format(%v22, '6:0.00')}';
//since the formatting is the same, you can use an option:
OPTION string interpolate format val = '6:0.00';
TELL '{%v11},{%v12}';
TELL '{%v21},{%v22}';

// result:
// 0.33, 0.25
// 0.20, 0.17

Related commands

DISP, PRT

387Gekko commands

T-T Analyse

3.84 TIME

The TIME command sets global time used for subsequent time series operations etc.
The command works for frequencies annual, quarterly or monthly (and undated). The
TIME command is the only way to change global time.

Syntax

TIME periods ;
TIME period ;
TIME ? ;

periods per1 per2

per1 Start period, for instance 2010 or 2010q1

per2 End period, for instance 2012 or 2012q4

period A single date that will be used as both start and end period.

? Shows the current time settings (also shown at the bottom of the main
window)

Example

If you only want to consider the year 2010, write:

TIME 2010 2010 ;
TIME 2010; //equivalent

If you want to use the period 1980 to 2010, write:

TIME 1980 2010;

Commands like SERIES, PRT etc. respect global time if no time period is indicated in
the local <>-option field. In all the relevant commands (i.e. all commands operating
on time series), a local time period can be set inside the <> brackets, operating on
only the particular command line.

Global frequency is altered this way (here to quarterly):

388 Gekko 3.0 user manual

T-T Analyse

OPTION freq q;

This sets the frequency to quarterly ('m' for monthly, 'a' for annual, 'u' for undated).
If quarterly frequency is chosen, time periods are given as:

TIME 2000q2 2005q4;

That is, from second quarter of 2000 to fourth quarter of 2005 (both inclusive).
Months work similarly, for instance:

TIME 2000m2 2005m12;

This syntax regarding quarters and months can be used wherever it is relevant, for
instance in the PRT command:

PRT <2000m2 2005m12> fy, enl;

When the frequency is quarterly or monthly, you can still denote the time period by
means of integers (i.e. years). In that case, the full span of the sub-period is
assumed: for instance with quarterly frequency set, PRT <2010 2012> would be

equivalent to PRT <2010q1 2012q4>, and TIME 2010 2012 would be equivalent to

TIME 2010q1 2012q4.

Note: if the frequency is quarterly, the following TIME statement

TIME 2010;

will span 2010q1 to 2010q4, that is, the statement covers all the subperiods.

Note

With annual frequency, if you write a number small enough, Gekko assumes that you
intend to add 1900 to the number. So Gekko tranlates 95 into 1995 for instance.
Actually, in this way, you may write 125 instead of 2025, although this way of writing
is not recommended.

Timeseries may be converted from one frequency to another by means of the
COLLAPSE and INTERPOLATE comands.

389Gekko commands

T-T Analyse

The TIMEFILTER command may omit observations when printing etc., but can also be
used to average the non-shown periods into the shown periods. This can be practical
for timeperiods with many observations.

Local time periods like PRT<2010 2015>x; do not allow the use of a single period, like

PRT<2010>x;. A series statement can omit the 'SERIES' but keep the local time

period, for instance:

x <2020m1 2025m12> = 100; //same as SERIES <2020m1 2025m12> x =
100;

Related commands

TIMEFILTER, COLLAPSE, BLOCK, OPTION freq = ...

390 Gekko 3.0 user manual

T-T Analyse

3.85 TIMEFILTER

TIMEFILTER does not work for other frequencies than annual in Gekko 3.0 yet. For
PRT of annual series, <filter=avg> does not yet work.

The command TIMEFILTER is used to indicate periods that are to be omitted in output
from TABLE, DISP, PRT and MULPRT. The commands PLOT, SHEET and CLIP are not
affected by the filter.

Syntax

TIMEFILTER filterperiods ;

filterperiods periods, periods, ... (note the comma)

periods singleperiod | periodlist

singleperiod Single observation

periodlist singleperiod .. singleperiod BY step (if you prefer, you may

use TO instead of .., and STEP instead of BY)

step An optional stepsize (default step: 1). Must be integer >= 1.
Omit BY step if not needed.

Examples

You may define periods like this:

TIMEFILTER 2010..2015, 2020..2030 by 5;

This results in the following:

Chosen periods: 2010, 2011, 2012, 2013, 2014, 2015, 2020, 2025,
2030
Hidden periods: 2016, 2017, 2018, 2019, 2021, 2022, 2023, 2024,
2026, 2027, 2028, 2029

391Gekko commands

T-T Analyse

So when you use for instance PRT, you will get all periods from 2010 up to and
including 2015, and then the rest of the periods up to 2030 only shown every 5 years
(2020, 2025 and 2030). A normal print will look like this:

PRT fY;

 fy [%]
 2010 1379471.0000 1.75
 2011 1431367.5000 3.76
 2012 1463109.6250 2.22
 2013 1491416.2500 1.93
 2014 1512247.3750 1.40
 2015 1534174.6250 1.45
 2020 1649068.8750 1.46
 2025 1773862.6250 1.47
 2030 1908568.7500 1.48

whereas an average-print will look like this:

PRT <filter=avg> fY;

 fY %
 2010 1379471.0000 1.75
 2011 1431367.5000 3.76
 2012 1463109.6250 2.22
 2013 1491416.2500 1.93
 2014 1512247.3750 1.40
 2015 1534174.6250 1.45
 2016-2020 1602281.9750 1.45
 2021-2025 1723167.3250 1.47
 2026-2030 1853869.9250 1.47

Here, the skipped periods are averaged into the shown periods. For the absolute level
(the fY column), a simple average is used, whereas for the percentage column, a

more complicated averaging of growth rates is performed, in order to yield consistent
average growth rates for the aggregated periods

The filter is controlled via these general options:

· OPTION timefilter type = hide; [hide|avg]
· OPTION timefilter = no;

The last options shows whether filtering is to be applied or not, whereas the first
options selects the type of filtering. These can be overridden in the PRT command, for
instance PRT<filter>, PRT<nofilter>, PRT<filter=hide>, or PRT<filter=avg>, so

that different filtering can be performed quite easily in the PRT command, without
having to change the globals options.

392 Gekko 3.0 user manual

T-T Analyse

Note

TIMEFILTER does not alter the TIME period settings. Note that this command only
affects print layout (so SIM, SERIES etc. are unaffected by TIMEFILTER settings).
When simulating for instance, out-filtered periods would never be skipped: filtering
only affects visual reporting.

You may use TO instead of .. and STEP instead of BY when indicating periods, so

2010..2020 by 2 and 2010 to 2020 step 2 are equvialent (and the latter is more

similar to the FOR loop over DATEs).

Related commands

TIME, PRT

393Gekko commands

T-T Analyse

3.86 TRANSLATE

The command translates command files (.cmd) from AREMOS or older versions of
Gekko.

· Translate from AREMOS to Gekko 3.0. Details here.
· Translate from Gekko 1.8 to Gekko 2.0. Details here.
· Translate from Gekko 2.0/2.2/2.4 to Gekko 3.0. Details here.
· Other translation: <move>, <remove> for Gekko 3.0 files.

Note that the translators are for command files (.cmd/.gcm), not model files (.frm).

The user is advised to compare the non-translated and translated files line by line,
perhaps with a file comparison utility. The translators are by no means perfect, and
should be thought of as translation guides.

Syntax

TRANSLATE < AREMOS GEKKO18 GEKKO20 > filename ;

AREMOS (Optional). Translates command files (.cmd) from AREMOS syntax.
If you prefer to omit parentheses around lists of numbers in
SERIES statements, you can use TRANSLATE<remove> to remove
these afterwards.

GEKKO18 (Optional). Translates command files (.cmd) from Gekko 1.8
syntax to Gekko 2.0 syntax. NOTE: the translator is not intended
for .frm files (model files).

GEKKO20 (Optional). Translates command files (.gcm) from Gekko
2.0/2.2/2.4 syntax to Gekko 3.0 syntax. NOTE: the translator is
not intended for .frm files (model files). If you prefer to omit
parentheses around lists of numbers in SERIES statements, you
can use TRANSLATE<remove> to remove these afterwards.

MOVE (Optional). A simple translator that moves the <>-field in
assignments (typically SERIES commands). For instance: <2010

2020> y = 100; becomes y <2010 2020> = 100;. This translator

does not touch anything else, so it is for existing 3.0 files where
the user would like to move the option fields. It will also convert
SERIES <2010 2020> y = 100; into SERIES y <2010 2020> =

100;, but not remove the SERIES command.

REMOVE (Optional). A simple translator that removes superfluous ()-
parenteses around a comma-separated list of numbers in
assignments (typically SERIES commands). For instance: y = (2,

394 Gekko 3.0 user manual

T-T Analyse

3, 4); becomes y = 2, 3, 4;. This translator does not touch

anything else, so it is for existing 3.0 files where the user would
like to remove such parentheses.

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.

The translator to Gekko 3.0 will create a new file with "_translate" added to the file
name.

Examples

To translate calc2.cmd (written in AREMOS) to calc2.gcm (Gekko 3.0 syntax), use

TRANSLATE <aremos> calc2;

Translate p.gcm (written in Gekko 2.0/2.2/2.4) to p_translate.gcm (Gekko 3.0):

TRANSLATE <gekko20> p;

The translators will do their best to come up with syntax suggestions to suit Gekko
2.0/3.0, but be warned that the resulting file may not even parse or run, or if it runs,
it may even yield the wrong results! So please use with some care. That being said,
the translators typically alleviate quite a lot of tedious editing of relatively easy code,
so that the user can concentrate on translating the more tricky parts.

Please inspect the code thoroughly afterwards, preferably with a file comparing tool.
(For instance in Total Commander: mark the two files, and use 'Files' --> 'Compare
by content' to highlight the differences).

In principle, a Gekko 1.8 program can be translated to 3.0 in two steps via the two
Gekko translators. In that case, take extra care regarding the translated result.

Related commands

RUN

395Gekko commands

T-T Analyse

3.87 TRUNCATE

TRUNCATE shortens a timeseries, so that the observations outside the given period
are discarded.

Syntax

TRUNCATE < period > variables ;

period (Optional). Local period, for instance 2010 2020, 2010q1 2020q4

or %per1 %per2+1.

variables A list of variables to truncate

· If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

· If a variable is stated without databank, the databank is assumed to be the first-
position databank.

Example

To remove all data outside the sample 1990-2010 for all variables starting with 'fx' in
the first-position databank:

TRUNCATE <1990 2010> fx*;

You may omit the period:

TRUNCATE p1, p2, p3;

In that case, the three variables are truncated according to the global time period.

Related commands

SERIES

396 Gekko 3.0 user manual

T-T Analyse

3.88 UNFIX

UNFIX works in conjunction with SIM<fix>. It removes any goals/means set with the
EXO and ENDO commands.

Syntax

UNFIX ;

Example

See the examples in the ENDO help file.

Note

Note that when ENDO and EXO are active, there is a target icon at the bottom right
in the user interface, stating the number of goals and means set. After UNFIX, this
icon disappears, since there are no more goals/means set for SIM<fix>.

Related options

OPTION model type = default; //default | gams

Related commands

ENDO, EXO, SIM

397Gekko commands

T-T Analyse

3.89 UNLOCK

UNLOCK is used to set an open databank editable.

Syntax

UNLOCK databank ;

Example

OPEN mybank;
UNLOCK mybank;

This opens up mybank in the last position on the databank list (F2), and sets it
editable (so that data inside can be changed).

Note

You may use OPEN<edit> to open an editable databank in the first position.
OPEN<edit>mybank; is actually short for OPEN<first>mybank; UNLOCK mybank;.

Related commands

LOCK, OPEN

398 Gekko 3.0 user manual

T-T Analyse

3.90 VAL

The VAL command is used to assign a numeric value to a scalar variable of value
type. Value names always start with the symbol %, like the other scalar types date

 and string. Using the VAL keyword is no longer mandatory in Gekko 3.0.

Note: the VAL type is sometimes called 'val' and sometimes 'value' in this
documentation. These two are the exact same thing. Note however that you must
use 'val' and not 'value' as type description in function and procedure definitions,
and in for loops. Note also that Gekko has no integer type: just use a VAL type.

Value scalars can be used in expressions, for instance in series or in
PRT/MULPRT/PLOT/SHEET/CLIP statements. An integer value may be used as an
annual or undated date.

Syntax

%v = expression;
VAL %v = expression;
VAL ?; //print val scalars

It is no longer legal to use for instance VAL v = 1.23;, omitting the %.

Example

You may use values as a container for fixed floating point numbers for use in your
program.

%v1 = 1.10;
%v2 = 1/(10 + %v1);
TELL '{%v1}, {%v2}';
PRT %v1, %v2;
tg = %v1 * tg;
tg <2010 2013> += (%v2, -%v2, 0.5*%v2, 0.01); //must use
parentheses when not simple numbers

When printing values and series at the same time in a PRT statement, note that
these values are held constant over any time period.

You can pick out individual timeseries observations with [] and put these into a
value:

%gdp2020 = gdp[2020];

After this, the value %gdp2020 stores the value of series gdp in 2020.

399Gekko commands

T-T Analyse

You may loop over value ranges, see FOR.

To convert dates or strings into values, you may use the val() function.

You may compose the value names if you need to, using {}-curlies:

FOR val %i = 1 to 3;
 %v{%i} = 100 * %i; //defines %v1 = 100, %v2 = 200, %v3 = 300
END;
FOR val %i = 1 to 3;
 %v = %v{%i};
 TELL 'Index {%i} has value {%v}';
END;

The result:

Index 1 has value 100
Index 2 has value 200
Index 3 has value 300

Here, the expression %v{%i} picks out the corresponding v-value. In general

however, for such use column vectors (n x 1 matrices) or lists or values are
recommended, cf. the identical example in the MATRIX section.

The following creates values from a list:

RESET;
FOR string %i = a, b, c; //or: FOR string %i = ('a', 'b', 'c');
 %{%i} = 100;
END;
MEM;

This creates value scalars %a, %b and %c, all with value 100.

Note

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

If you need to convert a date or string scalar to a avlue type, use the val()
conversion function.

You may use m() to indicate a missing value.

400 Gekko 3.0 user manual

T-T Analyse

See also the format() function and OPTION string interpolate format val = ... ;
regarding {...}-formatting of values inside strings.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

Related options

OPTION string interpolate format val = "";

Related commands

DATE, STRING, SERIES, FOR, IF

401Gekko commands

T-T Analyse

3.91 VAR

VAR is a more general version of assignment types like SERIES, VAL, DATE, STRING,
LIST, MAP and MATRIX. Such type indicators guarantee that the left-hand side of the
expressions ends up being of the indicated type. For instance:

DATE %x = 2020;

In this case, the right-hand side is actually a numeric value (it would have been a
date, if it had been stated as for instance 2020a, or 2020q3), and the DATE keyword
indicates that Gekko should try to convert the right-hand side into a date, which is
possible in this case. On the contrary,

VAR %x = 2020;

does not indicate any type on %d, so %d will end up being a value type. The same goes

for the following:

%x = 2020;

In this case, %d also ends up being a value type, too. So the VAR keyword is in a

sense superfluous, since it can always just be omitted. If there are local options
associated with the command, using VAR may look aesthetically more pleasing:

VAR <2020 2030> x = 100;

But still, the VAR may be omitted:

<2020 2030> x = 100;

If preferred, you may generally move the option field to the other side of the left-
hand side variable:

x <2020 2030> = 100;

As a last note, the following statements are equivalent:

DATE %d = 2020;
%d = date(2020);

To conclude: in most cases, the type identifier (or the VAR keyword) can just be
omitted in assignment statements (statements of the form ... = ... ;, unless the

402 Gekko 3.0 user manual

T-T Analyse

user wants to be absolutely sure of the type of a given left-hand side variable. The
following are examples of the compact way of assigning, without using type indicators
or VAR:

x = 100; //will become a series
x <2020 2030> = 100; //will become a series
%x = 'abc'; //will become a string
%x = 2.5; //will become a value
%x = 2020; //will become a value: works fine
as annual date, too
#x = (1, 2); //will become a list of values
#x = 1, 2; //allowed for simple numbers
#x = ('a', 'b'); //will become a list of strings,
"#x = a, b;" can be used too
#x = a, b; //allowed for simple strings
#x = (%x1 = 'abc', %x2 = 2.5); //will become a map
#x = [1, 2]; //will become a 1x2 matrix (row
vector)

In this appendix, variable assignment rules, including variable types, is explained in
more detail.

Related commands

 SERIES, VAL, DATE, STRING, LIST, MAP, MATRIX

403Gekko commands

T-T Analyse

3.92 WRITE

The command writes variables to a Gekko databank file (.gbk).

Syntax

WRITE < period RESPECT > filename ;
WRITE < period RESPECT > variables FILE=filename ;

period (Optional). Without a time period indicated, Gekko will write all
the data for all observations. When a period is indicated, the
written data(bank) is truncated.

RESPECT (Optional). With this option, if no period is given, the global
period is used.

variables Variables or lists (wildcards and bank indicators may be used),
and items may be separated by commas. If no variables are
given, the full first-position databank is written.

filename Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like

\gekko\myfile.gbk, or be stated without a path. Filenames

containing blanks and special characters should be put inside
quotes. See more on filenames here.

· If no period is given inside the <...> angle brackets, no time period is used.
· If a variable is stated without databank, the databank is assumed to be the first-

position databank.

There is the following equivalence between WRITE and EXPORT: WRITE =
EXPORT<all>, and the inverse: EXPORT = WRITE<respect>. If a local period is set,
WRITE and EXPORT behave in the same way.

Examples

You may write the contents of the first-position databank like this:

WRITE data;

404 Gekko 3.0 user manual

T-T Analyse

This will produce the file data.gbk, containing the first-position databank. If you only

want subset of the variables (or a subset of the time period), you may write for
instance:

WRITE<2040 2050> fy, fe, fm FILE=sim4050;

This produces the file sim4050.gbk, containing the three variables fy, fe, fm over

the period 2040-50. If practical, you may also use wild-card lists:

WRITE fx* file=fxfile;

This writes all variables starting with fX to the file fxfile.gbk. Actually WRITE **

file=databank; is equivalent to WRITE databank;, cf. the wildcards page regarding

the double star ** notation. To write a list of strings containing variable names, use

{}-curlies:

#m = fy, fe, fm; //or: #m = ('fy', 'fe', 'fm);
WRITE <2040 2050> {#m} FILE=sim4050;

Without the braces, the list #m itself would have been written, not the three series.

Note

If option folder = yes, and option folder bank is set, the WRITE statement tries

to write to that particular folder instead of the working folder.

If a model has been loaded, and all the endogenous variables of the model exist in
the first-position databank, the WRITE command will store info regarding the model,
last simulation period etc. inside the .gbk file. After this, when reading the databank
again, a link to this model info is provided. This can be practical when in doubt about
when the variables in a given databank were simulated, the simulation period, the
model name and signature, etc.

Related options

OPTION folder bank = [empty];

Related commands

READ, IMPORT, EXPORT, SHEET, MODEL

405Gekko commands

T-T Analyse

406 Gekko 3.0 user manual

T-T Analyse

3.93 X12A

The X12A (X12-arima) performs seasonal adjustment on quarterly or monthly data.
The component uses a well-known program from the US Census Bureau, and is
similar to the AREMOS command with the same name. (Later on, X13-arima-seats
and Tramo-Seats might be provided in Gekko, perhaps via the JDemetra+ project).

Syntax

X12A < period PARAM=... BANK=... > variables ;

period (Optional). If not stated, Gekko will use the global time period.

variables Variables and/or list(s). Wildcards may be used.

PARAM= A text string containing parameter values for X12A.

BANK= (Optional). A databank name indicating where the timeseries are
located.

· If no period is given inside the <...> angle brackets, the global period is used (cf.

TIME).

· If a variable without databank indication is not found in the first-position databank,

Gekko will look for it in other open databanks if databank search is active (cf.

MODE).

Gekko appends the save=(...) types with underscore in the timeseries names, for

instance y_saa for the saa type.

Example

You may try the following example:

RESET;
OPTION freq q;
CREATE y;
TIME 2000q1 2009q2;
SERIES y = 85.2, 87.2, 87.1, 87.2, 87.3, 90, 90.1, 90.4, 90.5,
92.4, 92.5, 94.7, 96.3, 98.5, 98.6, 98.5, 99.2, 99.8, 100.4, 100.5,
101.2, 102.3, 101.9, 101.7, 102.9, 103.5, 103.5, 103.5, 104.6,
104.5, 104.9, 104.9, 105.9, 106, 106, 106, 106.5, 106.7;
%p = 'save=(d10, d11, saa) mode=mult sigmalim=(1.50,2.50)

407Gekko commands

T-T Analyse

seasonalma=msr force=totals';
X12A <param = %p> y ;
PLOT y, y_saa;

Result:

Note the parameter save = (d10, d11, saa). You can choose between c17, d10,

d11, d12, d13 and saa. The last one is only available if force=totals is set as

parameter.

Note

For much more information on X12-arima, see
https://www.census.gov/ts/x12a/v03/x12adocV03.pdf

Note that the frequency must be set right, before calling the X12A command.

Please note that all the parameters are located inside a text string.

If you need to inspect the results in more detail, please inspect the tempX12aFile...

files in the temporary files folder (cf. the Gekko menu Help --> About...).

If you need more advanced seasonal correction, you may consider using the R
interface (see R_RUN). R contains quite a lot of facilities for seasonal correction.

The example can be exactly reproduced in AREMOS with this AREMOS command:

https://www.census.gov/ts/x12a/v03/x12adocV03.pdf

408 Gekko 3.0 user manual

T-T Analyse

X12A y d10,d11,saa "mode=mult sigmalim=(1.50,2.50) seasonalma=msr
force=totals print=alltables";

Related commands

COLLAPSE, SMOOTH

409Gekko commands

T-T Analyse

3.94 XEDIT

The XEDIT command uses the open-source XML Notepad xml editor to open up the
designated file. The command is practical for editing plot files (.gpt), or table files
(.gtb). In general, a xml editor is much easier to use for editing xml files than a text
editor.

Tip: use 'View' --> 'Expand All' to unfold all XML nodes for better overview. Use
Ctrl+D to duplicate a xml node (including its children nodes). The nodes are easy to
copy, delete and move areound in XML Notepad.

Syntax

XEDIT filename ;

filena
me

Filenames may be contain an absolute path like c:

\projects\gekko\myfile, a relative path like \gekko\myfile.gbk, or

be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.
The extension .gpt is automatically added, if it is missing. If the filename
is set to '*', you will be asked to choose the file in Windows Explorer.

Examples

You may use this to open up the file p.gpt from the working folder:

XEDIT p;

The .gpt extension is automatically inserted. You may select .gpt files like this:

XEDIT *;

This will open up a file dialog with .gpt files to choose from (you can choose other
extensions, too).

To edit a table file called t1.gtb, you may use:

XEDIT t1.gtb;

https://xmlnotepad.codeplex.com/

410 Gekko 3.0 user manual

T-T Analyse

Related commands

SYS, EDIT, PLOT, TABLE

411Gekko commands

T-T Analyse

Part IV

413Gekko functions

T-T Analyse

4 Gekko functions

Gekko in-built functions can be used in expressions. The input parameters and the
output type is described. The functions are divided into categories.

· Functions. Details on Gekko functions.

Note that user-defined functions are possible, too. See the FUNCTION command.

414 Gekko 3.0 user manual

T-T Analyse

4.1 Functions

Gekko has a number of in-built functions, listed below. Note that all Gekko functions
implement so-called UFCS so that a function like for instance f(x, y) can generally be
written as x.f(y), and f(x) can generally be written as x.f().

Mathematical functions:

Function
name

Description Examples

abs(x) Returns the absolute value
of x (series, val or matrix).
Returns:
series/value/matrix

%v1 = abs(%v2);

avg(x1,
x2, ...)

Returns the average of x1,
x2, ... etc. The input
parameters may be series
or value.
Returns: series/value

y = avg(x1, x2, x3);
%v = avg(%v1, %v2, %v3);

avgt(x)
avgt(<t1
t2>, x)

Returns the time-average
of the observations of the
timeseries x over the
local/global time period (or
over t1 to t2, if indicated)
Returns: series

y = avgt(x);
y = avgt(<2020 2025>, x);
y = x.avgt(<2020
2025>); //same as above

ceiling(x) Returns the the smallest
integer which is greater
than or equal to x (series,
val or matrix). See also
int(), floor() and round().
Returns:
series/value/matrix

PRT ceiling(-2.2);

dif(x) or
diff(x)

Absolute time-difference of
 series x: can also be used
on left side of '='. Does not
work on value.
Returns: series

y = dif(x);
dif(y) = 100;

dify(x) or
diffy(x)

Yearly difference. Same as
dif(x), but will use 4 lags
for quarterly data, and 12
lags for monthly data.

y = dify(x);

https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

415Gekko functions

T-T Analyse

Returns: series

dlog(x) Logarithmic time-difference
of series x: can also be
used on left side of '='.
Does not work on value.
Returns: series

y = dlog(x);
dlog(y) = 0.02;

dlogy(x) Yearly logarithmic time-
difference. Same as
dlog(x), but will use 4 lags
for quarterly data, and 12
lags for monthly data.
Returns: series

y = dlogy(x);

exp(x) Returns the exponential
value of x (series, value or
matrix).
Returns: series/value

y = exp(x);
%v1 = exp(%v2);

floor(x) Returns the largest integer
which is less than or equal
to x (series, val or matrix).
See also int(), ceiling() and
round().
Returns:
series/value/matrix

PRT floor(-2.2);

iif(in1, op,
in2, out1,
out2)

Conditional, works like an if
statement. Think of it like
IF in1 op in2 THEN out1

ELSE out2, where op is a

string containing the
operator ==, <>, <, <=, >=,

>. The function can be used

to avoid explicit time
looping for timeseries. The
op input must be a string,
and the rest of the inputs
must be of math type
(there is another iif()-
example here). You may
alternatively use $-
conditionals, see examples
under SERIES. See also the
replace() function for
series.
Returns: series/value

TIME 2010 2012;
in1 = 1, 2, 3;
in2 = 3, 2, 1;
y = iif(in1, '<=', in2, 50,
100);
Result: y = 50, 50, 100.

416 Gekko 3.0 user manual

T-T Analyse

int(x) Returns the integer value
of x (series, val or matrix),
discarding the fractional
part (after the .). See also

floor(), ceiling() and
round().
Returns:
series/value/matrix

PRT int(-2.2);

isMiss(x) If the value x is missing,

the function returns 1, else
0. Does not work if x is a

series.
Returns: value

PRT isMiss(1);
PRT isMiss(miss());

lag(x, lag) Lags series x a number of
periods. Note the sign of
the lag: lag(x, 2) = x[-2].
Can be used if x is an
expression.
Returns: series

y = lag(x, 2); //same as x[-
2]

log(x) Returns the natural
logarithmic value of x
(series, value or matrix).
Can also be used on the left
side of '='.
Returns:
series/value/matrix

y = log(x);
%v1 = log(%v2);
log(y) = a * log(b);

movavg(x1,
lags)

Moving average of series
x1.
Returns: series

y = movavg(x, 3);
y = (x + x[-1] + x[-
2])/3; //same

movsum(x1,
lags)

Moving sum of series x1, cf.
movavg().
Returns: series

y = movsum(x, 3);
y = x + x[-1] + x[-
2]; //same

pch(x) Percentage growth in series
x: can also be used on left
side of '='. Does not work
on value.
Returns: series

y = pch(x);
pch(y) = 2;

pchy(x) Yearly growth. Same as
pch(x), but will use 4 lags

y = pchy(x);

417Gekko functions

T-T Analyse

for quarterly data, and 12
lags for monthly data.
Returns: series

pow(x, y) The exponent must be a
value or number, not a
series. The function pow(x,
y) is equal to x**y or x^y,
that is, a in the y'th power.
You may use power(x, y) as
synonym.
Returns: series/value

y = pow(x1, %x2);
%v = pow(%x1, %x2);

rnorm(mean,
var)
rnorm(mean,
vcov)

Returns a random number
from a normal distribution
with mean and variance
provided. If fed with a nx1
matrix of averages, and a
nxn covariance matrix, the
function will return a nx1
matrix of values. See also
rseed() and runif().
Returns: value/matrix

%n = rnorm(0, 1);
%n = rnorm(-100, 25**2);
#n = rnorm(#mean, #vcovar);

rseed(x) Given value x, it sets a
random seed for runif() and
rnorm() functions. The
function returns the seed
as a value.
Returns: value

%v = rseed(12345);

round(x, d) Rounds x (series, val or
matrix) to d decimal places.
See also int(), floor() and
ceiling().
Returns:
series/value/matrix

%v1 = round(%v2, 3);

runif() Returns a random number
from a uniform distribution
between 0 and 1. See also
rseed() and rnorm().
Returns: value

%v = runif();

seq(start,
end)

Returns a list of integer
values or dates between
start and end (both
included). Start and end

#m = seq(1, 100);
#t = seq(2001q1, 2005q4);

418 Gekko 3.0 user manual

T-T Analyse

must be two values or two
dates.
Returns: list

sqrt(x) Returns the square root of
x (series, value or matrix).
Returns:
series/value/matrix

y = sqrt(x);
%v1 = sqrt(%v2);

sum(x1,
x2, ...)
sum(list, x)

Returns the sum of x1,
x2, ... etc. The input
parameters may be series
or value.
If the first argument is a
list name (or a list of list
names), the sum function
will sum the second
argument over these lists.
Returns: series/value

y = sum(x1, x2, x3);
%v = sum(%v1, %v2, %v3);

y = sum(#j, x[a, #j]);
y = sum((#i, #j), x[#i, #j]);
y = sum(#j, xa{#j});
y = sum((#i, #j), x{#i}{#j});

sumt(x)
sumt(<t1
t2>, x)

Returns the time-sum of
the observations of the
timeseries x over the
local/global time period (or
over t1 to t2, if indicated)
Returns: series

y = sumt(x);
y = sumt(<2020 2025>, x);
y = x.sumt(<2020
2025>); //same as above

Conversions

Function
name

Description Examples

date(x) Tries to convert the scalar x
to date type. See also
under "date combining
functions".
Returns: date

%d = date(2000+15);
Result: %d = 2015.

dates(x) Tries to convert each
element of the list x into a
date.
Returns: list

#m1 = (2001, 2002, 2003);
#m2 = dates(#m1); //or:
#m1.dates()

data(x) Converts a string x
containing blank-separated
numbers to a list of values.

#m = data('1 2 3');
x = data('1 2 3');

419Gekko functions

T-T Analyse

Returns: list of values

format(x,
code)

Formats the
value/date/string x by

means of the formatting
code. The formatting code

is as follows for values:

'[width]:
[format]' //note: no
blanks

The width specifies that the
string will be at least
[width] characters wide.

The [format] follows the

conventions shown here or
here, so you may either use
a pattern like 0.000 or

0.### (exactly three digits

or at most three digits), or
you may use a description
like F3 (floating point, three

digits). So, 12:0.000 or

12:F3 both a 12 characters

wide field, and a number
with three decimals.

If the [width] is positive,

the number is right-aligned
within the field, and if it is
negative, it is left-aligned.

You may also format strings
or dates: in that case only
the [width] is used

(positive or negative). In
this way, table-like
alignment is quite
straightforward.

See also OPTION string
interpolate format val =
... ; to set rules regarding
{...} format in strings.
Returns a string.

%v = 12.3456;
%d = 2020q1;
%s = 'abc';

tell;
tell '123456789012' + '|';
tell '------------' + '|';
tell format(%v, '0.000') +
'|';
tell format(%v, '12:0.000') +
 '|';
tell format(%d, '12') + '|';
tell format(%s, '12') + '|';
tell format(%v, '-12:0.000')
+ '|';
tell format(%d, '-12') + '|';
tell format(%s, '-12') + '|';
tell '------------' + '|';

// 123456789012|
// ------------|
// 12.346|
// 12.346|
// 2020q1|
// abc|
// 12.346 |
// 2020q1 |
// abc |
// ------------|

string(x) Tries to convert the scalar x
to string type. See also

%s = string(12) + string(34);
Result: %s = '1234'.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-numeric-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings

420 Gekko 3.0 user manual

T-T Analyse

under "string combining
functions".
If x is a list of strings, the
string() function returns a
comma-separated list of
strings.
Returns: string

strings(x) Tries to convert each
element of the list x into a
string.
Returns: list

#m1 = (1, 2, 3);
#m2 = strings(#m1); //or:
#m1.strings()

val(x) Tries to convert the scalar x
to value type.
Returns: value

%v = val('12' + '34');
Result: %v = 1234.

vals(x) Tries to convert each
element of the list x into a
value.
Returns: list

#m1 = ('1', '2', '3');
#m2 = vals(#m1); //or:
#m1.vals()

Date combining functions

Function
name

Description Examples

date(d, f,
opt)

Converts the date d into a
new date with frequency f
(string), and option opt
(string). The option can be
'start' or 'end'.

When converting from a
higher frequency to a lower
frequency, the result does
not depend upon the option
opt.

Returns: date

%d = 2020q2;
PRT %d.date('m',
'start'); //2020m4
PRT %d.date('m',
'end'); //2020m6
PRT %d.date('a',
'start'); //2020
PRT %d.date('a',
'end'); //2020

date(y, f,
sub)

Constructs a new quarterly
or monthly date from y
(integer), frequency
(string), and subperiod
(integer).

%d = date(2020, 'q',
2); //2020q2

421Gekko functions

T-T Analyse

Note: you may also use
date(x), where x can be a
value or a string, and
Gekko will try to convert
the argument into a date.

Returns: date

fromExcelDa
te(v)

Converts an Excel date (the
val v, counting the number

of days since January 1,
1900) to year, month and
day (hours etc. are not
converted). The year,
month and day are returned
as a map with the values %
y, %m, %d.

WARNING: this function will
soon return a Gekko date
instead. See also
toExcelDate(). [New in
3.0.7]

Returns: map.

See examples regarding the
toExcelDate() function.

getFreq(d) Extracts the frequency of a
date
Returns: string

%d = 2020q2;
PRT %d.getfreq(); //'q'

getMonth(d) Extracts the month number
from a date. More specific
than getSubPer(), and will
fail if the date is not
monthly.
Returns: val

%d = 2020m2;
PRT %d.getmonth(); //2

getQuarter(d
)

Extracts the quarter
number from a date. More
specific than getSubPer(),
and will fail if the date is
not quarterly.
Returns: val

%d = 2020q2;
PRT %d.getquarter(); //2

getSubPer(d
)

Extracts the sub-period
from a date (1 if annual or
undated, the quarter if
quarterly, and the month if

%d = 2020q2;
PRT %d.getsubper(); //2

422 Gekko 3.0 user manual

T-T Analyse

monthly).
Returns: val

getYear(d) Extracts the year from a
date.
Returns: val

%d = 2020q2;
PRT %d.getyear(); //2020

toExcelDate(
y, m, d)

Converts year, month and
day (integers) into an Excel
date (counting the number
of days since January 1,
1900). See also
fromExcelDate(). Excel
dates can be subtracted to
obtain days. [New in 3.0.7]

Returns: val.

%v1 = toExcelDate(2019, 11,
12);
%v2 = toExcelDate(2019, 12,
3);
PRT %v1, %v2; //43781 and
43802
PRT %v2 - %v1; //21 days in
between
#x = fromExcelDate(%v1 +
100);
//100 days from %v1: Feb. 20,
2020.
PRT #x.%y, #x.%m, #x.%d;

String combining functions

Function
name

Description Examples

[x]-index Index: returns the
character at position x.
Returns: string

%s = 'abcd';
PRT %s[2]; //'b'

[x1..x2]-
index

Index: returns the range of
characters from position x1
to x2 (both inclusive). You
may omit x1 or x2.
Returns: string

%s = 'abcd';
PRT %s[2..3]; //'bc'

concat(s1,
s2)

Appends the two strings:
same as s1 + s2.
Returns: string

%s = concat('He', 'llo');
Result: 'Hello'.

endswith(s1,
s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%v = endswith('abcde',
'cde');
Returns: 1

423Gekko functions

T-T Analyse

index(s1, s2) Searches for the first
occurrence of string s2 in
string s1 and returns the
position. It returns 0 if the
string is not found. The
search is case-insensitive
Returns: val

%v = index('onetwothreetwo',
'two');
Returns: 4.
%v = index('oneTWO', 'two');
Returns: 4.

isAlpha(s) Returns 1 if all the
characters are letters
(alphabet). [New in 3.0.5].

%v = isAlpha('aBc');
Returns: 1

isLower(s) Returns 1 if the string
contains no uppercase
characters. [New in 3.0.5].

%v = isLower('abc12');
Returns: 1

isNumeric(s) Returns 1 if all the
characters are of numeric
value. [New in 3.0.5].

%v = isNumeric('123');
Returns: 1

isUpper(s) Returns 1 if the string
contains no lowercase
characters. [New in 3.0.5].

%v = isUpper('ABC12');
Returns: 1

length(s) The length of the string
(number of characters).
You may use len() instead
of length().
Returns: val

%v = %s.length();

lower(s) The string in lower-case
letters.
Returns: string

%s = lower('aBcD');
Result: 'abcd'.

prefix(s1,
s2)

If s1 is a string, it has the
string s2 prefixed
(prepended).
Returns: string

%s1 = %s2.prefix('a');

replace(s1,
s2, s3)
replace(s1,
s2, s3, max)

In the string s1, the
function replaces all
occurrences of s2 with s3.
Replacement is case-
insensitive.

If max > 0, the
replacement is performed

%s = replace(%s1, %s2);
//or: replace(%s, %s1, %s2)

424 Gekko 3.0 user manual

T-T Analyse

at most max times.

Returns: string

split(s1, s2)
split(s1, s2,
removeempt
y, strip)

Splits the string s1 by
means of the delimiter s2.
Empty elements are
removed per default, and
the resulting strings are
stripped (blanks are
removed from the start and
end of the strings). The last
two options are 1, 1 per

default (set to 0 or 1), see

examples. [New in 3.0.6]

%s = 'a, b,c,,d, , e';
#m1 = %s.split(',');
//--> ('a', 'b', 'c', 'd',
'e')
#m2 = %s.split(',', 1, 1);
//--> ('a', 'b', 'c', 'd',
'e');
#m3 = %s.split(',', 0, 1);');

//--> ('a', 'b', 'c', '',
'd', '', 'e')
#m4 = %s.split(',', 1, 0);');

//--> ('a', ' b', 'c', 'd',
' ', ' e')
#m5 = %s.split(',', 0, 0);');

//--> ('a', ' b', 'c', '',
'd', ' ', ' e')

startswith(s1
, s2)

Returns 1 if the string s1
starts with the string s2,
else 0. The comparison is
case-insensitive.
Returns: val

%s = 'abcde';
%v = s%.startswith('abc');
Returns: 1

strip(s) Removes blank characters
from the start and end of
the string.
Returns: string

%s1 = %s2.strip(); //or:
strip(%s1)

stripstart(s) Removes blank characters
from the start of the string.
Returns: string

%s1 = %s2.striptart(); //or:
stripstart(%s1, %s2)

stripend(s) Removes blank characters
from the end of the string.
Returns: string

%s1 = %s2.stripend(); //or:
stripend(%s1, %s2)

substring(s,
start,
length)

The piece of the string
between character number
start and length (these
must be integer values).

You can alternatively use a

%s = %s1.substring(3, 2);
//or: substring(%s1, 3, 2)
%s = %s1[3 .. 5];
//a slice from pos 3 to 5
(both inclusive)

425Gekko functions

T-T Analyse

'slice', using []-notation,
see example.

Returns: string

suffix(s1, s2) If s1 is a string, it has the
string s2 suffixed
(appended)
Returns: string

%s1 = %s2.suffix('a');

upper(s) The string with upper-case
letters.
Returns: string

%s = upper('aBcD'); Result:
'ABCD'.

List functions:

Note that some of the functions assume that the lists are lists of strings. This will be
fixed regarding values and dates.

Function
name

Description Examples

[x]-index Index: picks out a single
element. In contrast to R,
this does not return a 1-
element list containing the
variable. If you need that,
use for instance #m[3..3].
Returns: var

#m[3]; //the third element

[x1..x2]-
index

Index: picks out a range of
elements. You may omit x1
or x2.
Returns: list

#m[3..5]; //the third to
fifth elements

[x1, x2]-
index

For a nested list of lists,
#m[3, 5] will return the

same element as #m[3][5],

so this is just convenience
to make a nested list
accessible like a matrix. See
more here.
Returns: variable

[New in 3.0.6].

#m = ((1, 2), (3, 4));
PRT #m[2, 1], #m[2]
[1]; //same

426 Gekko 3.0 user manual

T-T Analyse

[x1..y1,
x2..y2]-
index
[x1..y1, x2]-
index
[x1, x2..y2]-
index

For a nested list of lists,
#m[2..3, 2..4] will select

the given 'rows" and
"columns", corresponding to
selecting a submatrix from
a matrix. Beware that in
general, #m[2..3, 2..4] is

completely different from
#m[2..3][2..4]. See more

here.
Returns: list
[New in 3.0.6].

// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
#m = ((1, 2, 3), (4, 5, 6),
(7, 8, 9), (10, 11, 12));
PRT #m[2, 2..3];
PRT #m[2][2..3]; //same as
above
PRT #m[2..4, 2]; //matrix-
like selection
PRT #m[2..4][2]; //different
from above!
PRT #m[2..4, 2..3]; //matrix-
like selection
PRT #m[2..4]
[2..3]; //different from
above!

append(x1,
x2)
append(x1,
i, x2)

Adds variable x2 as it is at
the end of list x1. Note that
if x2 is a list of for instance
3 items, only 1 element is
added (the list itself). If you
need to add the 3 elements
individually, use extend().

If used with i argument, x2
is inserted at index i,
instead of at the end. See
also extend().

To prepend, use append(x1,
1, x2).

Returns: list

#y = #x1.append(#x2); //or:
append(#x1, #x2)
#y = #x1.append(2,
#x2); //insert at position 2

contains(x1,
x2)

Checks if the list of strings
x1 contains the string x2.
Returns 1 if true, 0
otherwise. You may
alternatively use x2 in x1,

see the last example. See
also the count() and index()
functions. The comparisons
are case-insensitive.
Returns: val

%v = #x1.contains(%s);
if(#x1.contains(%s) == 1);
tell 'yes'; end;
if(%s in #x1); tell 'yes';
end;

427Gekko functions

T-T Analyse

count(x1,
x2)

Counts the number of times
the string x2 is present in
the list of strings x1. See
also the contains() and
index() functions.

Note: to obtain the number
of elements in a list, use
the length() function. The
comparisons are case-
insensitive.

Returns: val

%v = #x1.count(%s); //or:
count(#x1, %s)

data(x) Accepts a string of blank-
separated values x and
turns them into a list of
values. This is handy for
long sequences of blank-
separated numbers, instead
of manually setting the
commas.
Returns: list

#m = data('1.0 2.0 1.5');

dates(x) Tries to convert each
element of the list x to a
date.
Returns: list

#y = dates(#x);

except(x1,
x2)

The except() function
subtracts x2 from x1. You
may alternatively use the
operator -. Only works for

lists of strings. See also
intersect() and union().

Was called difference() in
Gekko 2.0. See also
extend().

Returns: list

#y = #x1.except(#x2); //or:
except(#x1, #x2)
#y = #x1 - #x2; //same

#y -= #x1; //subtract from
itself

extend(x1,
x2)
extend(x1, i,
x2)

The arguments x1 and x2
must be lists. The function
inserts the elements of list
x2 one by one at the end of
(or at position i in) the list

#y = #x1.extend(#x2); //or:
extend(#x1, #x2)
#y = #x1 + #x2; //same as
above
#y = #x1.extend(2,
#x2); //insert at position 2

428 Gekko 3.0 user manual

T-T Analyse

x1.

For two lists x1 and x2, you
may alternatively use the +

operator. See also except()
and append().

To pre-extend, use
extend(x1, 1, x2).

Returns: list

#y += #x1; //add to itself

flatten(x) For at list x, the function
returns a flattened version
of the list. For instance, the
list (1, (2, 3)) is

transformed into a non-
recursive list of non-list
elements: (1, 2, 3).

Returns: list

#m1 = (1, (2, 3));
#m2 = #m1.flatten(); //or:
flatten(#m1).

index(x1,
x2)

Returns the index of the
first occurrence of the
string x2 in the list of
strings x1. Returns 0 if x2
is not found in x1. See also
the count() and contains()
functions. The comparisons
are case-insensitive.
Returns: val

%i = #x1.index(%s); //or:
index(#x1, %s)

intersect(x1,
x2)

The intersect() function
finds the common elements
of the two list of strings x1
and x2. You may
alternatively use the
operator &&. Only works for

lists of strings. See also
except() and union().
Returns: list

#y =
#x1.intersect(#x2); //or:
intersect(#x1, #x2)
#y = #x1 && #x2;

length(x) Returns the number of
elements in the list x. You
may use len() instead of
length().
Returns: val

%v = #x.length(); //or:
length(#x).
%v = #x.len(); //the same

429Gekko functions

T-T Analyse

list(x1,
x2, ...)

Returns a list of the
variables x1, x2, etc. The
function is handy for lists
with only 0 or 1 elements.
See examples.
Returns: list

#m = (); //will fail
#m = list(); //ok: empty
list
#m = (1, 2); //easy
#m = (1); //will fail
#m = (1,); //is ok
#m = list(1); //is ok

lower(x) Returns string elements in
the list as lower-case.
Returns: list

#y = #x1.lower(); //or:
lower(#x1)

pop(x1, i)
pop(x1)

Removes the element at
position i in the list x1.
Removes the last element if
called with pop(x).
Returns: list

#y = #x1.pop(2); //or:
pop(#x1, 2)
#y = #x1.pop(); //last
element
#y = #x1.pop(1); //first
element

preextend(x
1, x2)

Same as extend(x1, 1, x2),
putting the elements of x2
in the first position of x1.

#y =
#x1.preextend(#x2); //insert
at position 1

prefix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 prefixed (prepended)
Returns: list

#y = #x1.prefix(%s); //or:
prefix(#x1, %s);

prepend(x1,
x2)

Same as append(x1, 1, x2),
putting x2 in the first
position of x1.

#y =
#x1.prepend(#x2); //insert
at position 1

sort(x) Returns a sorted list of
strings, provided that x is a
list of strings. Sorting is
case-insensitive.
Returns: list

#y = #x.sort(); //or:
sort(#x)

remove(x1,
x2)

Removes any string x2 from
the list of strings x1. See
also the except() function.
Returns: list

#y = #x1.remove(%s); //or:
remove(#x1, %s);

replace(x1,
x2, x3)
replaceinside
(x1, x2, x3)
replaceinside
(x1, x2, x3,

replace(): In the list of
strings x1, if this string
element is the same as x2,
x3 is inserted instead.

replaceinside(): the string

#y = #x1.replace(%x2, %
x3); //or: replace(#x1, %x2,
%x3)

#y = #x1.replaceinside(%x2, %
x3); //or: replace(#x1, %x2,
%x3, 'inside')

430 Gekko 3.0 user manual

T-T Analyse

max) element has any occurences
of x2 inside the string
replaced with x3. The
replacements may be
limited via the max
argument.

Returns: list

reverse(x) To be done

split(x, s) To be done

strings(x) Tries to convert each
element of the list x to a
string
Returns: list

#y = strings(#x);

suffix(x1,
x2)

If x1 is a list of strings,
each element has the string
x2 suffixed (appended)
Returns: list

#y = #x1.suffix(%s); //or:
suffix(#x1, %s);

t(x) For a nested list of lists, the
t() function returns the
transpose, similar to
transposing a matrix. [New
in 3.0.6].
Returns: list (of lists)

#m = ((1, 2), (3, 4));
p #m, t(#m);

union(x1,
x2)

The union() function adds
the two lists (only adds
unique elements in x2 that
are not in x1), or you may
use the operator ||.

Alternatively, you may use
x + y, but that may

introduce dublets. Only
works for lists of strings.
See also except() and
intersect().
Returns: list

#y = #x1.union(#x2); //or:
union(#x1, #x2)
#y = #x1 || #x2;

unique(x1) Retains only those elements
of list x1 that are unique
(list of strings only).
Returns: list

#y = #x1.unique(); //or:
unique(#x1)

431Gekko functions

T-T Analyse

upper(x) Returns string elements in
the list as upper-case.
Returns: list

#y = #x1.upper(); //or:
upper(#x1)

vals(x) Tries to convert each
element of the list x to a
value
Returns: list

#y = vals(#x);

Bank/name/frequency/index manipulations

Function
name

Description Examples

addBank(x,
bank)

If x does not have a
bankname, a bankname is
added. The input x may be
string or list.
Returns: string or list

%name = addBank('x!q', 'b2');
Result: 'b2:x!q'

addFreq(x,
freq)

If x does not have a freq, a
freq is added. The input x
may be string or list.
Returns: string or list

%name = addFreq('x', 'q');
Result: 'x!q'

getBank(x) Returns the bank part of x.
The input x may be series,
string or list.
Returns: string or list

%bank = getBank('b2:x!q');
Result: 'b2'

getFreq(x) Returns the freq part of x.
The input x may be series,
string or list.
Returns: string or list

%bank = getFreq('b2:x!q');
Result: 'q'

getFullName
(bank,
name, freq)

Returns the full name
corresponding to the input,
where bank, name and freq
are strings.
Returns: string

%name = getFullName('b2',
'x', 'q');
Result: 'b2:x!q'

getFullName
(bank,

Returns the full name
corresponding to the input,
where bank, name and freq

%name = getFullName('b2',
'x', 'q', ('a', 'b'));
Result: 'b2:x!q[a,b]'

432 Gekko 3.0 user manual

T-T Analyse

name, freq,
index)

are strings, and index is a
list (of strings)
Returns: string

getIndex(x) Returns the index part of x.
The input x may be string
or list.
Returns: list

#index = getIndex('b2:x!q[a,
b]');
Result: ('a', 'b')
If the input is a list, the
output will be a list of
lists.

getName(x) Returns the name part of x.
The input x may be series,
string or list.
Returns: string or list

%name = getName('b2:x!q');
Result: 'x'

getNameAnd
Freq(x)

Returns the name part of x.
The input x may be series,
string or list.
Returns: string or list

%name =
getNameAndFreq('b2:x!q');
Result: 'x!q'

removeBank
(x)

Removes any bank in x.
The input x may be string
or list.
Returns: string or list

%name = removeBank('b2:x!q');
Result: 'x!q'

removeBank
(x, bank)

Removes any banks in x
with the indicated
bankname. The input x
may be string or list.
Returns: string or list

%name = removeBank('b2:x!q',
'b2');
Result: 'x!q'
%name = removeBank('b3:x!q',
'b2');
Result: 'b2:x!q'

removeFreq(
x)

Removes any freq in x. The
input x may be string or
list.
Returns: string or list

%name = removeFreq('b2:x!q');
Result: 'b2:x'

removeFreq(
x, freq)

Removes any freq in x with
the indicated freqname.
The input x may be string
or list.
Returns: string or list

%name = removeFreq('b2:x!q',
'q');
Result: 'b2:x'
%name = removeFreq('b3:x!q',
'm');
Result: 'b2:x!q'

removeIndex
(x)

Removes any index in x.
The input x may be string
or list.
Returns: string or list

%name =
removeIndex('b2:x!q[a, b]');
Result: 'b2:x!q'

433Gekko functions

T-T Analyse

replaceBank(
x, b1, b2)

Replaces any banks in x
having name b1 with name
b2. The input x may be
string or list.
Returns: string or list

%name = replaceBank('b2:x!q',
 'b2', 'b3');
Result: 'b3:x!q'
%name = replaceBank('b2:x!q',
 'b3', 'b4');
Result: 'b2:x!q'

replaceFreq(
x, f1, f2)

Replaces any freq in x
having freq b1 with freq
b2. The input x may be
string or list.
Returns: string or list

%name = replaceFreq('b2:x!q',
 'q', 'm');
Result: 'b3:x!m'
%name = replaceFreq('b2:x!q',
 'm', 'a');
Result: 'b3:x!q'

setBank(x,
bank)

The indicated bankname is
set, even if it exists
already. The input x may
be string or list.
Returns: string or list

%name = setBank('b3:x!q',
'b2');
Result: 'b2:x!q'

setFreq(x,
freq)

The indicated freq is set,
even if it exists already.
The input x may be string
or list.
Returns: string or list

%name = setFreq('b2:x!q',
'm');
Result: 'b2:x1!m'

setName(x,
name)

The indicated name is set.
The input x may be string
or list.
Returns: string or list

%name = setName('b2:x!q',
'y');
Result: 'b2:y!m'

setNamePref
ix(x, p)

The name of x has prefix p
added.The input x may be
string or list.
Returns: string or list

%name =
setNamePrefix('b2:x!q', 'a');
Result: 'b2:ax!m'

setNameSuff
ix(x, s)

The name of x has suffix s
added.The input x may be
string or list.
Returns: string or list

%name =
setNameSuffix('b2:x!q', 'b');
Result: 'b2:xb!m'

Timeseries functions

Function
name

Description Examples

434 Gekko 3.0 user manual

T-T Analyse

getdomains(
x)

Returns a list of strings
containing the domains for
each dimension of the
array-series x. Returns an
empty list if there are no
domains given.
Returns: list

#d = getdomains(x); //or: #d =
x.getdomains();

hpfilter(x,
lambda)
hpfilter(<t1
t2>, lambda)
hpfilter(x,
lambda, log)
hpfilter(<t1
t2> x,
lambda, log)

Returns a HP-filtered
version of series x. Lambda
is normally 6.25 for
annual, 1600 for quarterly,
and 129600 for monthly
series. An additional
argument 0 or 1 may be
added (1 if log-transforms
are to be used inside the
calculation). Time period
may be indicated with t1-
t2.
Returns: series

y = hpfilter(x, 6.25);
y = hpfilter(x, 6.25,
1); //log-transforms
y = hpfilter(<1970 2015>, x,
6.25);
y = x.hpfilter(<1970 2015>,
6.25); //alternative syntax

laspchain
(plist, qlist,
t)
laspchain(<t
1 t2>, plist,
qlist, t)

Laspeyres chain index.
Calculates a map
containing two series p and

q (price and quantity) from

a list of prices and a
corresponding list of
quantities, setting p = 1 in

period t (t is a date). See
also the bottom of the LIST
help page. A period can be
indicated in the <t1 t2>
field.
Returns: map

#p = p1, p2; //prices
#q = q1, q2; //quantities
#m = laspchain(#p, #x,
2000); //#m is a map
PRT #m.p, #m.q;

Or in one command (only the
quantity printed):
PRT laspchain(('p1', 'p2'),
('q1', 'q2'), 2000).q;

#m = laspchain(<1980 2020>,
#p, #x, 2000); //with period

laspfixed
(plist, qlist,
t)
laspfixed(<t1
t2>, plist,
qlist, t)

Laspeyres fixed-price
index. As laspchain(), but
with fixed prices.
Returns: map

//See example regarding
laspchain()

percentile(x,
%v)

Computes the %v
percentile for the series x,
for the global time period.
Any missing values within
that sample are ignored.

%z = percentile(y, 0.25);
%z = percentile(y, 0.50);

435Gekko functions

T-T Analyse

Setting %v = 0.5 results in
the median.
Returns: val

replace(x,
v1, v2)

For the series x, the
function replaces the value
v1 with the value v2, over
the given sample.

See also iif() and the $-
conditional.

Returns: series

TIME 2001 2003;
x = (1, m(), 3); //m() is
missing value
//result is (1, 0, 3):
y = x.replace(m(), 0); //or:
replace(x, m(), 0)
//the replacement is done for
the sample:
<2000 2004> z = x.replace(m(),
0);
//result is (0, 1, 0, 3, 0)

rotate(x, d) Transforms the array-
series x to a new array-
series, where the time
dimension and dimension
number d swap places.
For instance, the array-
series pop may contain
subseries for each age
group 0 to 100, that is,
pop['0'], pop['1'], ... ,
pop[100']. These 101
subseries are all defined
over a time period, say
2020-2050. Then profile =
rotate(pop, 1) will be a
new array-series
containing subseries for
each time period 2020 to
2050, that is,
profile['2020'],
profile['2021'], ... ,
profile['2050']. These 31
subseries are all defined
over an undated time
period 0 to 100,
corresponding to the age
dimension. Hence, PLOT
<0u 100u>

profile['2020']; will plot

the age profile of the
population in the year
2020.
Returns: series

//pop is a 1-dimensional
array-series
//with ages 0-100 in its
dimension.
//note: 'u' indicates undated
frequency

profile!u = rotate(pop, 1);
#t = ('2020', '2030', '2040',
'2050');
plot <0u 100u> profile!u[#t];

436 Gekko 3.0 user manual

T-T Analyse

series(freq,
n)

Constructs a series or
array-series of the given
frequency and with the
given dimensions (n). You
can skip some of these
options, see examples.
Returns: series

x = series('q',
3); //quarterly array-series,
3-dim
x = series('q'); //quarterly
normal series
x = series(3); //3-dim array-
series with current frequency
x = series(); //normal series
with current frequency

y = series(1);
y['a'] = 100; //or: y[a] =
...

setdomains(x
, d)

Sets a list of strings (d)
containing the domains for
each dimension.
Returns: nothing

#d = ('#b', '#x');
setdomains(x, #d); //or:
x.setdomains(#d);

timeless(freq
, v)

Constructs a timeless
series of the given
frequency, to value v. You
can skip some of these
options, see examples.

In many cases, you can
just use a value scalar with
the same functionality. But
timeless series can be
practical, for instance they
can be used as array-
series.

Returns: series

x = timeless('q',
3); //quarterly timeless
series, with value = 3.
x =
timeless('q'); //quarterly
timeless series, no value set.
x = timeless(3); //timeless
series with current frequency,
with value = 3.
x = timeless(); //timeless
series with current frequency,
no value set.

y = series(1);
y['a'] = timeless(100); //or:
y[a] = ...

Time, databank and timeseries info

Function
name

Description Examples

bankfilenam
e(s)
bankfilenam
e(s, p)

Return the filename of the
s databank, where s is a
string. Can include path.
Returns: string

%s1 = bankfilename('work');
%s1 = bankfilename('work',
'fullpath'); //with path

437Gekko functions

T-T Analyse

bankname(s) Returns the name of the
bank. Input can be the
string 'first' or 'ref', or a val
designating the number in
the databank list.
Returns: string

%b1 = bankname('first');
%b0 = bankname('ref');
%b2 = bankname(2);

banktime(s) Return the time stamp of
the s databank, where s is
a string.
Returns: string

%s1 = banktime('work');

currentDateT
ime()

Returns current date and
time.
Returns: string

%s = currentDateTime();
//Returns: '15-09-2014
12:34:58' (for instance).
TELL currentDateTime();

currentDate(
)

Returns current date.
Returns: string

%s = currentDate();
//Returns: '15-09-2014' (for
instance).

currentDay() Returns the current day.
[New in 3.0.5].
Returns: val

%v = currentDay();

currentFolde
r()

Returns the current
working folder (cf. OPTION

folder working = ...).

[New in 3.0.6].
Returns string.

%s = currentFolder();

currentFreq(
)

Returns the current
frequency, for instance 'a',
'q', 'm' or 'u'.
Returns: string

%s = currentFreq();
//Returns: 'a' (depending upon
frequency setting, cf. option
freq).

currentHour(
)

Returns the current hour.
[New in 3.0.5].
Returns: val

%v = currentHour();

currentMinut
e()

Returns the current
minute. [New in 3.0.5].
Returns: val

%v = currentMinute();

currentMont
h()

Returns the current month.
[New in 3.0.5].
Returns: val

%v = currentMonth();

438 Gekko 3.0 user manual

T-T Analyse

currentPerSt
art()

Returns the start of the
global time period.
Returns: date

%s = currentPerStart();
//Returns: 2012q1 (for
instance).

currentPerEn
d()

Returns the end of the
global time period.
Returns: date

%s = currentPerStart();
//Returns: 2015q4 (for
instance).

currentSecon
d()

Returns the current
second. [New in 3.0.5].
Returns: val

%v = currentSecond();

currentTime(
)

Returns current time.
Returns: string

%s = currentTime();
//Returns: '12:34:58' (for
instance).

currentYear(
)

Returns the current year.
[New in 3.0.5].
Returns: val

%v = currentYear();

exist(x) Returns 1 if the variable x
exists, else 0. The variable
name must be a string. For
timeseries, you do not
have to add frequency to
the name (for instance !q),

if the series is of current
frequency. The function
respects the option

databank search setting

(that is, in sim-mode it will
only look in the first-
position databank, if a
databank name is not
provided).

Returns: val

%v = exist('gdp');
%v = exist('db2:gdp');

filteredperiod
s(d1, d2)

Returns the number of
filtered periods between d1

and d2 (these are dates).

Returns: val

%v = filteredperiods(%d1, %
d2);

fromSeries(x
, type)

Accesses meta-information
from the timeseries. Type
can be

· 'name'

%s = fromSeries(ref:gdp,
'label');
//Returns 'Gross domestic
product' (for instance).
%d = fromSeries(gdp,

439Gekko functions

T-T Analyse

· 'bank'
· 'freq'
· 'label'
· 'source'
· 'units'
· 'stamp'
· 'perStart' or

'perEnd' (may include
missings)

· 'dataStart' or
'dataEnd' (period with
actual data)

NOTE: The x argument
must be a series (without
quotes).

Returns: string or date

'perStart');
//Returns 1980q1 (for
instance). Same logic
regarding 'perEnd' argument.
%s = fromSeries(gdp, 'freq');
//Returns 'q' (for instance).

gekkoVersio
n()

Returns the Gekko version
number (xx.yy.zz).
Returns: string

%s = gekkoVersion();
//Returns: '3.0.1' (for
instance).

getEndoExo(
)

Returns a list with names
of those variables that
start with 'endo_' or 'exo_'.
This is used with GAMS
models, when fixing
equations.
Returns: list of strings.

#m = getEndoExo();

isOpen(x) Returns 1 if the databank
with the name x (a string)
is open, and 0 otherwise.
Returns: val

%v = isopen('mybank');

time()
time(<t1
t2>)

Returns the current time
period as a series where
the dates are represented
as values. Works with
quarters and months, too.
The function may for
instance be practical for
creating trend variables.
Returns: series

option freq q;
time 2010q1 2011q4;
p time();
p time(<2010q3
2011q3); //truncated
//the first one prints
2010.125, 2010.375, 2010.625,
2010.875, ...

Matrix functions:

440 Gekko 3.0 user manual

T-T Analyse

Function
name

Description Examples

avgc(x) Average over cols.
Returns: matrix

#m2 = avgc(#m1);

avgr(x) Average over rows
Returns: matrix

#m2 = avgr(#m1);

chol(x)
chol(x, type)

Cholesky decomposition of
matrix x. Accepts type
(string), either 'upper' or
'lower'.
Returns: matrix

#m2 = chol(#m1, 'upper');

cols(x) Returns the number of
colums of x
Returns: val

%v = cols(#m);

det(x) Determinant of a matrix.
Returns: val

%v = det(#m);

diag(x) Diagonal. If x is a n x n
symmetric matrix, the
method returns the
diagonal as a n x 1 matrix.
If x is a n x 1 column
vector, the method returns
a n x n matrix with this
column vector on the
diagonal (and zeroes
elsewhere).
Returns: matrix

#m2 = diag(#m1);

divide(x1,
x2)

Element by element
division of the two matrices.
If x2 is a row vector, each
x1 column will be divided
with the corresponding
value from the row vector.
And if x2 is a column
vector, each x1 row will be
divided with the
corresponding value from
the column vector.
Returns: matrix

#x = divide(#x1, #x2);

441Gekko functions

T-T Analyse

i(n) Returns a n x n identity
matrix.
Returns: matrix

#m = i(10);

inv(x) Inverse of matrix x
Returns: matrix

#m2 = inv(#m1);

maxc(x) Max over cols
Returns: matrix

#m2 = maxc(#m1);

maxr(x) Max over rows
Returns: matrix

#m2 = maxr(#m1);

minc(x) Min over cols
Returns: matrix

#m2 = minc(#m1);

minr(x) Min over rows
Returns: matrix

#m2 = minr(#m1);

m(r, c) or
miss(r, c)

Returns a n x k matrix filled
with missing values. Cf.
also m() function for
values.
Returns: matrix

#m = m(5, 10);

multiply(x1,
x2)

Element by element
multiplication of the two
matrices. If x2 is a row
vector, each x1 column will
be multiplied with the
corresponding value from
the row vector. And if x2 is
a column vector, each x1
row will be multiplied with
the corresponding value
from the column vector.
Returns: matrix

#x = multiply(#x1, #x2);

ones(n, k) Returns a n x k matrix filled
with 1's
Returns: matrix

#m = ones(5, 10);

pack(v1,
v2, ...)
pack(<t1
t2>, v1,
v2, ...)

Using period t1-t2, the
timeseries v1, v2, ... are
packed into a n x k matrix,
where n is the number of
observations and k is the

#m = pack(<2020 2030>, x, y,
z); Returns: a 11 x 3 matrix
#m with the values.

442 Gekko 3.0 user manual

T-T Analyse

number of variables. If the
period is omitted, the global
time period is used.
Returns: matrix

rows(x) Returns the number of rows
of x.
Returns: val

%v = rows(#m);

sumc(x) Sum over cols
Returns: matrix

#m2 = sumc(#m1);

sumr(x) Sum over rows
Returns: matrix

#m2 = sumr(#m1);

t(x) Returns the transpose of a
matrix.
Returns: matrix

#m2 = t(#m1);

trace(x) Returns the trace of a
matrix.
Returns: val

%v = trace(#m);

unpack(m)
unpack(<t1
t2>, m)

The column matrix m (with
only one column) is
unpacked into a timeseries
spanning the period t1-t2.
If the period is omitted, the
local/global time period is
used.
The unpack() function is not
strictly necessary: you may
alternatively assign a nx1
matrix directly to a series
(see example).
Returns: series

//This picks out the second
column of #m (and all the
rows).
y = #m[.., 2].unpack(<2020
2030>);
y <2020 2030> = #m[..,
2].unpack(); //same
y <2020 2030> = #m[..,
2]; //also works

zeros(n, k) Returns a n x k matrix filled
with 0's. Zeroes() can be
used as alias.
Returns: matrix

#m = zeros(5, 10);

Miscellaneous functions:

443Gekko functions

T-T Analyse

Function
name

Description Examples

m() or
miss()

Returns a missing value.
Useful in some series or
matrix expressions. Cf.
also the m(r, c) function
for matrices.
Returns: value

<2020 2020> y = m();
#m = [1, 2; m(), 4];

map() Returns an empty map. #m = map();

null() Returns a null variable. At
the moment, null variables
are mostly used to indicate
empty "cells" in lists. You
cannot perform calculations
on null variables, but you
can use the type()

function to see the type of
a given variable/cell (see
example). [New in 3.0.6].
Returns: null variable

#m = ((1, 2, 3), (4, null(),
6));
PRT #m;
PRT #m[2, 2].type(); //'null'

readFile(x) Reads the file x (string) as
a string.
See also writeFile().
Returns: string

%s = readFile('rawdata.txt');

type(x) Returns the type of a given
variable x. The type is

'val', 'date', 'string',

'series', 'list', 'map',

'matrix' or 'null'. See

examples. At the moment,
null variables are mostly
used to indicate empty
"cells" in lists. [New in
3.0.6].
Returns: string

#m = (1, 2021, 2021a, 'cat',
null());
p #m;
p #m[1].type(); //'val'
p #m[2].type(); //'val'
p #m[3].type(); //'date'
p #m[4].type(); //'string'
p #m[5].type(); //'null'

writeFile(x,
s)

Writes the string s to the
file x (string). A newline
can be indicated with '\n'.

See also readFile().

writeFile('rawdata.txt', '170
121 387);

444 Gekko 3.0 user manual

T-T Analyse

Complete alphabetical list of in-built functions:

· abs()
· addbank()
· addfreq()
· append()
· avg()
· avgc()
· avgr()
· avgt()
· bankfilename()
· bankname()
· chol()
· cols()
· concat()
· contains()
· count()
· currentdate()
· currentdatetime()
· currentfreq()
· currentperend()
· currentperstart()
· currenttime()
· data()
· date()
· dates()
· det()
· diag()
· dif()
· diff()
· diffy()
· dify()
· divide()
· dlog()
· dlogy()
· endswith()
· except()
· exist()
· exp()
· extend()
· filteredperiods()
· flatten()
· format()
· fromseries()
· gekkoversion()
· getbank()
· getdomains()
· getendoexo()
· getfreq()

445Gekko functions

T-T Analyse

· getfullname()
· getindex()
· getmonth()
· getname()
· getnameandfreq()
· getquarter()
· getsubper()
· getyear()
· hpfilter()
· i()
· iif()
· index()
· intersect()
· inv()
· ismiss()
· isopen()
· lag()
· laspchain()
· laspfixed()
· len()
· length()
· list()
· log()
· lower()
· m()
· map()
· maxc()
· maxr()
· minc()
· minr()
· miss()
· movavg()
· movsum()
· multiply()
· null()
· ones()
· pack()
· pch()
· pchy()
· percentile()
· pop()
· pow()
· power()
· preextend()
· prefix()
· prepend()
· readfile()
· remove()
· removebank()
· removefreq()
· removeindex()

446 Gekko 3.0 user manual

T-T Analyse

· replace()
· replacebank()
· replacefreq()
· replaceinside()
· rnorm()
· rotate()
· round()
· rows()
· rseed()
· runif()
· seq()
· series()
· setbank()
· setdomains()
· setfreq()
· setname()
· setnameprefix()
· setnamesuffix()
· sort()
· sqrt()
· startswith()
· string()
· strings()
· strip()
· stripend()
· stripstart()
· substring()
· suffix()
· sum()
· sumc()
· sumr()
· sumt()
· t()
· time()
· timeless()
· trace()
· type()
· union()
· unique()
· unpack()
· upper()
· val()
· vals()
· writefile()
· zeroes()
· zeros()

Part V

448 Gekko 3.0 user manual

T-T Analyse

5 Gekko solvers

This is a short section on some of the solvers in Gekko. At the moment, only the
following is detailed here:

· Newton-Fair-Taylor

449Gekko solvers

T-T Analyse

5.1 Newton-Fair-Taylor

The Fair-Taylor (FT) algorithm can be perceived as performing Gauss-Seidel over

time, instead of over equations. If the model is simulated over the period t1 to t2,

this simulation is repeated again and again (where the values of any leaded variable

are simply taken from the databank), until the leaded variable(s) converge (that is,

do not move from iteration to iteration). The particular way each of the simulations

from t1 to t2 are performed is irrelevant here, as long as the simulations solve the

model.

Consider this one-equation model:

 y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] + 100

If the model is simulated from 2001 to 2004, the first simulation (2001) will take

y[+1] as the 2002 value, the second simulation (2002) will take y[+1] as the 2003

value, the third simulation (2003) will take y[+1] as the 2004 value, and the last

simulation (2004) will take y[+1] as the 2005 value. Regarding the 2005 value,

there is the question of terminal conditions, but we might imagine that option 'exo' is

used regarding terminals, so that the real (databank) value regarding y[2005] is

used. We might consider this the first FT-iteration, that produced new values

regarding y[2001], y[2002], y[2003] and y[2004].

In the next FT-iteration, consider the first sub-simulation, that is, the simulation of

the year 2001. In this simulation, y[+1] is taken as the y[2002] value that was

computed in the first FT-iteration. And likewise, regarding the simulation of the year

2002, y[+1] is taken as the y[2003] value that was computed in the first FT-

iteration, and so on. The last simulation (2004) will still use the fixed value of

y[2005], because we use the 'exo' option regarding terminals.

This process is repeated over and over, and in many cases it converges nicely. It can

also be damped, and in spirit, the method is very similar to the Gauss-Seidel

algorithm that solves the individual periods (hence, Fair-Taylor is also called Gauss-

Seidel over time). Still, the process is by no means guaranteed to converge, and in

cases with heavy intertemporal influences (for instance, if the parameter regarding

y[+1] were 0.9 instead of 0.3), the 'signals' from the leaded variables from FT-

iteration to FT-iteration may be slow to propagate from the last periods to first

periods. If the intertemporal influence is too heavy, for instance with 0.9*y[+1]

instead of 0.3*y[+1], the Fair-Taylor algorithm cannot solve the problem (no matter

how much damping is used etc.).

In such cases, a more robust Newton solver is often used. The most common way to

progress is typically to 'stack' the equations, eliminating all lags and leads. For

instance, the system regarding 2001-2004 could be written in the following way:

450 Gekko 3.0 user manual

T-T Analyse

 y1 = 0.1*y0 + 0.2*y1 + 0.3*y2 + 100

 y2 = 0.1*y1 + 0.2*y2 + 0.3*y3 + 100

 y3 = 0.1*y2 + 0.2*y3 + 0.3*y4 + 100

 y4 = 0.1*y3 + 0.2*y4 + 0.3*y5 + 100

This system is time-less (or static) in the sense that there are no lags or leads, but

only variables with names that indicate the period. Provided that some values

regarding y0 (= y[2000]) and y5 (= y[2005]) are provided, the system can be solved

with a 'normal' solver (that is, a solver that solves one period at a time).

Now, such a system can become quite large, because the equations are unfolded

(stacked) like in the example above. For a 100 year simulation period, the model

becomes 100 times larger than a normal model, and the Jacobi matrix obtains

100*100 = 10.000 times more elements. There are a lot of tricks and methods to

alleviate this explosion of variables, but implementing such tricks (for instance sparse

matrices) is a time-consuming process.

Gekko implements such a stacked time solver, but it is mostly suited for smaller

models, or for limited time periods. For larger models solved over long time periods,

an alternative solver can be used. Provided that there are not too many variables

with leads, this solver is quite powerful. The solver is called Newton-Fair-Taylor, and

the basic principles of this solver is presented in the following section.

Newton-Fair-Taylor

This solver is activated by means of the following option:

OPTION solve forward method = nfair; //default is 'fair'

The underlying idea is to view Fair-Taylor as an iterated process, where the goal is to

find a fixed point in this process. If we limit the problem to one variable (y)

containing leads, the process can be stated as follows:

ynew = F(yold)

So yold is a nx1 vector of initial values for y regarding the simulation period (with n

observations), and this is fed to the normal solution algorithm, where leaded

variables are just used at face value. The normal solution algorithm simulates the n

periods, which produces n new values for y. The process is repeated over and over,

and as soon as ynew = yold, the problem is solved.

This system can be linearized around some particular vector yold, by performing a

small perturbation ε on one of the elements of yold, simulating the model over n

periods, and observing the effects on ynew, compared to a simulation without ε. These

451Gekko solvers

T-T Analyse

perturbations are performed for each period, and produce n effects (for each of the

periods contained in ynew). All in all, we obtain a n x n matrix of effects. For example,

if the model y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] is simulated over 4 periods, we

obtain the following matrix:

 1 2 3 4

 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0007
 3 0.0000 0.3750 0.0469 0.0059
 4 0.0000 0.0000 0.3750 0.0469

The first row shows what happens to y[2001], y[2002], y[2003] and y[2004], if
y[2001] is changed by one unit. In 2001, here is no effect of changing y[2001], since
this only affects the starting values. As there are no effects in 2001, there are no
effects in 2002-2004 either, so the first row is full of zeroes. The second row shows
what happens, if y[2002] is changed by one unit. In 2001 this affects y, via the
leaded variable. The effect is 0.3/(1-0.2) = 0.375. This in turn affects y in 2002 via
the lag 0.1*y[-1]. This effect is 0.375*0.1/(1-0.2) = 0.0469, and so on.

This matrix is used to transform the error (ynew-yold) into a new guess regarding y. In

order to do this, the 4x4 identity matrix is subtracted, and the resulting matrix is

inverted. This matrix can then be combined with the error, to produce a new guess.

With option 'const' (option solve forward terminal = const) regarding terminal values,
the idea is that regarding the terminal value y[2005], this value is set equal to
y[2004]. Hence, the terminal value is assumed constant ('const') in relation to the
y[2004] value, and in a stacked system, this would amount to the following:

 y1 = 0.1*y0 + 0.2*y1 + 0.3*y2 + 100

 y2 = 0.1*y1 + 0.2*y2 + 0.3*y3 + 100

 y3 = 0.1*y2 + 0.2*y3 + 0.3*y4 + 100

 y4 = 0.1*y3 + 0.2*y4 + 0.3*y4 + 100

Note the last equation, where y4 is used instead of y5. Using the 'const' option
changes the incidence matrix, which would now be the following:

 1 2 3 4
 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0012
 3 0.0000 0.3750 0.0469 0.0094
 4 0.0000 0.0000 0.3750 0.0750

This changes the last column, for instance the element (4, 4) is changed from 0.0469
to 0.0750, that is a factor (1-0.2)/(1-0.2-0.3) = 1.6. With "OPTION solve forward
terminal feed = internal", the incidence matrix will look like the matrix above,
whereas with this option set to 'feed = external', the incidence matrix will look like
the first one shown (with element (4, 4) = 0.0469).

With 'feed = internal', a linear model with leads will solve in one Fair-Taylor iteration,
regardless of the coefficients (provided that the model is solvable). Using 'feed =
external', more Fair-Taylor iterations are needed.

452 Gekko 3.0 user manual

T-T Analyse

It would be tempting to provide a 'growth' option regarding terminal values,
corresponding to this stacked system:

 y1 = 0.1*y0 + 0.2*y1 + 0.3*y2 + 100

 y2 = 0.1*y1 + 0.2*y2 + 0.3*y3 + 100

 y3 = 0.1*y2 + 0.2*y3 + 0.3*y4 + 100

 y4 = 0.1*y3 + 0.2*y4 + 0.3*y4*y4/y3 + 100

The last equation corresponds to y5/y4 = y4/y3, and the problem is that this

equation may be hard to solve when solved on its own (because the right-hand side

contains a term with y4 squared). Because of this, a 'growth' option regarding

terminal values is not provided at the moment.

All in all, the Newton-Fair-Taylor solver ('nfair') is quite powerful regarding forward-

looking models. If the number of variables with leads is limited, the incidence matrix

does not become too large, and filling it up with coefficients does not become too time

consuming. With k lead variables, the incidence matrix becomes (k*n) x (k*n)

instead of n x n, and the matrix will contain cross-effects from one lead-variable to

another. Such a matrix may be time-consuming to compute, since in principle k*n

simulations are needed to fill it (not all simulations need to solve the full period, but

there is still a lot of work to be done).

Looking at the original incidence matrix, an obvious idea springs to mind:

 1 2 3 4

 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0007
 3 0.0000 0.3750 0.0469 0.0059
 4 0.0000 0.0000 0.3750 0.0469

It is clear that the matrix is repetitive, with the same number (cf. the colors) running

diagonally downwards. Using this idea, and assuming that the coefficients do not

change too much over time in non-linear models, only k simulations are needed to fill

the matrix (k being the number of leaded variables).

Some care must be taken regarding the coefficients corresponding to terminal values

(if 'const' terminal condition is used), but a quite good approximation of the real

matrix can probably be produced with little effort using this idea.

Newton-Fair-Taylor example

Provided the following model file:

------------- y.frm -----------------------------------

frml _i y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] + 100;

453Gekko solvers

T-T Analyse

You may try the following commands:

RESET;
OPTION solve forward method = nfair;
OPTION solve forward dump = yes;
TIME 2001 2004;
MODEL y;
CREATE y;
SERIES <2000 2000> y = 200;
SIM;
PRT y;
PRT #ft_1;

Option 'nfair' is set regarding forward solving (default regarding terminals is always

'const'). Option 'dump' is set, so that the gradient matrix can be shown afterwards

(#ft_1). The result is the following:

 +++ NOTE: There are 1 variable(s) with leads: Fair-Taylor algorithm is used
 #1: Gauss simulation 2001-2004 took 0.00 sec -- 10/14/8.8 iterations (min/max/avg)
 Gradient 1 of 4 (var 1 per 2001)
 Gradient 2 of 4 (var 1 per 2002)
 Gradient 3 of 4 (var 1 per 2003)
 Gradient 4 of 4 (var 1 per 2004)
 #2: Gauss simulation 2001-2004 took 0.01 sec -- 10/14/43.4 iterations
(min/max/avg)
 Newton-Fair-Taylor (leads) algorithm converged in 3 NFT-iterations (1.34 sec)

 y %
 2001 243.4254 21.71
 2002 249.1343 2.35
 2003 249.8830 0.30
 2004 249.9766 0.04

 #ft_1
 1 2 3 4
 1 0.0000 0.0000 0.0000 0.0000
 2 0.3750 0.0469 0.0059 0.0012
 3 0.0000 0.3750 0.0469 0.0094
 4 0.0000 0.0000 0.3750 0.0750

The gradient matrix uses four simulations (one for each period), and the algorithm

converges in 3 Newton-Fair-Taylor iterations, which is always the case for a linear

model. Note that in this simulation, the actual databank value of y in 2005 is not

used at any point (it is missing value anyway). From the results, it is seen that y is

developing towards it's equilibrium value 250. This value can be found by removing

all lags/leads in the equation y = 0.1*y[-1] + 0.2*y + 0.3*y[+1] + 100, so that it

becomes y = 0.1*y + 0.2*y + 0.3*y + 100 (which has y = 250 as solution).

Setting "OPTION solve forward terminal = exo", and setting y[2005] = 200 would

change the solution completely:

 2001 242.2783 21.14
 2002 246.0754 1.57
 2003 242.1082 -1.61
 2004 230.2635 -4.89

In this case, the y[2004] is 'attracted' to y[2005] = 200, and hence cannot attain a

454 Gekko 3.0 user manual

T-T Analyse

value close to 250 anymore. So the choice of terminal condition should not be taken

too lightly, and the 'const' option makes much more sense than the 'exo' option in

most cases.

455Gekko solvers

T-T Analyse

Part VI

457Guided tours

T-T Analyse

6 Guided tours

In this part of the documentation, some guided tours are provided. A guided tour
showcases some of Gekko's capabilities, in a managable step-by-step manner. The
tours are intended for potential or actual Gekko users who wish to get a quick look
around, without having to read lots of help pages etc.

· Modeling guided tour

Some planned tours:

· Data handling guided tour (planned)
· Array-series primer (planned)
· GAMS modeling interface (planned)

Regarding the tours, the reader has two options: (a) download Gekko and the
provided files, and run the examples step by step along with the guide, or (b) just
read the guide without installing/using Gekko, to get a quick idea of the software.

6.1 Guided tour: modeling

This guided tour showcases the modeling capabilities of Gekko. The guide has six
sections and is centered around a concrete practical simulation example (for which
data can be downloaded).

1. Installation and download
2. Graphical interface etc.
3. Historical simulation
4. Multiplier analysis (shocks)
5. Add-factors etc.
6. Goal-search etc.
7. Forward-looking

6.1.1 1. Installation and download

Gekko is open-source, and free of charge. Gekko is intended for the simulation of
large-scale econometric (or energy) models, and more generally for handling of time-
series data. This guide will focus on the simulation capabilities, that is, sim-mode (in
contrast to data-mode).

Installation is normally quite simple, if using a Windows system (Windows XP service
pack 3, Windows Vista, Windows 7, 8 or 10). First, since this guide is intended for
Gekko 3.0, please go to the download page and download and install Gekko 3.0
(right-click and download the installer file, InstallerForGekko.msi). After the file is

downloaded, you can double-click it and start the installation. Please see the
troubleshooting page if problems arise during installation. (If comfortable with
computers, you may alternatively download a zip-file for manual installation).

http://t-t.dk/gekko/installer/

458 Gekko 3.0 user manual

T-T Analyse

After the installation is finished, you should be able to find and start Gekko under the
Windows start menu.

When Gekko starts for the first time, it will typically set the working folder to your
desktop folder. This is not particularly convenient, so please create a new working
folder somewhere else (in Windows Explorer), and point Gekko to that location (File –
> Set working folder…).

The example data is a model and databank file. These files should be downloaded to
the newly created working folder. Right-click the following zip-file, and choose "Save
as…" or "Save link as…".

· Example model and data files, demo.zip

The zip file contains the files gekko.frm (the model) and gekko.gbk (the databank).
You can typically just double-click the zip-file to open it, and then copy-paste the two
files into your working folder.

6.1.2 2. Graphical interface etc.

This section describes basics of the graphical user interface (GUI), in addition to some
concepts and conventions used in Gekko.

The GUI looks as follows:

http://t-t.dk/gekko/demo.zip

459Guided tours

T-T Analyse

There are 3 tabs. "Main", "Output" and "Menu". The main tab is divided into two
parts: the lower part is the command input window, and the upper part is the
command output window. The output tab is sometimes used to show detailed lists etc,
so that these do not clutter the main output window. The menu tab is for showing
user-designed menus (and tables). You may jump between the tabs by means of
Ctrl+M, Ctrl+O and Ctrl+U. Help on a particular command is also available by means
of typing "help [commandname]" at the command prompt (or you may press F1). The
bottom bar shows the current global time period, loaded databanks, and current
working folder. At the right-side of the bottom bar are red, yellow or green "traffic
lights". Green means that Gekko ended the job successfully and awaits new input,
red means that Gekko encountered an error and awaits new input, and yellow means
that Gekko is working.

In addition to the GUI, some other basic concepts used in Gekko should be noted. If
you prefer, you may skip the rest of this section and jump directly to the hands-on
examples in section 3.

Some basic Gekko concepts

Databanks: Databanks are containers of variables, for instance timeseries. Gekko
always starts out with two empty databanks (in memory): 'Work' and
'Ref' (reference). The Work databank is where data is normally changed, unless
otherwise stated. For instance, simulations are always performed on Work databank
data. The Ref databank can be thought of as a background databank, being
particularly handy when comparing two scenarios. Try pressing the F2 key to see the
open databanks (note: if the Ref databank is empty, it does not show up in the F2
list). Since a READ statement wipes out the contents of the Work and Ref databanks,
it may be practical to put settings etc. (for instance paths, time periods, etc.) into the
so-called Global databank.

Timeseries: A timeseries resides in a databank. It may have frequency annual,
quarterly, monthly or undated. If data has been read for timeseries Y regarding the
period 2015-2020, printing out Y for the period 2021 will show a missing value ('M').

When a databank is read (the READ command), the Work databank is cleared, and all
the variables from the file are put into the Work databank (it is possible to merge
databanks if this behavior is preferred). After this, the Ref databank is cleared, and
all variables are copied from Work to Ref. So after reading a databank file with READ,
the Work and Ref databanks are always identical (there are other ways of opening
databanks, but for now we focus on READ).

The Ref databank is typically used for multiplier analysis (i.e., experiments). Say you
read a databank and then perform some experiment. This experiment will only alter
variables in the Work databank, so after the experiment is finished, you can compare
the variables (timeseries) in the Work and Ref databanks (Gekko has a lot of
commands to do such comparisons, for instance MULPRT, DECOMP etc.).

If, at some point, you wish to make sure that the Work and Ref databanks are
identical (for instance after a simulation), you can use the CLONE command. This
command clears the Ref databank, and copies the Work databank into it (in memory).
You may alternatively read a file directly into the Ref databank, if you use

460 Gekko 3.0 user manual

T-T Analyse

READ<ref>. CLONE is typically used just after simulating (SIM) a baseline/reference
scenario.

There is a cleanup-command: RESTART. This command clears the Work and Ref
databanks, in addition to clearing models, lists, options and other things. This
provides a clean state of Gekko, as if it had just been closed and reopened. If there is
a file with the name gekko.ini present in the working folder, the Gekko-commands

in this file will be run, so gekko.ini can be used to contain options and other

commands (for instance a MODEL command) that the user wishes to "survive" a
RESTART statement.). You may use CLS ("clear screen") to clear the output window.

In general, when doing simulations (in so-called sim-mode) you will have to CREATE
a timeseries before you update its values/observations with the SERIES command
(unless the timeseries starts with the letters xx). However, it should be noted that

when a databank is read, any model variables not present in the databank will be
auto-created as timeseries (with all observations set to missing values). Because of
this, it is often most convenient to put MODEL statements before READ statements.
Preferably use this order in command files: first the RESTART statement, then the
MODEL statement, and then the READ statement (or in the gekko.ini file, put the

MODEL statement before the READ statement).

Note that commands involving timeseries can have a local time period indicated, for
instance printing with PRT <2020 2030> var1, var2;. Global time can be altered

with the TIME command.

Note also that the so-called operators are used in many places. For instance, m means

absolute multiplier, whereas d means absolute differences (or q and p in their relative

versions). You may consult the PRT (print) command regarding this, but suffices to
say that you may write for instance PRT <m> var1;, PLOT <d> var1;, SHEET <q>

var1;, etc. There are also some more mnemotechnic ('long') operators availiable, for

instance abs or pch (try for instance PRT<abs> or PRT<pch>).

Regarding models, it should also be noted that the list of endogenous variables in a
model is simply the set of all the variables at the left-hand side of the equations. This
may be changed afterwards by means of the ENDO and EXO commands. Regarding
equation syntax, you may consult the latter part of the MODEL help file, if you need
more information on this.

Regarding file names, you may use relative paths like \subfolder\filename.txt.

Using relative paths makes it easier to move a system of command files (using sub-
folders) to another location/computer if needed. Special user-paths can also be
designated by means of the OPTION folder … settings.

The hash sign (#) is used for collections (lists, maps and matrices), and the percent

sign (%) is used for scalar variables (value, date and string). So in general you refer

to these with #x or %x, but note that in name composition using string/name scalars,

you can use {%x} instead of %x, for instance fK{%type}{%sector}, where %type and

%sector could be type and sector names (stored in strings).

461Guided tours

T-T Analyse

Generally, list items are separated by commas, e.g. #mylist = var1, var2, var3;.

(this stores the three strings 'var1', 'var2' and 'var3' in the list). This is also the

case when the list of items contains expressions: PRT x/y, w/z;. Lags and fixed

dates are put inside brackets, for instance: var1[-1] or var1[2020]. You may use

x.1 or x.2 as short-hand for x[-1] or x[-2] and so on. Square brackets are also

used for wildcard-lists, so instead of a standard list (#mylist), you may use for

instance ['fX*'] to obtain a list (of strings) of all variables in the Work databank

beginning with 'fX'.

Commands must end with ;, but in the Gekko main window, if you hit [Enter] while

being at the end of a line, Gekko will add the ; automatically.

6.1.3 3. Historical simulation

This section describes how to perform a historical simulation on a (historical)
databank. In order to follow the examples, you must first download the model and
databank (click demo.zip, and copy the two files gekko.frm and gekko.gbk into your
Gekko working folder). The example uses annual data, but other frequencies would
run very similarly.

(See the bottom of this page for the full code).

Start up Gekko in the working folder.

Then type this in the command prompt (at the bottom):

http://t-t.dk/gekko/demo.zip

462 Gekko 3.0 user manual

T-T Analyse

RESTART;
MODE sim;
TIME 2004 2016;

If you copy-paste these commands to Gekko, you may either execute them
individually one by one by pressing [Enter], or first mark them as a block and then

press [Enter] to execute them at once.

The commands clear up the workspace, and set the global time period (for which we
will later simulate the model). At the bottom of the Gekko window, you can see that
this time period has been set ("Annual 2004 2016"). You may try to load the model,
read the data variables, and print them out:

MODEL gekko;
READ gekko;
PRT <2004 2016> y, c, x, g;

The first commands load gekko.frm and read the gekko.gbk databank file. Note the
use of the < and > brackets denoting local options. In all relevant commands, you can

state a time period inside such brackets, and the given time period will only be used
in that command. The PRT statement prints both levels and annual growth for the
variables. (Note the codes '(E)' for endogenous, and '(X)' for exogenous).

The data is articifial, and contains no growth. So the model can be envisioned as
either depicting a stationary-state model (with dynamics), or depicting growth-
corrected variables. Avoiding growth in the data is just to keep the model simple.

Lists may be used to avoid repetitive typing:

#vars = y, c, x, g;

Try printing out the current lists:

463Guided tours

T-T Analyse

LIST ?;

This shows the newly created list #vars. There are also some model lists. For

instance, the list #all contains all model variables, #endo contains all endogenous

variables (i.e., variables at the left-side of an equation), and #exo contains all

exogenous variables (to see the contents of the #exo list, use PRT #exo;). Now you

may print the variables using the list (instead of PRT y, c, x, g;):

PRT {#vars};

Note that PRT #vars; would print out the list itself (that is, four strings). Instead of

lists, wild-cards can be used, for instance:

PRT {'*'};

This will print out all timeseries in the Work databank. The alternative PRT ['*'];

would print out the variables as strings (names). Note that there are some model-
created variables (dummies, add-factors, with missing values ('M')) — these will be
described later on. Wildcards follow the standard: * for any match, and ? for single

character match.

We will now try to simulate the model. It should be noted, that any READ command
works like this: First the Work databank is cleared, and the databank file is read.
Next the Ref databank is cleared too, and all variables in Work are copied into Ref.
Hence, after any READ statement, the two databanks Work and Ref are always
identical. (You may use READ<merge> to merge data, or READ<ref> to load data
into the Base databank separately). To verify this, try to print a multiplier difference:

MULPRT {#vars};

As you can see, there is no difference. This will change after we simulate the model:

SIM;
MULPRT {#vars};

464 Gekko 3.0 user manual

T-T Analyse

The SIM and MULPRT commands are executed over the period 2004-2016 since this
is previously set as the global time period. As expected, for g there is no difference (it

is exogenous), whereas there are differences for the other variables (the simulation
is dynamic: a static simulation using historical values for lagged endogenous
variables can be done with SIM<static>). To see the data more clearly, you may try:

PRT @y, y;

The symbol @ indicates that the value is taken from the Ref databank. Alternatively,

try:

MULPRT <v> y;

which prints out both Work and Ref values, and multiplier differences (v means

'verbose'). Instead of printing, you may create a graph with PLOT:

PLOT @y, y;

465Guided tours

T-T Analyse

In general, you may substitute PLOT for PRT, since the syntax is identical. In the
window, you may for instance try to click the "Percent (%)" radio button, and you
may use [Esc] to close a graph window quickly. Instead of PLOT, you may also try

SHEET, which shows the data as an Excel table (if Excel is available on the computer,
else use CLIP).

In general, for commands like PRT, PLOT, SHEET and CLIP, you may use so-called
"operators". For instance, p means annual growth rate, m means absolute multiplier

differences, and q means relative multiplier differences. So this command:

PRT <p> {#vars};

will print percentage annual growth rates for the variables, and

PLOT <p> {#vars};

plots them. You may also use a r to indicate Ref databank, for instance:

466 Gekko 3.0 user manual

T-T Analyse

PRT <rp> {#vars};
PRT <rn> {#vars};

This prints percentage change and levels for the Ref databank.

If you wish to store the result, you may write it to a databank (.gbk file):

WRITE simple;

This will store the file simple.gbk in the Gekko working folder. Later on, you could
read it with READ simple;.

In sim-mode, any new variable not present in the model should be created first
(unless the variable name starts with xx, in which case the variable will be auto-

created as a convenience):

CREATE g2;
g2 <2002 2016> = g;

The statement makes g2 and g identical, for the given period. Another expample

could be this:

pch(g2) <2003 2016> = pch(c) - pch(y) + 2;
PRT <2003 2016 p> c, y, g2;

The first statement (a SERIES statement) is set to start in 2003 — otherwise the
result will be missing values, since the pch() function uses lagged values. Note also in
the PRT statement the p inside the option brackets for indicating annual percentage

growth rate. As it is seen, the annual growth rate of the new g2 variable is set to the

growth rate of c minus the growth rate of y plus 2 (percentage points).

467Guided tours

T-T Analyse

The PRT/PLOT/SHEET/CLIP commands accept any expression, so the historical
consumption rate may be printed like this:

PRT <r> c/y;

Where the operator r indicates reference (historical) values: PRT @c/@y; or PRT

ref:c/ref:y; could also be used. Another way of printing variables is the DISP

command. This command does not accept mathematical expressions, but prints the
equation (if it is an endogenous variable), variable explanations (labels), etc. Try:

DISP y;

You can see the GDP equation, and the label associated with the y variable (this label

is taken from the .frm file, after the VARLIST$ tag). You may follow the links by

468 Gekko 3.0 user manual

T-T Analyse

clicking the underlined variables, like in a web browser. Use the arrow buttons at the
top-left of the Gekko window to browse backwards and forwards.

Another way of showing information regarding endogenous variables is using the
DECOMP command. Type:

DECOMP y;

This opens up the decomposition window, showing the variable values, and the values
of determining variables (precedents). Cells may be marked and copy-pasted to Excel
or other spreadsheets. The first line of the table is the dependent variable (left-hand
side of equation), whereas the following lines are the explanatory variables (right-
hand side of equation).

If you click "Growth rate" (p) in the "Raw" column under "Time-change", the values

are shown in annual percentage growth rates. For instance, in 2004, the simulated
value of y grows with 1.63%, whereas private consumption c grows with 3.17%. The

percentages regarding c, g and x obviously do not sum up to the 1.63%, which can

be verified by marking the three cells, and looking at the status bar at the bottom of
the window (reporting 8.27% in total). However, if you click the same button in the
"Decomp" column, the percentages regarding c, g and x sum up, because the

contributions in the equation are "decomposed". So, in 2004, the simulated value of
GDP growth (1.63%) is composed of +2.07% of c-contribution, +0.41% of g-

contribution, and -0.85% of x-contribution. That is, it is the private consumption (c)

that is driving the growth in y in 2004, whereas net exports (x) pulls in the opposite

direction (you may click "Show as shares" to easier spot which variables contribute
the most to the changes in y).

If you alternatively click the "Abs. multiplier" (m) in the "Raw" column under

"Multiplier", the absolute multiplier is shown (i.e., the absolute difference between
the historical databank and the simulated values, corresponding to MULPRT or
PRT<m>). For instance, in 2004, the simulated value of y is 33 units larger than the

databank value. The multiplier part of the decomposition window is most often used
in multiplier analysis, i.e. analyzing two simulated scenarios.

The full code

469Guided tours

T-T Analyse

RESTART;
MODE sim;
TIME 2004 2016;
MODEL gekko;
READ gekko;
PRT <2004 2016> y, c, x, g;
#vars = y, c, x, g;
LIST ?;
PRT {#vars};
PRT {'*'};
MULPRT {#vars};
SIM;
MULPRT {#vars};
PRT @y, y;
MULPRT <v> y;
PLOT @y, y;
SHEET @y, y;
PRT <p> {#vars};
PLOT <p> {#vars};
PRT <rp> {#vars};
PRT <r> {#vars};
WRITE simple;
CREATE g2;
g2 <2002 2016> = g;
pch(g2) <2003 2016> = pch(c) - pch(y) + 2;
PRT <2003 2016 p> c, y, g2;
PRT <r> c/y;
DISP y;
DECOMP y;

6.1.4 4. Multiplier analysis (shocks)

This section describes how to perform forecast scenarios, based on a historical
databank. In order to follow the examples, you must first download the model and
databank (click demo.zip and copy the two files gekko.frm and gekko.gbk into your
Gekko working folder).

(See the bottom of this page for the full code).

Next start up Gekko in the working folder, and type:

RESTART;
MODE sim;
TIME 2017 2040;

This clears up the workspace, and sets the global time period (for which we will later
simulate the model).

MODEL gekko;

http://t-t.dk/gekko/demo.zip

470 Gekko 3.0 user manual

T-T Analyse

READ gekko;

The first commands load gekko.frm and reads the gekko.tsdx databank file. The
databank file only runs to 2016, since 2016 is the last historical data point. Like in
the previous section, create a list containing the variables:

#vars = y, c, x, g;
PRT <2015 2040> {#vars};

As you can see, the variables contain all missings ('M') for the period 2017-2040. We
will now try to simulate the model (for 2017-2040):

SIM;

Gekko will complain about missing data (click the link in "There were missing values
in 1 variables", and afterwards click the "Main" tab again to get back (or use
Ctrl+M)). So as stated in the Output tab, the problem is that the value of g for the

period 2017 is needed in order to simulate for 2017. Try setting g constant (for the

global period 2017-2040) by means of the SERIES command:

g %= 0;
SIM;
PRT {#vars};

The %= operator in the first (SERIES) command sets annual percentage growth, and

after this, the model can simulate. The model is really quite simple: as seen in the x-

equation, x will always change unless y = 500. So this value for y is an equilibrium

value (attractor), for instance corresponding to zero (or natural/structural)
unemployment level.

The equilibrium level of the consumption equation is given by c = 0.6/(1-0.1)*y,

corresponding to 0.6/0.9*500 = 333.33. Net exports are given residually, from the

GDP identity. Hence in equilibrium, x = y – c – g = 500 – 333.33 – 31 =

135.67. The interpretation is that in the long run there is perfect crowding-out

regarding public consumption g, since 1 extra unit of g will entail 1 less unit of x. As

it can be seen from the above PRT statement, the actual values converge slowly to
these long-run values.

If the best prognosis regarding future government consumption is that it is
unchanged at at 31 units, this simulation can be considered a reference scenario. In
order to perform a multiplier analysis on top of this reference scenario, we need to
put the scenario into the Ref databank (in order to be able to compare it to the
alternative scenario later on). Try printing all values for the variable y (operator v

means 'verbose'):

471Guided tours

T-T Analyse

MULPRT <v> y;

As it is seen, there are missing values in the Ref databank. The CLONE command
copies data from Work to Ref, so try this:

CLONE;
MULPRT <v> y;

As it is seen, Work and Base databank values are now identical, and we are ready to
perform an alternative simulation.

The experiment is the following:

g += 100;

The operator += adds to the value in the Work databank, so in each year, g is

augmented by an absolute amount of 100 relative to the baseline values. The
alternative scenario is simulated:

SIM;

Instead of printing, we will use the graph facilities. Try the following command:

TIME 2016 2040;
PLOT {#vars};

We start out changing the global time period to 2016-40, so that the last historical
year is included in the following prints and plots. The plot shows the simulated values
(levels), not the multiplier (differences). For instance, you can see that g changes

from 31 in 2009 to 131 in 2016, as expected.

Now, in the graph window, try to select "Multiplier" and "Difference", in order to see
the multiplier.

472 Gekko 3.0 user manual

T-T Analyse

Government spending (g) changes permanently with 100 units, and in the first year

this creates a Keynesian extra effect on production (y) which increases with 250

units. The effect on private consumption (c) is 150 units.

The effect is augmented a little bit more the following year, because of the lagged
endogenous term in the c-equation. From 2019 and on, however, the net exports

begin to decline (the effect propagates via the term y(–2) in the x-equation). The

underlying interpretation could be that — with some delay — the rising production
lowers the unemployment rate and thus augments the wage levels. This in terms puts
an upwards pressure on the domestic price level, lowering net exports. This negative
effect on x pulls y back downwards, and as it is seen, y oscillates slowly back to its

former level (i.e. the multiplier is 0 in the long run, corresponding to full crowding-
out).

So in the long run, y and c are unchanged, whereas g has been augmented by 100

and x reduced by 100. So, as mentioned above, in the long run the increased

government consumption is exactly crowded out by an equivalent reduction in net
exports.

If, instead of "Difference" you select "Percent (%)" in the graph window, you can see
the percentage multiplier differences. The effect on g is quite large in percentages,

whereas y and c follow each other quite closely in percentages.

It is worth noting that you may call PLOT with an operator to indicate how the data
should be presented, for instance:

PLOT <m> {#vars};

473Guided tours

T-T Analyse

The m operator code indicates absolute multiplier, i.e., the absolute difference

between the two databanks. The same code can be used for PRT, for example:

PRT <m> {#vars};

Also, instead of PRT or PLOT, you may use SHEET, provided that Excel is installed on
your computer (otherwise use CLIP):

SHEET <m> {#vars};

This creates an Excel sheet with the data. In Excel, a graph is easy to create from
this table (for instance, in Excel 2019, you can click on any cell inside the table,
choose "Insert", and then choose a graph). As a side note, you may create the Excel
file automatically without opening up Excel:

SHEET <m> y 'GDP', c 'Priv. cons.', x 'Net exp.', g 'Gov. cons.'
file = simple;

This will silently create the file simple.xlsx and put it into your working folder. Note
the labels on each variable. You may also use expressions as you wish, for example:

SHEET <m> c/y, x/y, g/y;

This show absolute multiplier changes in these three rates.

Other convenient operators in addition to m are p for annual percentage growth, and

q for multiplier percentage change. The PRT and MULPRT commands also have so-

called 'long' operators such as abs or pch. Please consult the PRT help file for more

on this (you may for instance use PRT<abs>, PRT<pch> or MULPRT<pch>).

You may also use the DECOMP facility to analyze equations and contributions. For
instance:

DECOMP <2017 2040> y;

This starts the decomp window: try clicking "Abs. multiplier" (m) in the "Raw" column

of the "Multiplier" section. This will show multiplier values related to the y-equation.

474 Gekko 3.0 user manual

T-T Analyse

The full code

RESTART;
MODE sim;
TIME 2017 2040;
MODEL gekko;
READ gekko;
#vars = y, c, x, g;
PRT <2015 2040> {#vars};
SIM;
g %= 0;
SIM;
PRT {#vars};
MULPRT <v> y;
CLONE;
MULPRT <v> y;
g += 100;
SIM;
TIME 2016 2040;
PLOT {#vars};
PLOT <m> {#vars};
PRT <m> {#vars};
SHEET <m> {#vars};
SHEET <m> y 'GDP', c 'Priv. cons.', x 'Net exp.', g 'Gov. cons.'
file = simple;
SHEET <m> c/y, x/y, g/y;
DECOMP y;

6.1.5 5. Add-factors etc.

In order to follow the examples, you must first download the model and databank
(click demo.zip and copy the two files gekko.frm and gekko.gbk into your Gekko
working folder). Next start up Gekko in the working folder, and type:

(See the bottom of this page for the full code).

http://t-t.dk/gekko/demo.zip

475Guided tours

T-T Analyse

RESTART;
MODE sim;
TIME 2017 2040;

This clears up the workspace, and sets the global time period (for which we will later
simulate the model). Next, issue these commands, in order to run the baseline
simulation with 0% growth in government consumption.

MODEL gekko;
READ gekko;
g %= 0;
SIM;
CLONE;

Gekko auto-creates add-factors depending on formula codes. Imagine some stochastic
shock on the net exports (e) in 2017. The e-equation has equation code _GJ. You

may read more about such codes in the MODEL help file, but suffice to say that the
code means that the equation in reality reads:

FRML _GJD dif(x) = -0.2*(y[-2] -
500); //original
 x = x[-1] - 0.2 * (y[-2] - 500) +
JDx; //result

Note the add-factor JDx, and note also that the left-side dif()-function has also been

resolved. This latter equation is the one that Gekko actually simulates, and these
"detailed" equations can be shown by means of the DISP command:

DISP x;

Try click "Show detailed equation", in order to see the "full" equation. So even
though the variable JDx is not directly seen in simple.frm, it exists as a hidden

exogenous variable on the right-hand side of the x-equation. When simulating, the

value is automatically set to 0 if no other value is given.

Now, we may try to change the add-factor in the year 2017 (i.e., a temporary shock),
simulate and plot the result:

jdx <2017 2017> += 100;
SIM;
PLOT <2016 2040 m> y, c, x, g;

476 Gekko 3.0 user manual

T-T Analyse

In the first two periods (2017 and 2018), net exports x are augmented by 100, since

the two period lagged y does not begin to affect the equation before 2019. (Since the
equation is a difference equation (with dif(x) on the left side), augmenting the add-

factor in one year works the same way as augmenting an add-factor permanently in a
non-difference equation).

It is seen that there are no long-run effects — in the long run all effects are 0. So
temporary shocks on net exports only creates temporary fluctuations, but these are
still quite significant due to amplification via the Keynesian multiplier effect.

Gekko contains some more advanced possibilites regarding add-factors and formula
codes. The c equation has equation code _GJ_D, i.e. there is a D in the 5th position.

This implies that three variables are created: Dc, Jc, and Zc.The "full" c-equation is

this: c = (0.6*y + 0.1*c[-1] + Jc) * (1-Dc) + Dc*Zc. The variables Dc and Zc

can be used to exogenize an equation. If Dc is set to 1, the equation will reduce to c

= Zc, so that Zc can be used to set the target for c. See also the last part of the

MODEL help page.

The full code

RESTART;
MODE sim;
TIME 2017 2040;
MODEL gekko;
READ gekko;

477Guided tours

T-T Analyse

g %= 0;
SIM;
CLONE;
DISP x;
jdx <2017 2017> += 100;
SIM;
PLOT <2016 2040 m> y, c, x, g;

6.1.6 6. Goal-search etc.

In order to follow the examples, you must first download the model and databank
(click demo.zip and copy the two files gekko.frm and gekko.gbk into your Gekko
working folder).

(See the bottom of this page for the full code).

Start up Gekko in the working folder, and type:

RESTART;
MODE sim;
TIME 2017 2040;

This clears up the workspace, and sets the global time period (for which we will later
simulate the model). Next, issue these commands, in order to run the baseline
simulation with 0% growth in government consumption.

MODEL gekko;
READ gekko;
g %= 0;
SIM;
CLONE;

Gekko can do goals/means analysis, i.e. exogenizing some endogenous variables, and
endogenizing some exogenous variables. In other words: force some endogenous
variables to attain specific values, by means of some other (exogenous) variables. In
this scenario, how would you augment y with 250 units for a 7-year period relative to

the baseline scenario, by means of changing g? This experiment is done quite easily,

via the EXO and ENDO commands:

EXO y;
ENDO g;

These commands state that y should be redefined as an exogenous (goal) variable,

whereas g is redefined as an endogenous variable (means). Note that when you

simulate, the number of exogenized and endogenized variables should always be the

http://t-t.dk/gekko/demo.zip

478 Gekko 3.0 user manual

T-T Analyse

same, otherwise Gekko will complain. Note also that a small target icon appears at
the bottom right, to remind you that goals/means are set. After this, try to change y:

y <2017 2023> += 250;

You get a warning that you are updating a left-hand side variable. Now simulate (we
assume the global time period is still 2017-2040):

SIM<fix>;

To make the means/goals bind, you must use the <fix> option in the SIM command.

Plot the simulated variables (multiplier):

PLOT <2016 2040 m> y, c, x, g;

It is seen that in order to keep the production level 250 units higher for 7
consecutive years, government spending has to keep growing continually up to 2023.
In that period, net exports (x) get squeezed out, and the effect on x is negative from

2019 on (implying a likely trade deficit, depending upon the price of imports and
exports). When the y-effect ends after 2023, g stays at a permanently higher level

(350 units higher). The mirror-image of this is that net exports has diminished by the
same amout (-350). You may compare this graph to the similar experiment in section
4.

479Guided tours

T-T Analyse

To deactivate all goals/means, simply use SIM instead of SIM<fix>, or use the UNFIX
command to remove the goals/means completely.

If you want to fix a certain endogenous variable at some predefined value, by means
of its add-factor, you may use ENDO/EXO for that, too. But in that case, there is an
often more convenient method, namely using the so-called exogenization dummies. If
the equation has a formula code implying exogenization dummy (the character D at

the 5th position), this is possible.

The private consumption function c has code _GJ_D, implying that it has an additive

add-factor (the J_ part of the code), and exogenization dummy (the last D in the

code). So the "full" c-equation really is c = (0.6*y + 0.1*c[-1] + Jc) * (1-Dc) +

Dc*Zc. The J_ part of the code "produces" the add-factor Jc, whereas the last D in

the code "produces" the terms containing the variables Dc and Zc. The variable Dc is

an exogenization dummy (normally 0), and the variable Zc can be used to set a value

for c (if Dc = 1, the equation reduces to c = Zc).

Try starting from scratch with the scenario again (you may mark a block of
commands and run them all when you hit [Enter]):

RESTART;
MODE sim;
TIME 2017 2040;
MODEL gekko;
READ gekko;
g %= 0;
SIM;
CLONE;

Now try the following commands:

Dc = 1;
Zc += 100;
SIM;
PLOT <2016 2040 m> y, c, x, g;

480 Gekko 3.0 user manual

T-T Analyse

As you can see, c is now fixed at a value 100 higher than in the baseline databank.

In the long run this crowds out net exports x, so that GDP (y) is unchanged near

2040. The functionality can for instance be used in forecasts, if some observations of
endogenous variables are known ahead of time (possibly tentatively, from other
sources, indicators etc.).

At this point it should also be mentioned that it is possible to re-endogenize the
variable c in a convenient fashion. If, after the above simulation, Dc is set to 0 again,

and the model simulated, one would expect c to return to its previous values. This is

not the case however: the value of c would stay at +100, even though the dummy

has been set back. The explanation is that the add-factor Jc is calculated in a way so

that the c-equation keeps it’s goal values. This trick of switching the dummy back and

forth while simulating is quite advanced, and should only be used if the user fully
understands the implications.

As you may have noted, in order to solve this goals/means problem, Gekko had to
switch to another solving algorithm (Newton). This is done automatically, when EXO
and ENDO commands are used. The Newton algorithm is more powerful that the
Gauss algorithm (and allows changing the set of endogenous/exogenous variables).
But for "normal" non-exogenized models, Newton is a bit slower, so for normal (non-
goal) purposes, the Gauss algorithm is typically used.

If, however, you encounter solving problems with the Gauss algoritm, try switching to
the Newton algorithm manually (OPTION solve method = newton;). Also, the

Newton algorithm is much more precise. This has to do with the fact that for each
extra iteration, the Newton algorithm doubles the number of correct significant digits

481Guided tours

T-T Analyse

in the values of the endogenous variables. Gekko is designed for large-scale models,
so you may indicate hundreds or thousands of simultaneous goals/means at the same
time, if you like.

It should perhaps be noted that some kinds of equations can never be solved by
means of a Gauss-Seidel algorithm, no matter how much damping etc. might be used.
An example could be the one-equation model z = 1.1*z – 0.2*h. This model has

the solution z = 2*h, but this solution can only be found with the Newton algorithm.

If such equations are present in a model (possibly in hidden form), the solution space
becomes a saddle point, and that requires a Newton solver. However, many
macroeconomic models solve just fine with the (faster) Gauss solver.

The full code

RESTART;
MODE sim;
TIME 2017 2040;
MODEL gekko;
READ gekko;
g %= 0;
SIM;
CLONE;
EXO y;
ENDO g;
y <2017 2023> += 250;
SIM<fix>;
PLOT <2016 2040 m> y, c, x, g;

// -------------------------------

RESTART;
MODE sim;
TIME 2017 2040;
MODEL gekko;
READ gekko;
g %= 0;
SIM;
CLONE;
Dc = 1;
Zc += 100;
SIM;
PLOT <2016 2040 m> y, c, x, g;

6.1.7 7. Forward-looking

Gekko can handle forward-looking models, that is, models where one or more of the
endogenous variables contain leads. There are different solvers regarding this, see
under SIM, and also under OPTION solve forward We will first try to perform a
multiplier analysis without leaded variables, similar to the shock shown in section 4:

482 Gekko 3.0 user manual

T-T Analyse

RESTART;
MODE sim;
TIME 2017 2040;
MODEL gekko;
READ gekko;
#vars = y, c, x, g;
g %= 0;
SIM;
CLONE;
g <2025 2040> += 100;
SIM;
PLOT <m> {#vars};

If you copy-paste these commands to Gekko, you may either execute them
individually one by one by pressing [Enter], or first mark them as a block and then

press [Enter] to execute them at once. The "multiplier" (difference between the two

simulations) looks like this:

This is the same effects as seen in section 4, were in this case, g is not augmented

until the year 2025. In the model (gekko.frm), there is the following equation:

FRML _GJ_D c = 0.6*y + 0.1*c[-1];

So if y is augmented by 1, c will augment by 0.6 in the same year. We will now

create a new model with a different equation regarding consumption, c.

483Guided tours

T-T Analyse

· In the file system, make a copy of gekko.frm and call it gekko2.frm
· In gekko2.frm, in the c equation, change 0.6*y into 0.6*y[+1].

So the equation now looks like this:

FRML _GJ_D c = 0.6*y[+1] + 0.1*c[-1];

This means that current consumption, c, now reacts to the expected income next

period, y[+1]. Next, run the following code:

RESTART;
OPTION solve forward terminal = exo; //changed
MODE sim;
TIME 2017 2040;
MODEL gekko2; //changed
READ gekko;
#vars = y, c, x, g;
g %= 0;
y[2041] = 500; //changed
SIM;
CLONE;
g <2025 2040> += 100;
SIM;
PLOT <m ymax = 300> {#vars};

This is quite different from before, and it is seen that both c and y start to increase

well before g increases in 2025. In the figure, it is seen that c now reacts to y in the

484 Gekko 3.0 user manual

T-T Analyse

next period, for instance y decreases from 2025 to 2026, and hence c decreases the

year before that, from 2024 to 2025.

In the above code, we have set y[2041] = 500, since this is the long-run equilibrium
value (the only value for which the equation dif(x) = -0.2*(y[-2] - 500) is

stationary). Hence, we are setting the terminal condition manually for this problem.

Part VII

486 Gekko 3.0 user manual

T-T Analyse

7 Comparison with similar software

In this section, Gekko is compared to other similar software packages, so that
potential user can more easily judge whether Gekko suits their needs. The
comparison is done regarding the older Gekko 2.0 version (Gekko 3.0 has a lot more
capabilities).

· AREMOS (version 5.4.1)
· EViews (version 8)

487Comparison with similar software

T-T Analyse

7.1 Compare with AREMOS

This section compares AREMOS (version 5.4.1) modules and functionality with Gekko

2.0 (as of December 2015). The comparison is focused on overall functionality, and

not so much on particular details. So this is not a command-by-command comparison.

The following two comparisons are provided:

· Checking which AREMOS components are available/missing in Gekko

· Describing Gekko components not available in AREMOS

Conclusion: Gekko implements almost all relevant features regarding datarevision

projects. Regarding modeling and solving models, Gekko is superior. And regarding

econometrics, Gekko lacks a lot of these features, but these features are not the

main point of the software (for the time being at least).

Note in general that econometrics is skipped in the comparison. AREMOS contains

quite a lot of econometrics functionality, but it is not the intention to emulate this

part of AREMOS in Gekko (but instead provide good interfaces to econometrics

packages like R etc.).

AREMOS
component

Status
in
Gekko
2.0

Comment

Program
structure

ok Like AREMOS, Gekko is timeseries and databank oriented,
allowing any number of open databanks containing
timeseries with any frequency. Since OPEN<prim>, local
time settings like <2010 2020>, etc. are implemented
similarly, the overall structure of a Gekko program will
typically be very similar to the structure of a
corresponding AREMOS program.

Syntax ok Related to program structure, the basic Gekko syntax
(abstracting from concrete command names) is also
basically similar to AREMOS syntax, albeit with some
differences.

· Lists of items are separated by commas (','), for instance
"PRINT x1, x2 x3;"

· All lines end with semicolon (';')
· Indexing uses square brackets ('[' and ']'), including

lags. For instance gdp[-1], gdp[2020], #m[2, 3]. Ranges
are '..' instead of '-' in Gekko: #m[2..3, 1..5].

· Lists use '#' prefix, for instance #m. Contrary to
AREMOS, Gekko matrices also use '#' prefix to
distinguish them from timeseries.

488 Gekko 3.0 user manual

T-T Analyse

· Scalars STRING, NAME, DATE and VAL use '%' as prefix,
to distinguish them from lists. These scalars correspond
to the equivalent ASSIGN variables in AREMOS.

· Timeseries are without prefix as in AREMOS.
Name/string scalars can be used for name composition,
including the use of the '|' concatenator.

· Banks are referred to by colon (':'), as in AREMOS.
· Local options are set inside a '<' and '>' braces, for

instance "PRT <2010 2020> gdp;". This complies with
AREMOS.

· Loops (FOR) and conditionals (IF) work more or less in
the same way as AREMOS. REPEAT and WHILE will be
added.

· Comments use '//' instead of '!'
· Strings use single quotes (') only, AREMOS accepts

double quotes too (")
· Dot (.) can be used for frequencies, to distinguish gdp.q

from gdp.a. Dots will probably be possible in variable
names, but are not allowed at the moment. Dots can
also be used for lags, for instance x.2 = x[-2].

· Mathematical and logical operators work like in
AREMOS. Many of the same in-built functions are
provided.

Databanks ok Gekko provides the same functionality, with a list of open
databanks, searchable for timeseries. The concept of the
first-position databank is extended with a 'reference'
databank concept. This makes many kinds of comparisons
much easier. Databanks are closed with CLOSE and
written to automatically if changed, and protected banks
are supported. Banks are referred to with single colon, and
all AREMOS functionality regarding timeseries copying,
clearing, indexing, renaming, counting etc. is available.

Gekko does not have a support bank, but it is intended to
put procedures/functions into a general 'support' folder
instead.

Gekko includes READ/WRITE for dealing with databanks.
This is often practical. IMPORT/EXPORT is also supported.

At the moment, Gekko databanks contain series only
(annual, quarterly, monthly or undated). It is considered
to allow scalars, matrices and lists into databanks,
whereas procedures/functions and equations/models are
kept outside.

489Comparison with similar software

T-T Analyse

Advanced structures and documents are not supported,
but there is a DOC command to handle label and source
for timeseries.

Contrary to AREMOS, searching for a name in a Gekko
databank always takes the same amount of time,
regardless of the databank size (Gekko uses hash tables
internally).

Speed ok Gekko runs models and command files much quicker than
AREMOS. For command files, AREMOS uses interpretation
on a line-by-line basis, whereas Gekko compiles the
commands into machine code.

Timeseries
and
frequencies

partial Gekko supports annual, quarterly, monthly or undated
frequencies, with the same codes (A, Q, M, U). Higher
frequencies could be added if necessary. Gekko does not
use colon for dates, for instance 2015:3. Instead the more
informative 2015q3 notation is used (which AREMOS also
uses).

Like AREMOS, the time period and frequency can be set
globally, and is used implicitly in many commands. Gekko
timeseries can have any number of observations, and
Gekko uses missings to avoid the dreaded "** Observation
outside current period" message in AREMOS.

COLLAPSE, SMOOTH, SPLICE, TRUNCATE and ANALYZE
are supported. Seasonal adjustment (X12A) is provided.

Transformation series are not supported.

Lists ok Gekko supports almost precisely the same components for
list manipulation, including listfiles.

Wildcards ok Gekko also uses '*' and '?' for wildcards, but uses '..' for
ranges instead of '-'.

Matrices ok Basically all of AREMOS' matrix functions are provided,
including indexing of sub-matrices etc. The syntax is a
little bit different, since Gekko refers to matrices with '#'
prefix, and matrix construction uses the [1, 2 || 3, 4]
pattern rather than [1, 2]||[3, 4]. In addition, ranges are
'..', not '-'.

Pack/unpack regarding timeseries is provided.

A matrix editor is not provided, but copy/pasting a matrix
to Excel is easy (just use the copy-button in the Gekko
interface).

490 Gekko 3.0 user manual

T-T Analyse

Scalars ok STRING, NAME, VAL and DATE provide most of the
functionality of the ASSIGN command. In Gekko, STRING
corresponds to ASSIGN ... STRING ..., whereas NAME
corresponds to ASSIGN ... LITERAL Note that Gekko
scalars are referred to by '%' prefix, not '#' like AREMOS.
There are quite a lot of string functions available.

Models ok Models and equations are done a bit differently from
AREMOS. In Gekko, only one model can be loaded at the
time, but on the other hand models solve much faster.
Gekko's solvers and modeling facilities are more powerful
than AREMOS', and Gekko also solves with leads. The
Gekko concept of a 'reference' databank alongside the
first-position databank eases comparisons of scenarios.

Econometrics limited Only simple OLS (and ANALYZE) is implemented in Gekko.
It is not the intention to provide advanced econometrics in
Gekko, but rater focus on interfaces to R, TSP, etc. (cf.
R_RUN).

Graphs partial Gekko implements graphs via the gnuplot engine.
Compared to AREMOS graphs with large template files
(.gra), Gekko graphs are lacking. But still, normal graphs
work fine in Gekko, and exporting data to Excel for further
graphing possibilities is easy.
Gekko 2.2 has improved PLOT.

Reports almost Printing of timeseries, lists, matrices, scalars, etc. is
implemented, including TELL. TABULATE is not
implemented.

Tables differen
t

Gekko has rich features regarding the production of
timeseries tables and menus from config files (including
html tables). But Gekko does not have an Excel-like TABLE
editor like AREMOS, and some of the advanced features
like mixing frequencies in tables are missing in Gekko
(Gekko tables are mostly used for annual data).

File transfer ok Besides Gekko's own open gbk format, Gekko supports
formats like tsd, csv, prn, xlsx, etc. for data interchange.

Options ok Gekko operates with globals option settings in the same
way as AREMOS. The syntax is OPTION rather than SET,
however.

Functions/pro
cedures

almost User defined functions are supported in Gekko. Library
logic regarding functions/procedures will soon be added.

Store/restore
settings

ok Settings can be stored in gekko.ini similar to aremos.opt,
and will be loaded when using RESTART rather than
RESET. The content of the Work bank, sample, frequency,
etc., is not automatically stored from session to session

491Comparison with similar software

T-T Analyse

(this can be done manually if needed). Local options inside
<...> angle brackets are implemented like in AREMOS.

Client/server no Gekko is one component, and there is one main window.
Gekko can be called silently in batch mode if needed.

Editor no Gekko does not contain an inbuilt editor for command files
or procedures, but the EDIT command calls Notepad.
External editors like Kedit or Notepad work fine with the
RUN command.
There is a XEDIT command for Gekko 2.2.

Structure/doc
ument/write

no This is not implemented in general (only label/source, see
DOC), but Gekko stores the last SERIES command inside
the source field of individual timeseries. Some AREMOS
users are happy to use custom designed documentation
fields in AREMOS, and something similar (and perhaps a
bit more modern) will be added to Gekko.

INTERPOLAT
E

no This command is missing in Gekko (creating a higher-
frequency timeseries from a lower-frequency one).
Implemented in Gekko 2.2

RANK no This command is missing in Gekko (sorting timeseries).

REBASE no Rebasing a timeseries = 1 in a particular period, missing
as a command in Gekko.
Implemented in Gekko 2.2

REPEAT/WHI
LE

no You can use FOR loops with IF instead, but REPEAT/WHILE
will be added.

UNASSIGN no There is actually no way to delete scalars in Gekko. This
will be done.

The following section highlights some of the functionality that Gekko provides, but

AREMOS does not.

Gekko component Comment

Open source Gekko is open source, and hence free to download (including
all source code files), use and alter (under the GNU GPL
license). Everything in Gekko is C#.NET + external modules
like gnuplot, 7zip and x12a. Easy installation of Gekko with
all-inclusive installer. The only thing to worry about is
wheather one should install R, too - this can be done
separately, before or after the Gekko installation.

http://www.r-project.org

492 Gekko 3.0 user manual

T-T Analyse

Databanks Gekko 2.0 introduces the concept of a 'reference' databank,
opening up all the advantages of commands/operators like
PRT<m>, PRT<q>, MULPRT<pch> etc. The default databank
format (gbk) is a fast and open/nonproprietary format
(zipped protobuf files). All data and internal representations
are in double-precision (64 bit, around 15 significant digits).

Reading READ/WRITE for easier data loading into the first-position or
reference databank. This can be cumbersome in AREMOS via
OPEN, COPY, etc.

Models Gekko has better and faster solvers, including solvers for
goals-means, and solvers for leaded endogenous variables.
Models can be signed, and you can use dlog() etc. in the
equations (also on the left hand side). Automatic handling of
add-factors, exogenization etc. Model signatures
implemented.

Translators Gekko can translate from the older Gekko 1.8, and from
AREMOS (see the TRANSLATE command). The translators
are pretty advanced, using a parser internally, so they do
much more than simple search & replace.

Statistikbanken AREMOS has a QuickData component for linking up to
Global Insight's databases. Gekko has a similar component
for linking up to the Danish 'Statistikbanken' database, via
its new API. Meta-data regarding the timeseries is imported
as labels.

R interface Easy interface to R, so that you can manipulate your
timeseries in R and get them back again.

Tables/menus The Gekko menu and table generator is actually quite
powerful, using xml and html. You can use html menus to
organize the tables.

Suggestions Suggestions pop up when the user types OPTION values.
There will also be syntax suggestions from the translators, if
the command entered looks like Gekko 1.8 or AREMOS
syntax.

String/name Gekko provides a cleaner string/name distinction, and
conversion possibilities (name to string: '%n' or $n, and
string to name: {%s} or {s}).

HP-Filter In-built HP-Filter function

Run status
window

(Double-click the green/yellow/red light in the lower bottom
of the main window.) This window tracks the progression of
Gekko jobs = .gcm files running. It is practical for larger
time-consuming jobs, and to see which jobs have finished.

https://en.wikipedia.org/wiki/Protocol_Buffers

493Comparison with similar software

T-T Analyse

Databank window (Click F2). In this window, you can change the position of
Gekko databanks in the search list via drag and drop.

Decomposition The DECOMP command has no equivalent in AREMOS. Used
to track effects from equation to equation in models, and
decompose these effects into contributions from precedents.
User-defined informative labels for the timeseries are
supported.

Equation browser The equation browser has no equivalent in AREMOS. It is
used to click through and show the equations and data in
the model (via precedents and dependents). User-defined
informative labels for the timeseries are supported.

MULPRT and
operators

Using the concept of first-position and reference databanks,
a lot of comparisons are easy to perform. "MULPRT y;" will
print the difference between y in the two databanks, but
more complicated transformations are possible via so-called
print codes. You may for instance use "PRINT <p> x, y, z
<m q>;", where the first <p> tells Gekko to print out x, y in
growth percentages (<p>), whereas z is treated individually
and is printed out as absolute and relative multiplier (<m
q>). This way, you avoid tedious expressions like "PRINT
100*(x/x[-1]-1), 100*(y/y[-1]-1), z - ref:z, 100*(z/ref:z-
1);". The operator transformations also work on expressions
and lists. There are even 'long' and 'short' print codes, to
suit different purposes. The SERIES command also supports
the 'short' operators, so you may state, for instance,
"SERIES <p> x = 15;" to set the growth rate of x to 15%.
The operators work for tables, too.

Time filters Gekko supports time filters (see TIMEFILTER). Using these,
observations may be skipped or aggregated when reported.
This is useful regarding long samples.

Modes Via the MODE command, Gekko can run in sim-, data-, or
mixed mode. For instance, databank searching is switched
off in simulation mode, but active in databank mode. Mixed
mode synthesizes sim- and data-mode, that is, mixes model
simulation and data handling.

Unlimited There are no limits on any datastructures in Gekko, other
than what available RAM permits.

494 Gekko 3.0 user manual

T-T Analyse

7.2 Compare with EViews

This section compares EViews (version 8) modules and functionality with Gekko 2.0

(as of December 2015).

The comparison is limited to data revision purposes, where the following questions

can be raised.

EViews is indeed a polished and professional software product. It is not the intention

here to judge the EViews capabilities regarding model solving or econometrics, but

instead we will take a look at EViews for data revision purposes (on timeseries data).

The following points may be biased, or even wrong (comments are appreciated), but

they reflect an honest attempt to perform some timeseries related tasks in EViews, as

compared to running them in Gekko.

· When you open up EViews with a new 'workfile', it seems a bit cumbersome that

the user always as the first thing has to pick out a sample (period) for the work file.

Workfiles can have 'pages' (a bit like tabs in Excel), and for each page there seems

to be a global sample period (defined once and for all) and fixed frequency. So if

there are several frequencies, these seem to have to live on separate pages in the

workfile. The databank/workfile format seems proprietary and undocumented, in

contrast to the open-format Gekko databanks (protobuffers).

· It does not seem possible to refer directly to objects on other pages or workfiles.

These have to be copied/cloned first, before use. For instance "copy

wf1::page1\ser1", but it does not seem possible to use "wf1::page1\ser1" in

expressions (in contrast to Gekko's use of colon). This will result in quite a lot of

copying, and then the user must remember to delete these objects afterwards.

· It does not seem possible to obtain a line-by-line execution of commands (like in

Gekko or AREMOS or other packages). The EViews user can run a whole file 'batch',

or a block of commands can be marked and executed by right-clicking and choosing

in the menu. The only way to run a single command line seems to be to mark it,

right-click it, and choose 'Run selected' (for which there is no short-cut). But even

if the user does this, there is for instance a problem with executing the lines "%s =

"hello"" and "show %s" one by one. After the first line is executed, %s no longer

exists in memory when it is to be shown in the second line (this variable only

seems to live while the first line is executing). So these two lines must be executed

as one block, and cannot be tried out separately.

· Apparently, EViews does not provide the line number, when errors occur, neither

for marked blocks of commands (run from the command window), or from

batch/command files run with EXEC. This is not very user-friendly when running

larger files/systems. The user can see the file involved, and how the offending line

looks. But EViews inserts concrete values from control variables, so the user may

495Comparison with similar software

T-T Analyse

receive an error like "!m is not defined or is an illegal command in '!m = 0 + 0'", in

stead of a raw depiction of the line ("!m = !m + !k"). Sometimes it can be

convenient to see the concrete value of control variables in a line, but this does not

make it easier to locate the line in a command file...

· In the main window, there does not seem to be a dedicated output window (like the

upper part of the main window in Gekko, or the main window in AREMOS). Instead,

there are floating sub-windows. If, as an example, the user wants to print out a

scalar or timeseries, it only seems possible by means of opening up a sub-window

with that content (in a kind of mini-spreadsheet). Maybe there are other ways to do

it, but if not, quite a lot of sub-windows may clutter the working area (and these,

by the way, do not seem to be closeable with the Escape key). As an consequence,

back-browsing/looking in the output window like in Gekko or AREMOS does not

seem possible. Related to this, it seems a bit odd that printing out a text string via

"show %s" opens up a whole new sub-window and shows the result in a mini-

spreadsheet with the value of the string shown for each observation in the sample.

Isn't it possible to use a TELL command like in Gekko or AREMOS? Using "print %s"

seems to send the results to the printer...

· User-defined functions do not seem possible in EViews. It is possible to design

userdefined procedures, and these can return stuff via their ingoing arguments. But

it is not possible to have a function that returns something that can be used

directly as an argument in other places/functions. So it does not seem possible to

design a user-defined function product(x, y), where product(2, 3) = 6, and

product(product(2,3), 4) = 24. This seems like a serious limitation, and such

functions do not seem to be underway according the the EViews user forums.

· Dates seem to be internally represented as strings in EViews. In order to 'calculate'

on such dates, it seems necessary to use the functions @dtoo() og @otod(), that is,

date-to-observationindex and observationindex-to-date, respectively. These

functions obtain the number of observations from the start period of the workfile

itself, relative to some date written as a text string. But if you need an 'offset' of

dates (for instance, adding five periods to some date %t), it seems necessary to use

something like this: %tt = @otod(@dtoo(%t)+5); !x = @elem(y1, %tt). Of if you

need to find the timeseries observations that in Gekko would be VAL x = y1[%

t+5], in EViews it seems necessary to write something like this: !x = @elem(y1,

@otod(@dtoo(@str(!t))+5)). Since EViews does not have user-defined functions,

this is proabably not something that could be hidden/wrappted inside a function.

Correspondingly, refererence like for instance y1[2010] seem a bit cumbersome to

write in EViews, since it seems to involve writing @elem(fy, "2010:1"). Normal lags

in timeseries, however, are non-problematic and are written like y1(-1) etc.

· In a similar vein, it seems involved to set some observation of a timeseries to some

particular value. In order to do what in Gekko would be "SERIES <2010m1

2010m1> fy = fx[2000m1];" seems to involve the following in EViews: "smpl

496 Gekko 3.0 user manual

T-T Analyse

2010m1 2010m1; fy = @elem(fx, "2000m1"); smpl @all;". It seems necessary to

alter the globals sample period to do this in EViews.

· The EViews syntax originally origins from TSP, since EViews origins from MicroTSP,

which again stems from TSP. It is probably a matter of taste, but somehow the

syntax of EViews seems a little bit old-fashioned, for instance with its use of blanks

instead of commads to separate items.

· It seems a bit strange that the EViews user can operate with both string-

replacement variables (%s) on the one hand, and simultaneously on the other

hand operate with string-objects (that can live in a workfile). These have almost

the same functionality, so why two types? The same goes for scalars, where you

can either use the control variable !x, or a corresponding scalar object. The reasons

are probably historical, but it is a bit confusing.

· EViews does not seem to compile command files into executable code, but seems to

use a so-called interpreter instead. This hampers the execution speed of EViews

command files, even though EViews itself is written in (speedy) C++. The speed of

model simulations has not been tested, since this is not the focus of the present

section.

497Comparison with similar software

T-T Analyse

Part VIII

499Appendix

T-T Analyse

8 Appendix

The following pages contain different appendices.

· AREMOS translator details
· Gekko 1.8 translator details

500 Gekko 3.0 user manual

T-T Analyse

8.1 AREMOS translator details

The AREMOS translator (cf. the TRANSLATE command) tries to translate AREMOS
command files into corresponding Gekko command files.

This translator translates from AREMOS into Gekko 3.0 syntax.

First of all, Gekko recognizes AREMOS abbreviations, and will for instance recognize
DE, DEL, DELE, DELET, and DELETE as all being the same DELETE command. Gekko
has few abbreviations, because it may render command files hard to decipher.

The following commands are translated:

· ACCEPT has a note that the syntax is a bit different.
· ASSIGN x value #y ==> %x = %y.
· ASSIGN x integer #y ==> %x = %y. If the integer is date-like, a Gekko DATE is

used instead, for instance "ASSIGN per1 integer 1966;" ==> "DATE per1 = 1966;".
· ASSIGN x string #y ==> %x = %y.
· ASSIGN x literal #y ==> %x = %y. If the literal is date-like, a Gekko DATE is used

instead, for instance "ASSIGN per1 literal '1966a1;" ==> "DATE per1 = 1966A1;".
· CLOSEALL ==> RESTART. CLOSEALL is a procedure. A note is given that in some

cases, CLOSE *; CLEAR; is a better replacement.
· CONVERT ==> COLLAPSE. CONVERT seems to be a procedure that does the same

as COLLAPSE.
· COPY ... AS ... ==> COPY ... TO ... (this is Gekko 2.0 syntax). Regarding COPY,

AREMOS allows for instance "COPY d:var1 as e:;" with an 'e:' to indicate the
destination databank. Gekko demands a '*' after the colon, so such a statement is
translated into "COPY d:var1 to e:*;".

· EXCELEXPORT ==> SHEET. A note is given on syntax differences.
· EXCELIMPORT ==> SHEET<import>. A note is given on syntax differences.
· FOR: Gekko tries to guess the type of the loop variable, if it is FOR y = x1 TO x2

BY x3. Here, if x1 and x2 look like dates, Gekko will use FOR data y =, else if
they look like normal values, Gekko will use FOR val y = Assign-variables
starting with 'per' (for instance #per0) are always deemed to have date-flavor!

· GRAPH ==> PLOT.
· IF: AREMOS apparantly accepts IF-statements without parentheses, for instance "IF

#v > 100; SERIES x = 200; END;". Gekko puts parentheses like this: "IF (#v >
100); SERIES x = 200; END;", to conform with Gekko syntax.

· INDEX: Syntax changed a bit, and options showbank=no and showfreq=no are set,
to correspond with AREMOS.

· OBEY ==> RUN.
· OPEN<protect> ==> just OPEN (Gekko databanks are protected as default).
· OPEN<primary> is changed to OPEN<edit>
· PRINT ==> PRT.
· RESTORE ==> gets a not about using RUN, where .opt is added to filename if this

extension is not there already.
· SET ==> OPTION.
· SET PERIOD ==> TIME.
· SET REPORT DECIMALS ... ==> Note that the syntax is: OPTION print fields ndec

... .

501Appendix

T-T Analyse

· SET REPORT COLUMNS ... ==> Note that the syntax is: OPTION print fields nwidth
=

· SET SAVEFILE ... ==> gets a note on using PIPE or PIPE con.
· SERIES with inline if-then-else are decorated with a comment about using the iif()

function. Note in general that "SERIES y = 100 rep *;" is not necessary in Gekko
("SERIES y = 100;" will do). Gekko will ignore such stray 'rep *', but they may
clutter the command files. SERIES labels like "SERIES 'label' y = x;" are
transformed into "SERIES <label = 'label'> y = x;".

· SOLVE ==> SIM.
· SPOOL ==> PIPE.
· STOP ==> EXIT.
· UNSPOOL ==> PIPE con.
· VIS ==> PLOT.

The translator keeps track of assign-vars, lists and matrices. Assign-vars get '%'-
identifier, lists keep their '#'-identifier, and matrices get '#'-identifier (apart from
this, please note that the Gekko matrix syntax is somewhat different from AREMOS
matrix syntax -- the translator does not handle these differences).

In addition:

· '!' is translated into '//'
· Double quotes (") are translated into single quotes (')
· List operators + and * are translated into || and &&.
· Double '#' like '##x' have a note about their proper translation ('%{%x}' or '#{%

x}')
· 'repeat' is changed to 'rep'
· Tries to eliminate spurious '|', for instance "PRINT a#i| + b#i|;" ==> "PRINT a%i +

b%i;". AREMOS accepts '|' almost anywhere, so AREMOS programs get easily
infected with too many of these. The elimination is heuristic.

· Numbers: Gekko 2.0 does not support '123.' to be the same as '123' or '123.0'. The
reason is that Gekko uses '..' for ranges (for instance #m[2..4]), where a number
like '123.' would interfere badly. So Gekko translates for instance '123.' into
'123.0'.

· Functions: Gekko does not support for instance "VAL v = log (10);", note the blank
between the log function and the parenthesis. So the translator removes such
blanks for the functions log(), exp(), pow(), abs(), pch(), dlog().

· Logical operators: In AREMOS they may be separated by blanks, for instance '< ='
instead of '<=' or '< >' instead of '<>'. Gekko removes such blanks.

· For lists, #a + #b ==> #a || #b, and #a * #b ==> #a && #b.
· Any '.cmd' is changed into '.gcm', for instance "RUN f.cmd;" ==> "RUN f.gcm;".
· Strings like 'the value is #x' are replaced with 'the value is {%x}'.
· Frequencies .a, .q and .m use '!' instead, for instance x.q ==> x!q.
· Variables on the left-handside get '%' or '#' if they are not series, for instance LIST

m = a, b; --> LIST #m = a, b;
· sum(0, a, b) is changed into sum(a, b). Gekko does not have this problem.
· An option field like SERIES <2020 2030> y = 100; is moved to the right of y, so it

becomes y <2020 2030> = 100;.

502 Gekko 3.0 user manual

T-T Analyse

8.2 Gekko 1.8 translator details

The Gekko 1.8 to 2.0 translator (cf. the TRANSLATE command) tries to translate
Gekko 1.8 command files into corresponding Gekko 2.0 command files.

The following commands are translated:

· ADD ==> RUN.
· CLEAR ==> RESTART.
· CLEAR<all> ==> RESET.
· CPLOT ==> CLIP.
· CLOSEALL ==> RESTART.
· CLOSEBANKS ==> RESTART.
· DIFPRT ==> COMPARE.
· DISPLAY ==> TELL.
· EFTER ==> SIM<after>
· GENR ==> SERIES. Ending '$' changed to ';'.
· GMULPRT ==> MULPRT<v>.
· HDG has quotes added.
· LIST: The old "LIST + #m a b c;" is changed into "LIST m = a, b, c;".
· MULBK ==> CLONE.
· MULBK bank ==> READ<ref>bank
· NDIFPRT ==> COMPARE<abs>.
· OPTION. Some options have been renamed.
· PPLOT ==> PLOT.
· RES ==> SIM<res>.
· SIM ==> SIM<fix>, if there has been ENDO/EXO statements.
· SKIP ... ==> /* ... */. Only skips until the next semicolon.
· STAMP ==> TELL currentDateTime();
· STRING ==> NAME. Most often, a Gekko 1.8 string corresponds to a Gekko 2.0

name.
· TRIMVARS ==> DELETE<nonmodel>.
· UDVALG ==> DECOMP.
· UPD ==> SERIES, also handles '$'-operator.
· VERS ==> TELL gekkoVersion();
· WPLOT ==> SHEET.
· filename ==> RUN filename

In addition:

· '()' is translated into '//'
· Lags/leads with soft parentheses are translated into brackets, for instance fY(-1)

==> fY[-1]. The same goes for years in soft parantheses: fY(2020) ==> fY[2020].
· Lines with '&' joins are handled (Gekko 2.0 uses ';' to end such blocks).
· Commas are set: for instance "PRT x1 x2 x3;" is changed into "PRT x1, x2, x3;".
· All commands are decorated with an ending ';' if it is missing.
· Time settings like "PRT 2010 2020 fY;" are changed into "TIME 2010 2020; PRT

fY;". Gekko 2.0 does not allow such (global) time settings outside <>-brackets.
· The translator changes '#' to '%' for scalars. The translator tries to keep track of

scalars and lists, so that lists keep their '#'-identifier.

503Appendix

T-T Analyse

· The UPD command with line breaks is handled specially (line breaks without '&'
joins were allowed for UPD)

· Any '.cmd' is changed into '.gcm', for instance "RUN f.cmd;" ==> "RUN f.gcm;".
· Some options are renamed.

504 Gekko 3.0 user manual

T-T Analyse

8.3 Gekko 2.0 translator details

The Gekko 2.0 to 3.0 translator (cf. the TRANSLATE command) tries to translate
Gekko 2.0/2.2/2.4 command files into corresponding Gekko 3.0 command files.

The following commands are translated:

· COMPARE has a note about changed syntax
· COLLAPSE has '.' changed into '!'
· DOWNLOAD has a note about quotes
· FOR has type and type symbol added.
· INDEX a*b m --> INDEX a*b TO #m. Added <showbank=no showfreq=no> option.
· IMPORT/EXPORT have a note about time periods and <all>
· (series pp, series qq) = laspchain(...) --> pp = laspchain(...).p; qq =

laspchain(...).q;
· LIST listfile m = ... --> #(listfile m) = ...
· NAME changed to STRING.
· hpfilter() and unpack() have CREATE removed.
· LIST: '&+' --> '||', '&*' --> '&&', '&-' --> '-'
· LIST: prefix --> .prefix(), suffix --> .suffix(), trim --> .unique(), sort --> sort(),

strip --> replaceinside().
· MATRIX: '||' --> ';'
· VAL, STRING, DATE have % added on left-hand side and command removed.
· LIST and MATRIX have # added on left-hand side and command removed.
· SERIES has command removed.
· SERIES: Operator '^' --> '^=', '%' --> '%=', '+' --> '+=', '*' --> '*=', '#' --> '#='.
· SERIES #m = ... --> {#m} = ...
· SERIES y = 1, 2, 3 --> y = (1, 2, 3);
· SERIES y = 100 rep * --> y = 100.

In addition:

· Index [0] --> length(), for instance #m[0] --> #m.length().
· Use of 'strip' in list has a syntax explanation
· A string like 'ab %s cd' is transformed into 'ab {%s} cd' (string interpolation).
· piece() --> substring()
· search() --> index()
· strip() --> use replace()
· trim() --> strip()
· difference() --> except()
· hpfilter() --> changed order
· fromseries() --> changed order
· avgt() --> changed order
· sumt() --> changed order
· An option field like SERIES <2020 2030> y = 100; is moved to the right of y, so it

becomes y <2020 2030> = 100;.

505Appendix

T-T Analyse

8.4 Assignments

Assignments are of the form y = x;, that is, assigning x to y. There may be a type

indicator, like SERIES y = x;, stating that y should become a series type.

Note in general that when assigning variables, the left-hand side is always assigned
to a copy of the right-hand side.

There are the following type indicators:

· series: SERIES y = ...;

· val: VAL %y = ...;

· date: DATE %y = ...;

· string: STRING %y = ...;

· list: LIST #y = ...;

· map: MAP #y = ...;

· matrix: MATRIX #y = ...;

· var: y = ...; or %y = ...; or #y = ...; or VAR y = ...; or VAR %y = ...; or
VAR #y = ...;

· Note that var type in the descriptions below includes the common case where the
type is not explicitly stated.

· In the following, LHS means left-hand side
· In the following, RHS means right-hand side

There are the following rules regarding assignments.

LHS name starts with % symbol (scalar).

· Fails if there is LHS type indicator and this is not val, date, string or var type.
· %y = ...timeless...;. The RHS is a timeless series. If the LHS type is val or var,

the LHS becomes a val with the value of the timeless series.
· %y = ...val...;. The RHS is a val. If the LHS type is val or var, the LHS becomes

the RHS val. If the LHS type is a date, Gekko tries to convert the val into a date
(for instance, 2020 into 2020a).

· %y = ...string...;. The RHS is a string. If the LHS type is string or var, the LHS

becomes the RHS string.
· %y = ...date...;. The RHS is a date. If the LHS type is date or var, the LHS

becomes the RHS date. If the LHS type is a date, Gekko tries to convert the val into
a date (for instance, 2020 into 2020a).

· %y = ...1x1 matrix...;. The RHS is a 1x1 matrix. If the LHS type is val or var,

the LHS becomes the RHS matrix element.

Left-hand side name starts with # symbol (collection).

· Fails if there is LHS type indicator and this is not list, map or matrix.
· matrix #y = ...series...;. The RHS is a normal series. If the LHS type is

matrix, the LHS becomes a matrix corresponding to the values inside the series. If

506 Gekko 3.0 user manual

T-T Analyse

the RHS is a timeless series, and the LHS type is matrix, the LHS becomes a matrix
corresponding to the value inside the series (duplicated for each period in the
current time period). If the type is not stated, for instance #y = a;, Gekko will not

auto-convert the series a into a list of values #y (this could create confusion in

relation to naked list definitions).
· #y = ...list...;. The RHS is a list. If the LHS type is list or var, the LHS

becomes a list corresponding to the RHS list.
· #y = ...map...;. The RHS is a map. If the LHS type is map or var, the LHS

becomes a map corresponding to the RHS map.
· #y = ...matrix...;. The RHS is a matrix. If the LHS type is matrix or var, the

LHS becomes a matrix corresponding to the RHS matrix.

Left-hand side does not start with % or # symbol (series).

· Fails if there is LHS type indicator and this is not series
· y = ...series...;. The RHS is a series. If the LHS type is series or var, the LHS

becomes a series corresponding to the RHS series (frequencies must conform).
· y = ...val...;. The RHS is a val. The val is duplicated into all of the series

observations.
· y = ...list...;. The RHS is a list. The list elements are put into the series

observations (the list elements must be of val type, and if the last list element is
stated with rep *, the list is expanded to fit with the time period).

· y = ...1x1 matrix...;. The RHS is a 1x1 matrix. The matrix element is

duplicated into all of the series observations.
· y = ...nx1 matrix...;. The RHS is a nx1 matrix. If the size of the matrix fits the

time period, the matrix elements are put into the series observations.

8.5 Missings

Gekko timeseries, including array-timeseries, can be represented via dimensions,
where one of the dimensions is time. In order to understand the concepts, a practical
example is used throughout this section. The data contains information on 4- and 5-
year old kids, measured at the beginning of August each year, cf. the following data
table:

Educatio
n

Age Year Number

k 4 2011 63

k 4 2012 65

k 5 2011 35

k 5 2012 37

s 5 2011 26

507Appendix

T-T Analyse

This table can be thought of as representing "rows" of data, or data observations. The
columns apart from the number count can be thought of as dimensions, in this case
education (kindergarden or school), age, and year. It is noted that there are no data
rows corresponding to 4-year old schoolchildren, and the last data row regarding 5-
year old schoolchildren in 2012 seems to be missing.

In Gekko, the data could be represented as the following timeseries:

reset; time 2011 2012;
#e = k, s;
#a = ('4', '5');
x = series(2); //2 dimensions
x[k, 4] = 63, 65;
x[k, 5] = 35, 37;
x[s, 5] = 26, m(); //m() = missing
PRT <n> x;

 x[k, 4] x[k, 5] x[s, 5]
 2011 63.0000 35.0000 26.0000
 2012 65.0000 37.0000 M

Note that x is two-dimensional, since there are two dimensions apart from the time

dimension. Note also that using PRT <n> x[#e, #a]; would fail with an error

(missing subseries/element x[s, 4]). We will return to that question later on. Each

column in the above print represents an array-subseries, where x is the array-series,

and for instance x[k, 4] is an array-subseries belonging to x.

In GAMS, the same would look like this:

set e /k, s/;
set a /4, 5/;
set t /2011, 2012/;
parameter x(e, a, t);
x('k', '4', '2011') = 63;
x('k', '4', '2012') = 65;
x('k', '5', '2011') = 35;
x('k', '5', '2012') = 37;
x('s', '5', '2011') = 26;
display x;

 2011 2012
k.4 63.000 65.000
k.5 35.000 37.000
s.5 26.000

Here, the x variable (defined as a parameter) is three-dimensional, since in GAMS,

the time dimension is just a dimension among the other dimensions. The print looks
similar, but it should be noted that whereas in Gekko the data is represented by
three building blocks (the three array-series x[k, 4], x[k, 5], and x[s, 5]), in

GAMS the data corresponds to the table rows, that is, seven building blocks, one for
each value shown in the GAMS print (the combination s.5 in 2012 does not exist).

Missing series or missing data value?

508 Gekko 3.0 user manual

T-T Analyse

From the Gekko and GAMS prints, it is seen that the data value x[s, 5][2012] is

missing, whereas it is a bit less evident to see that the subseries x[s, 4] does not

exist at all.

As indicated above, GAMS does not make the distinction between missing series or
missing data values. GAMS treats the elements of a variable x as simply rows of

multidimensional data, where the time dimension is not special. In Gekko, the fact
that there are no rows corresponding to the combination s, 4 entails that the array-

series x does not contain any array-subseries x[s, 4], so that particular subseries is

a missing series (does not exist inside x).

In contrast, regarding the data value x[s, 5][2012], the combination x[s, 5]

[2011] is present among the data rows, and therefore the subseries x[s, 5] does

exist (with missing value for the year 2012).

As it is seen, Gekko distinguishes between missing series and missing data values,
and in many cases, this distinction can be practical. In the concrete case, if the data
is supposed to have been updated for the period 2011-12, we would not expect an
array-subseries to contain a missing data value like x[s, 5][2012]. It could be the

case that there are no 5-year olds in school in 2012, for instance if the school is
closing for new pupils. But in that case, it would have been sensible to include an
explicit row with the value 0 to indicate that, instead of just skipping the row:

Educatio
n

Age Year Number

s 5 2012 0

Because the default data value for a Gekko series is missing value, with an explicit 0,
the user would know that someone actually set that value to 0 -- that is, updated it
(in GAMS, the special value eps could be used to indicate a "real" updated 0). Setting

such missing data values to 0 in Gekko does not put any burden on processor or
memory. In contrast, creating an array-subseries x[s, 4] in Gekko and filling it with

missing values (or 0's) would be a waste of processor and memory ressources. This
particular combination (4-year olds in schools) simply does not exist, and should
therefore not take up any memory space. Such cases where some sub-series are non-
existing are very common, because data is often sparse in the non-time dimensions.
For instance, "education" may span nursery, kindergarden, school, secondary
education, etc., but for each of these, there is typically only a limited age range. For
instance, storing array-subseries full of missing data values representing 10-year olds
in kindergarden does not make much sense, and is certainly a waste of space.

There are many cases where a missing data value is always to be interpreted as
missing in the sense of "needs to be updated" or "forgotten". An example could be a
timeseries representing GDP, which simply does not make sense with the value 0.
Another example is for instance the value of deliveries from one aggregate sector to
another. If an array-subseries containing such data has data in 2011 and 2013, but a
missing data value in 2012, this is probably an error. The nominal value of input-
output deliveries between sectors do not normally change from non-zero to zero from

509Appendix

T-T Analyse

year to year, so a missing value probably means that someone should update that
value. Still, regarding deliveries between small sectors, such a value may become
exactly 0 in some years, but representing this with a missing value should be
considered bad practice. In that case, the user should by all means use a real zero to
indicate that the data has been updated and is not just forgotten. All in all, the
sparsity of data is often less prevalent in the time dimension than in other
dimensions.

Missings, and three Gekko options

As noted above, Gekko distinguishes between missing series and missing data values,
because this distinction is sometimes useful, for instance when summing up or
printing array-series. When for instance summing up the nominal value of input-
output deliveries between aggregated sectors, one of the deliveries may contain a
missing value for, say, the year 2012. This may be unexpected, and as a
consequence, the sum will contain a missing value for that year, too. In this way, a
probable error can be identified and corrected, instead of just treating the value as if
it had been 0. In contrast, when summing up data like this, a missing array-subseries
is to be expected, because not all sectors deliver goods to all other sectors. So such a
missing array-subseries can just be skipped (treated as 0), when summing up or
printing, and therefore the distinction between missing series and missing data
values can be useful.

To return to the kindergarden/school example, there is a missing array-subseries
x[s, 4], corresponding to 4-year old schoolchildren. Such a series is absent, simply

because there are no 4-year olds in the school classes. So in that sense, it is correct
to treat x[s, 4] is implicitly containing 0's. In contrast, the missing data value x[s,

5][2012] is suspect. It could mean that the school has stopped admitting new 5-year

old pupils in 2012, but is more probably an error (missing update).

In Gekko, there are the following options to control how missing series and missing
data values are treated (default values are shown, too):

· OPTION series array calc missing = error;
· OPTION series array print missing = error;
· OPTION series data missing = m;

1. The first option (calc) manages what happens if a whole array-subseries is

missing, for instance in the expression x[s, 4] or sum((#e, x[#e, 4]), where #e

contains the element s. The calc option deals with "controlled" indexes, that is,

either a direct index like the s in x[s, 4], or a list index like x[#e, 4], where #e

is controlled by for instance a sum-function.
2. The second option (print) manages "uncontrolled" indexing of array-subseries, for

instance PRT x[#e];, where #e is not "controlled" via for instance a sum function.

In that case, the elements of x[#e] are unfolded into columns (instead of being

summed), and the option controls what happens if some of the "uncontrolled"
subseries do not exist.

3. The third option (data) manages what happens if a series contains missing data

values.

510 Gekko 3.0 user manual

T-T Analyse

Regarding the first and second options: note that a statement like y = x[#e]; is not

legal. Using list names as indexes in general assignments is only possible if the list is
controlled in a sum-function, but in the PRT/PLOT command, a statement like PRT

x[#e]; with a free-floating (non-controlled) #e list is implicitly converted into PRT

unfold(#e, x[#e]); where the unfold()-function puts the elements into a list for

subsequent printing/plotting as columns.

The following sections explains this in more details, with examples.

1. First option: calc missing

We will first take a look at OPTION series array calc missing. This option deals

with controlled sets/lists, for instance a sum like sum((#e, #a), x[#e, #a]), looping

over the combinations of the sets/lists #e and #a. Consider the following, building

upon the Gekko-code shown at the start of the section:

PRT <n> sum((#e, #a), x[#e, #a]);

This will fail with an error, because the array-subseries x[s, 4] does not exist. With

OPTION series array calc missing = m;, Gekko can be asked to treat such an

array-subseries as if it contained missing values instead, but in that case the sum will
just be missing for each year. Instead, treating the missing subseries as 0's does the
trick:

OPTION series array calc missing = zero;
PRT <n> sum((#e, #a), x[#e, #a]);

 sum((#e, #a
), x[#e, #a])
 2011 124.0000
 2012 M

Now there is at least a value in 2011, whereas the value in 2012 is missing, since
x[s, 5][2012] has a missing data value. But the missing array-subseries x[s, 4] is

ignored as expected.

2. Second option: print missing

Next, we will take a look at OPTION series array print missing. As mentioned

above, this option affects uncontrolled sets/lists,

PRT <n> x[#e, #a];

This will abort with an error, because the array-subseries x[s, 4] does not exist.

Now, you may try the following:

OPTION series array print missing = m;
PRT <n> x[#e, #a];

511Appendix

T-T Analyse

 x[k, 4] x[s, 4] x[k, 5] x[s, 5]
 2011 63.0000 N 35.0000 26.0000
 2012 65.0000 N 37.0000 M

Here, the missing x[s, 4] is shown as missing data values (actually 'N' instead of 'M'
to indicate that the series is non-existing). Else, 0's can be printed instead, for
instance:

OPTION series array print missing = zero;
PRT <n> x[#e, #a];

 x[k, 4] x[s, 4] x[k, 5] x[s, 5]
 2011 63.0000 0.0000 35.0000 26.0000
 2012 65.0000 0.0000 37.0000 M

Here, it is hard to tell from the print whether the subseries x[s, 4] exists or not.

Finally, the column may be skipped altogether with skip, for instance:

OPTION series array print missing = skip;
PRT <n> x[#e, #a];

 x[k, 4] x[k, 5] x[s, 5]
 2011 63.0000 35.0000 26.0000
 2012 65.0000 37.0000 M

This corresponds to what GAMS does when printing, and is practical for sparse data.

3. Third option: data missing

Finally, there is OPTION series data missing. This option is normally set to m

(missing), but if set to zero, any expression containing a databank timeseries (either

a normal series or array-subseries) with a missing data value will be interpreted as if
the data value was 0. We may try the following, again building upon the example at
the start of this page:

OPTION series array calc missing = zero;
OPTION series data missing = zero;
PRT <n> sum((#e, #a), x[#e, #a]);

 sum((#e, #a
), x[#e, #a])
 2011 124.0000
 2012 102.0000

The first option handles the missing subseries x[s, 4], whereas the second option

handles the missing data value x[s, 5][2012]. Another example could be a print

without summing. In that case, the #e and #a lists are non-controlled, and OPTION

series array calc missing will not have any effect. Instead, OPTION series

array print could be used:

OPTION series array print missing = zero;

512 Gekko 3.0 user manual

T-T Analyse

OPTION series data missing = zero;
PRT <n> x[#e, #a];

 x[k, 4] x[s, 4] x[k, 5] x[s, 5]
 2011 63.0000 0.0000 35.0000 26.0000
 2012 65.0000 0.0000 37.0000 0.0000

Instead, the following option is perhaps more suitable:

OPTION series array print missing = skip;
OPTION series data missing = m; //default
PRT <n> x[#e, #a];

 x[k, 4] x[k, 5] x[s, 5]
 2011 63.0000 35.0000 26.0000
 2012 65.0000 37.0000 M

Here, the missing subseries x[s, 4] is skipped, and the missing data value x[2, 5]

[2012] is shown as M.

Combining the options, and the <missing = ignore> option

The above-mentioned options can be combined:

OPTION series array print missing = skip;
OPTION series array calc missing = zero;
OPTION series data missing = zero;
PRT <n> sum((#e, #a), x[#e, #a]), x[#e, #a];

 sum((#e, #a
), x[#e, #a]) x[k, 4] x[k, 5] x[s, 5]
 2011 124.0000 63.0000 35.0000 26.0000
 2012 102.0000 65.0000 37.0000 0.0000

The first column is the sum of the next three colums, and the missing subseries x[k,

5] and missing data value x[2, 5][2012] are handled as if they were 0. Note that in

the first column, #e and #a are controlled by the sum function (and thus managed by

the array calc option). The column corresponding to x[s, 4] is skipped, because it

does not exist, and this is managed by the array print option for uncontrolled

indexes.

Since a print like the above is often practical if missing series and missing data values
are to be ignored, Gekko contains the local option <missing = ignore> for both

PRT/PLOT, but also for assignments. The local option sets the following options
temporarily, and reverts them after the command:

OPTION series array print missing = skip;
OPTION series array calc missing = zero;
OPTION series data missing = zero;

Example:

513Appendix

T-T Analyse

PRT <n missing = ignore> sum((#e, #a), x[#e, #a]), x[#e, #a];
y <missing = ignore> = sum((#e, #a), x[#e, #a]);
PRT <n> y;

 sum((#e, #a
), x[#e, #a]) x[k, 4] x[k, 5] x[s, 5]
 2011 124.0000 63.0000 35.0000 26.0000
 2012 102.0000 65.0000 37.0000 0.0000

 y
 2011 124.0000
 2012 102.0000

The first of the above options is set to skip, not zero, to avoid printing of superfluous

uncontrolled array-subseries that do not exist.

Illegal mathematical operations

OPTION series data missing only affects data values directly accessed from a

timeseries (possibly array-subseries) residing in a databank, and not for instance the
results of expressions, functions, etc. Example:

RESET; TIME 2011 2012;
OPTION series data missing = zero;
y1 = -2, 2;
ly2 = log(y1);
PRT <n> log(y1), ly2;

 log(y1) ly2
 2011 M 0.0000
 2012 0.6931 0.6931

In this print, with OPTION series data missing = zero;, log(y1) has a missing in

2011, whereas ly2 is 0 in 2011. The reason is that in log(y1), the missing value

does not originate from a missing data value in a databank series (rather, the missing
values stems from the mathematical operation log(-2)), whereas in the y2 case, the

missing value does originate from a data value in a databank series (ly2, stored in

the first-position databank, has a missing value in 2011). With OPTION series data

missing = m;, we would get

 log(y1) ly2
 2011 M M
 2012 0.6931 0.6931

In GAMS, we get the following:

set t /2011, 2012/;
parameter y1(t);
parameter ly2(t);
y1('2011') = -2;
y1('2012') = 2;

514 Gekko 3.0 user manual

T-T Analyse

ly2(t) = log(y1(t));
display ly2; //display log(y1) or log(y1(t)) is not legal

2011 UNDF, 2012 0.693

So GAMS calculates and stores ly2 in 2011 as 'undefined' (UNDF), not 0.

Note

See also this Gekko blog post on array-series: http://t-t.dk/gekko/array-series.

Index 515

T-T Analyse

Index

- . -
.NET 42

- A -
ACCEPT 81, 273

ANALYZE 83, 85

Appendix 499

AREMOS 393, 487, 500

- B -
Basic concepts 19, 26, 30, 36

- C -
C# 42

CHECKOFF 87

CLEAR 89

Clear screen 95

CLIP 91

Clipboard 91

CLONE 92

CLOSE 93

CLS 95

Cmd prompt 373

COLLAPSE 96

Combine timeseries 363

Command file 327

Command overview 69, 74, 77

Commands in Gekko 67

Commands in Gekko - reading guide 68

COMPARE 98

Compare Gekko software 486

Conditional 134, 135, 170

COPY 102

Correlation 83, 85

COUNT 107

CREATE 110

- D -
Data 93, 142, 174, 251, 316, 403

Databank 89, 93, 142, 167, 174, 251, 316, 320,
403

Databank copy 92

Databanks 211, 397

DATE 112

DECOMP 117

Decompose 117

DELETE 121

Demo 44

DISP 123

Display equation 123

DOC 126

Documentation 126

Dos prompt 373

DOWNLOAD 128

- E -
EDIT 132

Editor 132, 409

END 134, 135

ENDO 136, 396

Environment 186

Equations 234, 354

EViews 494

Examples 44

Excel 346

Execute 327

EXIT 140

EXO 141, 396

EXPORT 142, 174, 403

External file 93, 142, 174, 251, 316, 403

- F -
F1 41, 168

File 274

Filenames 39

Files 39

FINDMISSINGDATA 147

FOR 150, 326

Forward-looking model 449

Gekko 3.0 user manual516

T-T Analyse

Frequency 96, 187, 406

Function 156, 288, 326, 413, 414

Function keys 40

Functions 413, 414

- G -
Gekko 1.8 393, 502, 504, 505, 506

Gekko software 42

Gekko.ini 186, 257, 323

Global time 387

Goals and means 136, 141

GOTO 162, 165, 209, 384

Graph 277

Graphics 277

Guided tour 44

- H -
HDG 167

HELP 41, 168

Hlp 41, 168

- I -
i 48

IF 170, 326

IMPORT 174

in-built 156

Index 181, 314

INI 17, 186, 327

Interface 40

INTERPOLATE 187

Introduction to Gekko 7

ITERSHOW 189

- L -
Leads 449

Linear algebra 216

LIST 191

LOCK 211, 397

Loop 134, 135, 150

- M -
map 212, 331, 401

maps 156

MATRIX 216

MEM 226

MENU 228, 375

Meta-information 126

Missing value 147, 360

MODE 74, 77, 231

Mode: data 231

Mode: sim 231

Mode: universal 231

MODEL 234, 354, 356

MULPRT 241, 295

- N -
NAME 366

New features 9, 14

Notepad 132

- O -
OLS 14, 247

Online databank 128

On-line help 41

OPEN 93, 251

Open source 42

OPTION 257

Options 257

Ordinary least squares 247

- P -
Path 39

PAUSE 81, 273

Period 112

PIPE 274

PLOT 277

Print 123, 241, 295

PROCEDURE 156, 288

Program 156, 288, 327

PRT 241, 295

Index 517

T-T Analyse

- R -
R 307, 309, 310

R_EXPORT 307

R_FILE 309

R_RUN 310

READ 316

REBASE 314

Rebase timeseries 314

Redirect 274

RENAME 320

RESET 322

RESTART 323

RETURN 326

RUN 327

- S -
Scalar 366

Scalar variable 112, 226, 366, 398

Script 327

Search 181

Seasonal correction 406

SERIES 331, 401

Set period 387

Setup of Gekko 17

SHEET 346

SIGN 354

SIM 87, 136, 141, 189, 234, 356, 448, 449

Simulation 87, 136, 141, 189, 356, 396, 448, 449

SMOOTH 360

Solve 356, 448, 449

SPLICE 363

Spreadsheet 346

Start-up 186

STOP 365

Stop Gekko 140, 326, 365

STRING 366, 385

Syntax basics 47

Syntax rules 48

SYS 373

System shell 373

- T -
TABLE 228, 375

TARGET 384

TELL 375, 385

TIME 387, 390

TIMEFILTER 390

Timeseries 331, 395, 401

Timeseries functionality 83, 85, 96, 147, 187, 314,
331, 360, 363, 395, 401

Translate 393, 500, 502, 504, 505, 506

TRUNCATE 395

- U -
UNFIX 396

UNLOCK 211, 397

User defined function 156, 288

User defined procedure 156, 288

User input 81

- V -
VAL 398

Value 398

- W -
Wait 273

Wildcard 181, 191, 212

WRITE 142, 316, 403

- X -
X12A 406

XEDIT 409

XmlNotepad 409

