@ Gekko 3.0 user manual

Gekko Timeseries & Modeling

T-T Analyse




2 Gekko 3.0 user manual

Table of Contents

Part| Gekko 3.0 user manual 6
T 1 [T =T 10 ] = 9
2 Note about GEeKKO 3.0 ......cceuiiieiiiiciirei e e rrassra s s s rea s e e s rra s enn s rnnanenasennnsrnnn 14
B T 1 o 17
L R = = = Lo oo o e -Y | = PP 19
£ S I T « 1= g (o Y o £ 26
6 Databank SearCh .........ooceoiiiiiiiiiir e e e rra e r e e ennaes 26
A4 1T o T o C= T 30
S (V1= N T R 36
L T o (=1 3 =Ty = 39

10 FUuNction KeYsS, efC. ..o e 40
11 Help SYSEeM .o 41
12 Under the Rood ....... .o it r e e e e e 42
T €U T =Y I o 44

Part Il Gekko syntax basics 46
1 Basic SYNtaX FUIES ......oiiiieeiiiiieiiiir i 48
2 More about SYNTAX .....cccuiiiieiiiiiiii i e e e na e nan 53
3 Indexing: list, MatriX, MAP ......ccccoiiiiiiiiiiirr s s s s s e s ra s rn s rnnrnns 58
4 Syntax diagrams ........coeeiiiiiiieiiiiii e 61

Part Ill Gekko commands 66
2L T 1 T e 111 o [ 68

2 COMMANA OVEIVIEW ....cicuiiiieiiiniriesssenssrrmsssenasrrassrrasssensssnmsssrnsssennssrnnsssensssensssennnsennssnnns 69
Sim-mode command overview 74
Data-mode command overview 77

B X0 04 = PSPPSR 81
L N I 7.4 PPt 83
£ = 110 T 0 G 85
T 04 =03 1 1 PP 87
T CLEAR ...ttt ertee s s e et e e e s s e e et e e e s e e na e e e raa e e enaa e e ennntrennntrernnneennnnnns 89
S 4 1 | 91
L2 05 0 1 | P 92
O 0 10 2 PP 93
T O TP 95
72 0 I I Y o 96

T-T Analyse



Contents 3

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

L0810 1 o 98
0310 ] o N 102
0310 LU O 107
0 U 109
L0 ] [N N 110
0 I 112
0 00 1 | 117
0 I I 121
0] 123
9 0 T O 126
DOWNLOAD ... e raa s s s e e e e sasa s e s e e e s e nnaa s e e aees 128
0 132
T 134
END e e e 135
ENDO ... e e e 136
) 140
O 141
EXPORT . e e e e 142
FINDMISSINGDATA ... s e ssaa s e e naa e 147
0 150
070 T 156
L 0 ] - 7 N 162
€0 0 165
1L 167
| T 168
| 170
12 0 174
1 181
] 186
INTERPOLATE ... e e saaa s s naa e 187
ITERSHOW ... s s s e 189
1 191
0 T 0 209
0 T 0 211
M AP e e e e nn e 212
N I D 216
T 226
MENU e e e e e 228
11 231

T-T Analyse



Gekko 3.0 user manual

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

TRANSLATE ...
TRUNCATE ...

T-T Analyse



Contents 5

91
92
93
94

Part IV

Part V

Part VI

Part ViI

1
2

Part Vil

A H ON =

R 7 401
A L =S 403
) 17 - 406
(=3 ] [ 409
Gekko functions 412
L1 0 1 1 oY 2 = 414
Gekko solvers 447
Newton-Fair-Taylor ... 449
Guided tours 456
Guided tour: MOdeliNg ........ocoeeiiiiiii e e e e 457

1. Installation and download 457

2. Graphical interface etc. 458

3. Historical simulation 461

4. Multiplier analysis (shocks) 469

5. Add-factors etc. 474

6. Goal-search etc. 477

7. Forward-looking 481
Comparison with similar software 485
Compare with AREMOS ... s e e e na s e e r e e enas 487
Compare With EVIEWS ......c.oce i s s s rra s s re s s s e s e s e s e s m e mn e ens 494
Appendix 498
AREMOS translator details .........c.coieiieiiiiiiiiiiiccrc e e e e e e e e e enas 500
Gekko 1.8 translator details .........ccocoieiiiiiici e 502
Gekko 2.0 translator details ..........ccccoieiieiiiiiiii e e e 504
2 ST T 4T 3 S 505
L= T 506
Index 515

T-T Analyse



Part |



Gekko 3.0 user manual 7

Gekko 3.0 user manual

Gekko 3.0 was released in April 2019 as a stable version, but some glitches are still
to be expected. Note that in some sections on the help pages, there is a "[New in
3.0.x]" marker, which indicates that the functionality is new in that particular Gekko
version in the 3.0 series. There are still some known issues regarding DECOMP and
TIMEFILTER (regarding issues and stability, see this page).

Gekko Timeseries and Modeling Software is an open-source software system for
handling and analyzing timeseries data, and for solving and analyzing large-scale
economic models. See the Gekko homepage: www.t-t.dk/gekko. The current 3.0
version is a release version (stable version). See the page www.t-
t.dk/gekko/gekkoversions regarding the different Gekko versions available at the

moment, and how to choose between them.
The user manual contains the following chapters:

e Introduction. Introductory chapter.

o Gekko syntax basics. In this chapter, the syntax is described.

o Gekko commands. This chapter describes in detail the purpose of the different
Gekko commands, the syntax to be used, the results produced, together with
examples etc.

o Gekko functions. Gekko functions can be used in expressions. The input

parameters and the output type is described. The functions are divided into

categories.

Gekko solvers. A description of some of the Gekko solvers.

Guided tours. Step-by-step examples with screenshots etc.

Comparison with similar software. Gekko is compared to AREMOS and EViews.

Appendix. More info on automatic translation.

The present introductory chapter contains the following sections:

e New features. A list of changes in Gekko since the previous version.

e Setup. How to setup Gekko on a pc.

e Basic concepts. An overview of some of the main capabilities and concepts of
Gekko.

e Time periods. Explaining how global time and local time works.

e Databank search. Describes how databanks are searched for variables in Gekko.

e Wildcards. Explains the special rules concerning wildcards and type/frequency

symbols.

Naked list. Explains the logic of naked lists.

Filenames. How filenames and paths are handled in Gekko.

Function keys. A list of function keys like F1, F2, etc. in Gekko.

Help system. Description of the in-built help system.

Under the hood. A short section on some of the main technologies/components

used in Gekko.

e Guided tour. Some step-by-step examples of doing stuff with Gekko (mostly how to

solve models).

T-T Analyse


http://www.t-t.dk/gekko
http://www.t-t.dk/gekko/gekkoversions
http://www.t-t.dk/gekko/gekkoversions

Gekko 3.0 user manual

T-T Analyse



Gekko 3.0 user manual 9

1.1

New features

The current version of Gekko 3.0 is a release version. This means that it is stable,
has been tested thoroughly, and that the syntax and functionalities are fixed. Users
of the Gekko 3.0 stable version are in general advised to upgrade to the 3.1.x series.
The 3.1.x series is a kind of "stable" development series, where care is taken not to
break anything relative to the 3.0 version. The 3.1.x versions contain some extra
functionality, but also improved error messages, improved graphical interface, etc.
Read more about Gekko versions her: www.t-t.dk/gekko/gekkoversions.

Gekko is under continuous development, so the features are augmented on a regular
basis in the development versions (versions with an uneven second number, for
instance 3.1.x). You can find more detailed descriptions here (development versions),
or even more detailed in the changelog. Regarding Gekko 2.0 and earlier, see this
page.

Gekko 3.0

Syntax-wise the syntax changes from 2.0/2.2/2.4 to 3.0 are not quite as dramatic as
the changes from 1.8 to 2.0. Version 3.0 is more a question of new capabilities,
improving upon existing capabilities, cleaning up the syntax, and providing general
consistency. Regarding model solving and the way databanks are opened and closed,
nothing has been changed from 2.4 to 3.0, in order to keep these parts of Gekko
stable. There is an automatic translator from 2.0/2.2/2.4 available, cf. TRANSLATE.
The most significant changes from 2.4 to 3.0 are the following:

e All variables types, series, value, string, date, list, map, and matrix, now reside in
databanks, and all variable types can be stored in .gbk databank files.

e Assignment of variables no longer needs to include type. So SERIES x = 5; VAL
v = 100; MATRIX #m = [1, 2]; can now be written more compactly x = 5; %v
100; #m = [1, 2];.To be completely sure of the type of for instance %v, you can
still use for instance vAL %v = 100;. Note also that in Gekko 3.0, you must use %
or # type symbols on the left-hand side, so for instance VAL v = 100; must be VAL
$v = 100; in Gekko 3.0.

e Series variables all use frequency indicator !a (annual), !g (quarterly), 'm
(monthly) or !u (undated). These indicators can often be omitted, for instance pRT
x; to print out x of the current frequency. Use the indicators to access a series of
another frequency than the current, or for mixed frequency use.

e Map is a new variable type that stores variables by name. Maps are like mini-
databanks and are among other things handy for bundling variables together, for
instance when getting variables in and out of user-defined functions.

e Lists may now store any type of variables, not just strings. The list functionalities
have been augmented, including list functions. Two-dimensional listfiles (lists of
lists) are supported, using a .csv-like format. Note that list definitions in Gekko 3.0
generally include parentheses, for instance ('a', 'b') for a list of two strings.
However, in the LIST and FOR commands, you may use a 'naked' list definition, for
instance #m = a, b; being equivalentto #m = ('a', 'b'),or #m = 1, 2; being

I oe

T-T Analyse


http://www.t-t.dk/gekko/gekkoversions
http://t-t.dk/gekko/devel
http://t-t.dk/gekko/changelog
https://t-t.dk/gekko/whats-new/
https://t-t.dk/gekko/whats-new/

10

Gekko 3.0 user manual

equivalent to #m = (1, 2);. Instead of LIST<direct> from Gekko 2.4, the user can
just use a naked list in Gekko 3.0. See more on naked lists.

Introduction of local and global databanks. The local databank is used for
temporary/discardable variables (for instance inside functions/procedures), and the
global databank can be used for permanent storage of settings etc. that are
intended to survive for instance READ and CLEAR statements. In combination with
these banks, there are the new commands LOCAL and GLOBAL to denote such
variables. Apart from that, the databank logic is exactly the same as in Gekko 2.4.
The local databank is searched first, and the global databank last (also in sim-
mode).

BLOCK ... END is a new structure to set time period and/or other options
temporarily, setting them back after the block is finished.

Since series calculations are treated more like vector operations in Gekko 3.0, lags
no longer accumulate period-for-period, if the left-hand side variable is present
with lags on the right-hand side (so-called "lagged endogenous"). So a series
expression like x = x[-1] + 1; no longer accumulates automatically (augments x
with 1 for each period); instead the alternatives x ~= 1; or x <d>= 1; could be
used. If accumulating behavior is needed, the <dyn> option can be set, for instance
x <dyn> = x[-1] + 1;, or for several series statements a block structure can be
used: BLOCK series dyn = yes; ... ; END;. Setting dynamic mode affects speed
negatively, and should therefore not be set unless needed.

Wildcard lists are syntactically changed from for instance [a*x] to ['a*x'] toO
obtain a list of strings matching the wildcard, or {'a*x'} if the matched strings are
going to be used as variable names (for instance in PRT, etc.). In commands that do
not accept expressions, for instance COPY, INDEX, DISP, etc., the shorter 'naked'
wildcard a*x is legal too.

PRT and PLOT now handle mixed frequencies in the same plot/print.

PRT/PLOT works on non-indexed array-series, for instance PRT x; instead of PRT
x[#1i, #3j1; (where x is an array-series).

User-defined functions and procedures have been reworked for Gekko 3.0: they can
be accessed from anywhere, as long as they have been defined chronologically
before the call. The old option library file is now obsolete. A command file with
user functions/procedures can just be loaded with RUN in gekko.ini, and
subsequently the functions/procedures will be available until the next
RESET/RESTART (functions/procedures are not stored in databanks).
Functions/procedures support default values and prompting.

User-defined functions and procedures may use a <>-field to indicate time
parameters. Hence, a user-defined function scale () may be called like

scale (<2010 2020>, x), and a procedure scale may be called like scale <2010
2020> x;. Inside the functions/procedures, these time parameters can be accessed
as dates, and if they are omitted in the call, the time parameters are set to
correspond to the the local/global Gekko time period. The new <>-field is also used
in some of the inbuilt functions: avgt(), sumt(), hpfilter(), laspchain(), laspfixed(),
pack(), unpack(), time().

All functions (including user-defined functions) can be called as object functions on
the first argument (not counting time parameters): this is called Uniform Function
Call Syntax (UFCS). So a function like for instance f (x, y) can generally be
written as x. f (y) . Therefore, instead of for instance f (#m, %s), you may use

#m. f (%s). Such functions can be chained, for instance

T-T Analyse


https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

Gekko 3.0 user manual 11

#m.extend (#¥ml) .remove ('a') .sort (), providing a more fluent syntax than the
equivalent and 'backwards' sort (remove (extend (#m, #ml), 'a')).

A new name type is introduced for function and procedure arguments, in order to
avoid unnecessary single quotes. You may define for instance PROCEDURE f name $%
x; PRT ref:{%x}; END; f al;.After this, £ al; will print out a1 from the Ref
databank, which is more convenient than having to type £ 'al';. Inside the
function/procedure, the name %x works just like a string %x.

The NAME command is obsolete, so for instance NAME %s = 'a'; is not legal.
Instead, use STRING and refer to the string with {}-curlies. For instance s =
'bvat'; PRT {%s};. Note that there is a name-type for functions/procedures in
order to avoid quoted argument strings.

A lot of new in-built functions are added to deal with variable names represented as
strings, for instance the string 'b2:x[a, y]'. There are functions to
add/set/get/remove the databank, frequency, index, etc. part of such a string.
Faster gdx read/write. Optional equation browser for GAMS equations. In OPTION
model type = gams mode, ENDO/EXO has been reworked to interface with GAMS.
Alias names may be used, for instance providing a mapping from old to new
variable names. See option interface alias.

Better abort red button that should work in all cases where Gekko needs to be
stopped.

PLOT can export to pdf.

m() can be used instead of miss() to indicate missing value.

OLS<dump> can dump results as FRML equation for use in models.

Enhanced format() function that can control width and alignment, and {}-curlies
inside strings can be formatted.

New commands: BLOCK, CUT, LOCAL, GLOBAL, MAP, VAR.

Removed commands: NAME (use strings and {}-curlies), SHOW (use PRT),
UNSWAP.

New functions: addbank(), addfreq(), append(), contains(), count(), data(), dates(),
except(), extend(), flatten(), getbank(), getdomains(), getendoexo(), getfreq(),
getfullname(), getindex(), getmonth(), getname(), getnameandfreq(), getquarter(),
getsubper(), getyear(), index(), isopen(), map(), pop(), preextend(), prefix(),
prepend(), readfile(), remove(), removebank(), removefreq(), removeindex(),
replacebank(), replacefreq(), replaceinside(), rotate(), seq(), series(), setbank(),
setdomains(), setfreq(), setname(), setnameprefix(), setnamesuffix(), sort(),
strings(), stripend(), stripstart(), substring(), suffix(), timeless(), unique(), vals(),
writefile().

Removed (renamed) functions: difference() is now except(), piece() is now
substring(), search() is now index(), strip() is now replace(), trim() is now strip().
The following functions have reordered parameters regarding dates: avgt(), sumt(),
hpfilter(), fromseries(), unpack().

New options: option decomp maxlag, option decomp maxlead, option gams time
freq, option interface alias, option interface remote file, option interface table
operators (renamed from 'printcodes'), option model type, option plot elements
max, option plot using, option print elements max, option print split, option series
array calc missing, option series array print missing, option series dyn, option
series normal calc missing, option series normal print missing, option series normal
table missing.

Removed options: option databank logic, option interface table printcodes (renamed
to 'operators'), option library file, option series array ignoremissing (renamed).

T-T Analyse



Gekko 3.0 user manual

Gekko 2.4

Gekko 2.4 is a relatively small update on the top of Gekko 2.2, and 2.4 should be just
as stable as 2.2. The main focus of development is the upcoming Gekko 3.0, but still
2.4 contains the following augmentations:

¢ PROCEDURE implemented. User-defined functions and procedures can be putin a
general library file (lib.gcm), so they can be stored in a central place.

e IMPORT<collapse> for collapsing high-frequency data (for instance daily
observations) into monthly, quarterly or annual Gekko-timeseries. The data must
reside in an Excel spreadsheet, more formats will be supported later on.

e Array-series, with $-conditionals, summing etc, cf. under the SERIES command.
Array-series are further developed in the upcoming Gekko 3.0.

e Robust Newton (better handling of illegal starting values). This is managed by
means of OPTION solve newton robust = yes|no, and with robust = yes (default),
Gekko will handle illegal stating values (like the logarithm of a negative number)
much better.

e Read/write of GAMS datafiles (gdx-files): IMPORT<gdx> and EXPORT<gdx>. See
also the OPTIONs under OPTION gams ... regarding how gams files are handled.

e Reading of PC-Axis files: IMPORT<px>.

e Export of R-datasets: EXPORT<r>.

e New 'ser' (series) files format: IMPORT<ser>. This entails fast reading of flat
SERIES-like lines like "x 2020 2023 100.0 210.0 150.5 200.7".

e Better engine regarding IMPORT and EXPORT of xlsx-files. The new system
(default) does not depend upon Excel being installed on the pc, and should be more
stable and leak less memory.

e MATRIX definition with row/colnames.

e Remote control of Gekko is made possible via using a remote.gcm command file, cf.
OPTION interface remote = yes|no.

e EXPORT<cols> implemented for .csv and .prn files.

e Some new functions: avgt(), sumt(), time(). The two first handle sums and
averages over time (for timeseries).

e Stand-alone html equation browser generator (DOC<browser>).

e OLS<dump> can dump results as FRML equation for use in models.

Gekko 2.2
Gekko 2.2 most notably adds a lot of new graphing capabilities (PLOT) to Gekko.

e PLOT command completely overhauled, see demo graphs here. Graphs can be
controlled in a lot of new ways, either as options in the PLOT command, or in a
template file (.gpt), or both. Histograms/bars/boxes are supported, too. There is a
special handy option to separate boxes and lines vertically: PLOT<separate>, and
many other possibilities.

e OPEN<edit> should be used instead of OPEN<prim>, and LOCK/UNLOCK commands
can lock/unlock already opened databanks. Opened databanks (OPEN without

T-T Analyse


http://www.t-t.dk/gekko/gallery/g.html

Gekko 3.0 user manual 13

options) are now opened /ast in the list of databanks. Opened databanks are now
protected (non-editable) per default.

OLS command improved, including linear restrictions on parameters.
INTERPOLATE and REBASE commands implemented.

XEDIT command to open up a dedicated and in-built xml editor (for graph and table
templates).

MATRIX command allows all kinds of indexers on left-hand side.

SHEET<import matrix> imports a matrix from an Excel sheet.

IMPORT accepts dates.

PIPE improvements.

Functions: random number functions, see rseed(), runif() and rnorm(). Functions
pchy(), dify() and dlogy() to handle yearly differences. Functions movavg(),
movsum() for moving averages/sums, and lag() for lags. Function chol() for
Cholesky decomposition of matrices. See here.

Some new table options: 'mdateformat’, 'decimalseparator’, 'thousandsseparator'
and 'stamp'. See under OPTION, in the OPTION table ... section. With these options,
a number like 12345.67 can be printed as 12,345.67 or 12.345,67, and this may
be combined with negative decimal places (for instance "f9.-2", to produce 12,300
or 12.300). Monthly dates can be formatted as for instance 'Jan. 2020' instead of
'2020m1'. Menu files accept links to .gcm files.

The .gbk databank file format now uses a datafile called 'databank.data' internally
(instead of 'databank.bin'). The old name caused problems when sending databank
files over email. To produce a databank file suitable for Gekko 2.0 or 1.8, see the
note in the WRITE help file.

Options: see the end of the OPTION command regarding new options in Gekko 2.2.

Regarding Gekko 2.0 and earlier, see this page.

T-T Analyse


https://t-t.dk/gekko/whats-new/

14

Gekko 3.0 user manual

1.2

Note about Gekko 3.0

Gekko 3.0 contains quite a lot of new features, and a cleaned up syntax. The syntax
is hopefully more logical and consistent than version 2.0/2.2/2.4, and some of the
most important changes regarding syntax are listed below. At the end of this page,
you will also find a list of components or commands that do not work. These minor
issues will be fixed in the form of patches to version 3.0.

Regarding lists of new commands, new built-in functions and new options, see the
new features page, under Gekko 3.0. It is probably beneficial to read that section
first, before reading the rest of the current page.

Beware

There is an automatic translator from Gekko 2.0 (or 2.2/2.4) to Gekko 3.0. See
TRANSLATE, or more info here. The syntax changes compared to Gekko 2.0/2.2/2.4
programs are not too dramatic, the most important are the following:

e Since series calculations are treated more like vector operations in Gekko 3.0, lags
no longer accumulate period-for-period, if the left-hand side variable is present
with lags on the right-hand side (so-called "lagged endogenous"). So a series
expression like x = x[-1] + 1; no longer accumulates automatically (augments x
with 1 for each period); instead the alternatives x ~= 1; or x <d>= 1; could be
used. If accumulating behavior is needed, the <dyn> option can be set, for instance
x <dyn> = x[-1] + 1;, or for several series statements a block structure can be
used: BLOCK series dyn = yes; ... ; END;. Setting dynamic mode affects speed
negatively, and should therefore not be set unless needed.

e Symbols on scalars and collections must appear on the left-hand side too, for
instance VAL %v = 100;, where VAL v = 100; is no longer legal. Note that
assignment commands SERIES, VAL, DATE, STRING, LIST, MAP, MATRIX may be
omitted, so you can use %v = 100; too.

e In general, when defining a list, the elements are enclosed in parentheses, but the
'naked' form #m = a, b, c; is allowed as short-hand for #m = ('a', 'b', 'c');
For lists of simple numbers, naked lists can be used, too, for instance #m = 1, 2,
3;ory =1, 2, 3;.

e Beware that FOrR %i = #m; is no longer legal, you must indicate type: FOR string
%1 = #m;.

e The NAME command is deprecated, and in many places {}-curlies must now be
used where they could be omitted in Gekko 2.0. For instance you must use PRT
{#m}; or PRT {%s}; to print the variables corresponding to the the list of strings #m
or the string s (without the {}-curlies, the list elements or the string itself would
be printed).

¢ Name compositions like a{i}b must now be a{%i}b: the $-symbol can no longer be
omitted here (or anywhere else).

¢ Name concatenation like a%i |b is no longer endorsed, but will still work. It is
generally better to use a{%1i}b, for readability and consistency.

e #m[0] cannot be used to get the length of a list, use #m.length ().

T-T Analyse



Gekko 3.0 user manual 15

Using #m[%s] to check if the string %s is a member of the list of strings #m will be
deprecated, and the expression $s in #m Or #m.contains (%$s) should be used
instead.

Series operators like +, *, %, etc. are now +=, *=, $=, etc., so assignments always
contain the = symbol.

List operators: s+ is changed to | |, &* is changed to s¢, and s- is changed to -.
Scalars inside quoted strings should use {}-curlies, for instance s = 'car'; TELL
'"The {%s} is red';. Alternatively, you can use TELL 'The ' + %s + is red';,
which is harder to read. Beware that TELL 'The %s is red'; will no longer in-
substitute $s. Inside a quoted string, any expression can be used inside {}-curlies,
as long as it evaluates to a string or value type.

IMPORT and EXPORT statements from Gekko 2.0 without time indication should be
changed into IMPORT<all> and EXPORT<all>, respectively. In Gekko 3.0, IMPORT
and EXPORT without time indication will use the global time period, potentially
truncating the data.

The following functions have been changed (see details here): avgt(), sumt(),
piece(), search(), strip(), trim(), difference(), hpfilter(), fromseries().

Issues list

The following is a list of commands etc. that are known to be defunct in in Gekko 3.0:

DECOMP. DECOMP works for expressions and equations. There are still issues
regarding DECOMP of equations if the left-hand side is not equal to the right-hand
side. Therefore: DECOMP of equations is ok if performed on simulated equations,
but not on non-simulated equations.

TIMEFILTER only works for annual frequency.

User-defined procedures and functions have a problem with samples and composed

series arguments, if these are later on lagged. For instance: function series
plus (series x1, series x2); return xl1 + x2[-20]; end; time 2001 2003;

yl = 3; y2 <1981 1983> = 2; print yl, y2, plus(yl, y2+0); This will print
missings for the result of plus (y1l, y2+0) whereas plus(yl, y2) will be fine. This
is being looked into.

As noted above, some in-built functions have been changed regarding "signature".

Stability

Gekko 3.0 has been tested quite a lot by now, and the first users of the preliminary
pre-alpha versions of 3.0 started in December 2017. Hence, many of the main
components are well-tested, and in this sense, Gekko 3.0 should not feel unstable.
Still, some glitches are still to be expected, though, and such glitches will be fixed in
patches to Gekko 3.0. Gekko 3.0 validates a large number of test-cases taken from
(and translated from) Gekko 2.4.

Unstability reasons

T-T Analyse



16

Gekko 3.0 user manual

A major source of potential instability is the fact the the parser has been completely
rewritten from version 2.4 to 3.0. In addition to this, databanks are now a lot more
flexible, allowing all kinds of objects to be stored and retrieved, and this may produce
glitches, too. The internals of array-series objects have been completely reworked,
but this is well-tested.

Series objects are handled very differently in version 3.0 compared to 2.4. In 2.4 and
all previous versions, series operations were implemented very differently from, say,
scalar operations. In Gekko 3.0, series operations treat series more like vectors, so in
a sense, the series addition x + vy is performed in one operation in Gekko 3.0, an
operation that resembles the addition of two vectors in linear algebra. This difference
has many ramifications in the Gekko source code, but the advantages are large, too.

Printing and plotting components have been rewritten from scratch, among other
things in order to accommodate mixed frequencies and array-series. Still, PRT and
PLOT are well-tested.

User functions and procedures are implemented in a different and better way, so
these should work more as expected than the case was regarding Gekko 2.4.

The graphical interface is more or less untouched from 2.4. Also, databank handling
(opening and closing databanks, search order etc.) has not been touched, except for
the introduction of the new Local and Global databanks.

The internals of the solving facilitites (sim-mode and SIM) have not been altered
since Gekko 2.4 and should therefore be stable.

T-T Analyse



Gekko 3.0 user manual 17

1.3

Setup
Installation

In order to install Gekko as a standalone package for economic analysis, go to www.t-
t.dk/gekko, and choose 'Download' --> 'Installer (stable version)', or go directly to
www.t-t.dk/gekko/installer. If you have problems installing, please consult the
trouble shooting guide: www.t-t.dk/gekko/troubleshooting. After installation and
starting up Gekko, it might be convenient to create a .bat file to start up the program
in the future (see more in the 'Setup and environment' section below).

For ADAM users, please use the setup facilities supplied by Economic Modelling,
Statistics Denmark, in order to install ADAM+Gekko (in order to uninstall
ADAM+Gekko, use the uninstall facilities supplied by Economic Modelling, Statistics
Denmark). Please note that Gekko is not tied to ADAM in any way, and is being used
for other models, too.

Uninstallation

Uninstalling Gekko as standalone package can be done from the Windows Control
Panel. Close Gekko, start the Control Panel and choose Add/remove programs, then
select Gekko and uninstall it.

Setup and environment

Gekko uses the concept of a working folder from which files are read and written.
This may be chosen in two ways:

o If Gekko is started up from the 'Programs' menu in Windows, Gekko will open up
the last-opened working folder. You may change this by means of 'File' --> 'Set
Working Folder..." in the Gekko menu.

o If Gekko is started up from the Windows command prompt (for instance by typing
'gekko' in the Total Commander command line), Gekko will use that particular
folder as its starting folder. Typing 'gekko' only works if a gekko.bat file is available,
see 'Utilities' --> 'Make .bat file for easy Gekko startup...'. (This gekko.bat file
should be put somewhere in your Windows path -- Gekko will try to put it into your
Windows folder).

If a file with the name 'gekko.ini' is present in the program folder (where gekko.exe
is located) or in the working folder, this file will be executed at Gekko startup.
Typically such a file contains OPTION, TIME, MODEL and READ commands setting up
the environment for different kinds of analyses. The gekko.ini file will be rerun when
issuing a RESTART statement (or an INI statement to just run gekko.ini), so this
statement is in effect equivalent to closing and reopening Gekko (in contrast, the
RESET statement omits loading the gekko.ini file).

T-T Analyse


http://www.t-t.dk/gekko
http://www.t-t.dk/gekko
http://www.t-t.dk/gekko/installer
http://www.t-t.dk/gekko/troubleshooting

18

Gekko 3.0 user manual

For more advanced users, there is the possibility to indicate parameters when calling

the gekko.exe file at Gekko startup. See the RUN help file for more on this.

T-T Analyse



Gekko 3.0 user manual 19

1.4

Basic concepts

This document describes some of the basic concepts used in Gekko.

Timeseries-oriented

Among other things, Gekko handles timeseries (often just called 'series' in this
documentation). Gekko is a timeseries-oriented software system, that is, it has easy
handling of timeseries as one of its main objectives. Because of this orientation, it is
often not necessary to indicate a time period when dealing with timeseries variables,
because the time dimension is implicitly understood. Gekko can operate on different
frequencies, at the moment annual ('a'), quarterly ('q'), monthly ('m') or undated
('u"). IMPORT can handle (collapse) higher frequencies than months, if needed.

Gekko handles other kinds of variable types, too, as described in the next section.

Databanks

Databanks are in-memory storage of variables types series, value, date, string, list,
map, and matrix. The names of values, dates and strings (scalars) always start with
the % symbol, whereas the names of lists, maps and matrices (collections) always
start with the # symbol. Databanks are opened in succession, where the first-position
databank has number 1 on the databank list (cf. the F2 window: click F2).

Gekko can READ/WRITE such databanks as external files (.gbk extension), or
IMPORT/EXPORT data from/to other file formats. Gekko always starts out with four
empty databanks (in memory): 'Work' (first-position bank), 'Ref' (reference bank),
'Local' (local variables), and 'Global' (global variables). At startup, the Work databank
has the number 1 in the list of open databanks, with the Ref (reference) databank
shown just below. In addition, more databanks with different names (so-called
'named' databanks) can be opened (OPEN), but note that the first-position and
reference databanks have special capabilities regarding printing/plotting/comparing
etc. The local and global databanks are used to store and access temporary variables
(local), or store settings etc. (global). See the LOCAL and GLOBAL commands for
more on this. See the F2 window regarding the list of open databanks (note that
reference, local and global databanks are only shown in that window when they
contains data).

You may open other databanks as first-position databank with
OPEN<first>/OPEN<edit>. You may use CLOSE to close a databank (and possibly
write it to file, if it is altered).

If you need to import data into an existing (opened) databank, you may use IMPORT
for non-Gekko data, or READ for Gekko databanks. For instance, "IMPORT <xIsx>
data.xlsx;" imports Excel-data into the first-position databank, but you could
alternatively use "IMPORT<ref xlsx> data.xlsx;" to import the data into the reference

T-T Analyse


https://en.wikipedia.org/wiki/Time_series

20

Gekko 3.0 user manual

databank. For simulation purposes, the READ command is often practical. You may
use WRITE to write the first-position databank to file.

As mentioned, in the F2 window, the first-position databank has number 1, whereas
other 'named' databanks have numbers 2, 3, etc. If the local databanks contains data,
it will show up in the list above the first-position databank, and if the global databank
has data, it will show up last in the databank list. When issuing a command like PRT
x; ory = 2 * x;, the way Gekko looks for x depends upon databank search options.
In sim-mode, Gekko will only look for x in the first-position and local/global
databank, whereas in data- and mixed mode, Gekko will look for x first in the local
databank (first bank in the databank list), then in the first-position databank (number
1 in the databank list), then in other open databanks (numbers 2, 3, ... etc. in the
databank list), and finally in the global databank (last bank in the databank list).

Note here that the reference databank is never searched for bankless variables, since
this databank is only used for comparison purposes, cf. MULPRT, PLOT<m>,
COMPARE, and similar commands. You may refer to a variable in the reference
databank with ref:x or the shorter ex;

Series

A timeseries (or just: series) can can have frequency annual, quarterly, monthly, or
undated, and it may contain any number of observations. If data has been read for
timeseries x regarding the period 2010-2015, printing out x for the period 2016 will
show a missing value (‘M"). Series can be lagged and leaded, for instance x[-1] or
x[+1] in the sense that x corresponds to x (t) , x[-1] corresponds to x (t-1), and

x[+1] corresponds to x (t+1). Note that lags must start with the symbol -, and leads
with +. Individual observations can be picked out with for instance x[2020], or
x[2020g3], the latter being the third quarter of 2020, if x is a quarterly series. If you
need accumulating lags like x = x[-1] + 1, consider using x <dyn> = x[-1] + 1,0r
a BLOCK with series dynamic = yes.

Array-series

An array-series is a special kind of multidimensional timeseries, where indexing with
for instance x[a] or y[b, c] is possible. You may use x['a'] or y['b', 'c'] as
synonyms in that case, and array-series are practical for many purposes, instead of
for instance using naming conventions like xa or ybc. In general, you can perform
the same operations with the array-series x[a] as you would be able to do with a
normal timeseries. Array-series must be defined before they are used, for instance x
= series(l); y = series(2); to state the dimensionality.

Scalars

T-T Analyse



Gekko 3.0 user manual 21

Gekko scalars are the types value, date or string. Scalars names must begin with the
symbol %. Scalars can be thought of as containing just one element: the single value,
the single date, or the single string. Values are numeric values like 1.2 or 2e8, dates
are for instance 2020 or 20203, and strings use single quotes like 'dk'.

Collections

Gekko collections are of the type list, map or matrix. Collection names must begin
with the symbol #. Collections can be thought of as a humber of elements bundled
together inside the collection. List stores variables in a sequence (by numbers 1, 2,
etc.), map stores variables by name (like 'dkk', 'eur', 'usd'), and matrices are 2-
dimensional structures of numeric values, also ordered by numbers 1, 2, etc. So for a
list, #x[2] refers to the second element. For a map, #x['dkk'] refers to the element
that has this name, and for a matrix, #x[2, 1] refers to the numeric value stored in
row 2, column 1. It should be mentioned that it is possible to write #x['dkk'] as
#x[dkk] or #x.dkk, too.

Lists and maps can store any other variable types as elements, whereas matrices only
store values (for the time being).

Banks, maps, and array-series

Note for advanced users: all these three datastructures look up elements by means of
names (also called look-up keys). For instance, b2:x looks up x in bank b2, #m['x"]
looks up x in the map #m, whereas y['a', 'x'] looksup ('a', 'x') in the two-
dimensional array-series y. Inside Gekko, banks and maps are built in the same way,
whereas array-series are a bit differrent in that they (a) only store series inside, and
(b) allow several dimensions of look-up keys. But maps and array-series are in reality
not that different, it is mostly a question of syntax. For instance, y['a', 'x'] could
be emulated with the map call #y['#a']1['x'], where #y is a map, #a is another map
stored inside #y, and x is a normal series stored inside #a. But the array-series
notation is more convenient, and array-series have special capabilities regarding
summing, printing, etc.

Strings as name references

Scalar strings (or a list of strings) may refer to other variables. Consider the string %s
= 'p2:x!m';. If you state PRT %s;, Gekko will just print out the raw string. But if
you use PRT {%s};, Gekko will instead print out the monthly series x from the b2
databank (in a sense performing a forwarding operation, forwarding from the variable
$s to the variable b2:x!m). Therefore, the curly {}-braces are handy regarding name
composition. Also, if 4 = 'b',and $j = 'd', the variable a{%i}c{%j}e is equal to
abcde, and in general one should read the curly braces {} as if they are simply a

T-T Analyse



22

Gekko 3.0 user manual

sequence of unknown characters that are glued to other characters (or other {}-
braces). See more on strings, or see the syntax diagrams.

A list of strings may function in the same way. Consider the list #m = ('b2:x!m"',
'v') ;. If you state PRT #m;, raw strings are printed out, whereas PRT {#m}; will
print out the variables corresponding to the strings (monthly series x from the b2
databank, and the series y, and again performing a forwarding operation). In general,
list definitions are enclosed in parentheses, like #m = ('a', 'b', 'c');, butfor
simple strings, the equivalent 'naked' list #m = a, b, c; islegal. In the latter case
(naked list), it should be emphasized that the list elements are still three strings 'a’,

'b', 'c', not the variables themselves. If you need to put three series a, b, and ¢
into a list, you should use #m = (a, b, c);.So defining a list while omitting
parentheses on the right-hand side always produces a list of strings.

Sometimes the user may be in doubt whether he or she should use a normal string %
s, or a name-reference {%s}? In such cases, the "abc test" may be performed. Would
it be natural to use a quoted string like 'abc' in the command, or would it be natural
to use a name like abc instead? If the former is the case, use $s;if the latter is the
case, use {%s}.

Wildcards
In general, wildcards are stated with the ['...'] or {'... "} patterns, depending
upon the context. For instance, you can use #m = ['a*x'] to obtain a list of strings

of variables starting with 'a' and ending with 'x' (from the first-position databank,
with the current frequency). If you need to for instance print out the variables in this
list, PRT ['a*x'] will just print out the raw strings corresponding to the matched
wildcard. Instead, PRT {'a*x'} should be used to print out the variables themselves.
Ranges can be stated as for instance 'pxa..pxe', or 'bank:pxa..bank:pxe’.

In INDEX, COPY, RENAME, DISP and similar commands, you can omit the curlies and
single quotes, for instance INDEX a*x; (a*b will not be interpreted as a mathematical
product in that command). You can also use '?' to select a single character, and
wildcards can also be used to search for banks, frequencies, and indexes. See the
INDEX and COPY command for more on this.

Much more on wildcards on the wildcards page.

Analysis

In sim-mode, the reference databank is typically used for multiplier analysis (i.e.,
experiments). Say you read a databank and then perform some experiment. This
experiment will only alter timeseries in the first-position databank, so after the

T-T Analyse



Gekko 3.0 user manual 23

experiment is finished, you can compare the timeseries in the first-position and
reference databanks (Gekko has a lot of commands to do such comparisons, for
instance MULPRT, DECOMP etc.). If, at some point, you wish to make sure that the
first-position and reference databanks are identical (for instance after a simulation),
you can use the CLONE command. This command clears the reference databank, and
copies the first-position databank into it (in memory). You may alternatively read a
file directly into the reference databank by means of READ<ref>. There is a cleanup-
command: RESTART. This command clears the first-position and reference databanks,
in addition to clearing models, variables, user functions, procedures, and other
things. The operation provides a clean state of Gekko, as if it had been closed and
reopened (if there is a file with the name 'gekko.ini' in the program and/or working
folder, this file will be re-read, so gekko.ini can be used to contain options and other
commands, for instance MODEL and READ commands, that the user wishes to
"survive" a RESTART). If you wish a clean state without any potential gekko.ini file,
use RESET.

Creation

In sim-mode you have to CREATE a series before you update its values/observations
with the SERIES commands (unless the timeseries starts with the letters 'xx/,
indicating that it is to be thought of as a temporary variable). However, it should be
noted that when a databank is read (READ), after a model has been loaded previously
(MODEL), any model variables not present in the databank will be auto-created as
timeseries (with all observations set to missing values). Because of this, it may often
be convenient to put MODEL statements before READ statements. In data- and mixed
mode, timeseries are auto-created with the SERIES command.

Periods

Note that commands involving series variables can include a local time period, like for
instance PRT <2010 2020> x, y;. The local time period will overrule the global time
period, which can only be set via the TIME command. In assignments, the time period
may be stated before or after the left-hand side variable, so both <2020 2030> x =
100; and x <2020 2030> = 100; are legal.

There are some details regarding periods. Most commands that involve timeseries use
the global time period if no local time period is stated, for instance commands like
PRT, IMPORT, EXPORT, etc. For some of these commands, you may use local option
<all> to use all existing data points (observations). You cannot combine <all> with a
local time period.

But for the commands COPY, READ and WRITE, omitting a local time period does not
entail the use of the global time period. These commands will use all existing data
points (observations) for all series, if no local time period is stated. If a local time
period is stated, only the local sample is used, and if you need to observe the global

T-T Analyse



24

Gekko 3.0 user manual

time period, you can use the <respect> option. You cannot combine <respect> with a
local time period.

For some commands, you may use a time period with another frequency than the
series object used. In that case, Gekko will try to convert the frequency meaningfully.
For instance, PRT <2010qg2 2010g3> x!q, x!m; will just use 2010g2-g3 for the
quarterly series x!q, whereas 2010g2-qg3 is converted to 2010m4-m9 for the monthly
series x!m (covering from the start of g2 to the end of g3).

If you need to change the time period temporarily, you may use the BLOCK structure.
Also, user defined functions and procedures may use a <>-field to indicate time
period arguments.

Operators

The so-called operators are used in many places, in order to perform easy
transformations (for instance percentage growth rate, or multiplier difference
between first-position and reference databank values). The operators come in two
versions: 'long' and 'short'. The 'long' ones are used in the PRT and MULPRT
commands (for instance PRT<abs> varl; to only print the absolute level, and not
percentage growth), whereas the 'short' ones can be applied more generally (for
instance PLOT<p> varl; to graph the growth rate of var1). The most important of
the 'long' ones are dif and pch, and the most important of the 'short' ones are d, p, m,
g. The functionality of the 'long' and 'short' operators overlap: see PRT for more
details. The short operators will also show up in TABLEs and the DECOMP window,
and can also be used in SERIES, PLOT and SHEET.

Models

Regarding models, it should also be noted that the list of endogenous variables in a
model is simply the set of all the variables at the left-hand side of the equations. This
may be changed afterwards by means of the ENDO and EXO commands. Regarding
equation syntax, you may consult the latter part of the MODEL help file, if you need
more information on this. (Models are cached in binary form on the user's hard disk
in order to load faster next time).

Files

Regarding file names, you may use relative paths like "\subfolder\data.txt'. Using
relative paths makes it easier to move a system of command files to another
location/computer if needed. Special user-paths can also be given by means of the
OPTION folder ... settings. If the path or filename contains blanks or special
characters, you may enclose it in single quotes.

T-T Analyse



Gekko 3.0 user manual 25

No blanks

Generally, sequences of elements are delimited by commas, not blanks. Gekko 3.0

has a number of capabilities regarding the transformation of such lists, for instance
setting or removing commas instead of blanks, setting or removing quotes, etc. See
the Gekko main window, under Edit --> Paste as.... [not done yet].

Command files/batch job

Gekko commands can either be run directly from the Gekko main window, or
assembled in a command file (script file) for later execution. Command files can be
run with the RUN command. This is also called a batch job (also possible by means of
calling gekko.exe with parameters, see more in the RUN help file). You may track the
execution of jobs via 'Utilities' --> 'Run status...' in the Gekko menu (or double-click
on the traffic light in the lower right corner of Gekko).

Gekko also provides user-defined functions and procedures to deal with repetitive
tasks.

T-T Analyse



26 Gekko 3.0 user manual

1.5 Time periods

Many Gekko commands accept a local time period stated inside the <>-brackets. For
such commands, omitting a local time period generally means that the global time
period (cf. TIME) is used instead. There are the following exceptions to that rule:

List of commands where lack of local period means all observations

COPY Handling variable objects

READ, WRITE External file storage

For instance, copy x TO y; will copy the entire object, including all observations
(and not just the observations corresponding to the global time period), whereas
COPY <2010 2020> x TO y; will only copy the observations 2010-20. To copy only
the observations corresponding to the global time period, use COPY <respect> x TO
v;. Similarly, READ<respect> and WRITE<respect> can be used.

It should be noted that the similar commands IMPORT and EXPORT respect the global

time period, in contrast to READ and WRITE. To force IMPORT and EXPORT to use all
observations, IMPORT<all> and EXPORT<all> can be used.

Note

User defined functions and procedures may also use a <>-field to indicate time period
arguments. This can be used to define a local time period to be used inside the
function/procedure.

1.6 Databank search

Databank search is an important concept in Gekko, alleviating the burden of always
having to state the databank name when variables in other databanks than the first-
position databank are accessed.

Databanks search can be controlled with an option, or via the MODE command, cf.
the next section. In general, databank search can be practical, but the user should be
aware of the pitfalls, especially of several open databanks contain variables with the
same names.

T-T Analyse



Gekko 3.0 user manual 27

The remainder of this page tries to answer the following question: In commands like
y = x; Or PRT x;, where should Gekko look for the variable x, if it is not found in the
first-position databank?

The option and MODE

The option that controls databank searching is the following:

OPTION databank search = yes; //yes|no

Per default, this option is set to yes, since Gekko starts up in data mode. In sim-
mode, the option is set to 'no’, so PRT x; will fail in sim-mode, if x is not found in the
first-position or local/global databank (in that case, Gekko will not look for x
elsewhere).

The mode can be switched like this:
MODE sim; //sim|data|mixed

Among other things, MODE controls 'OPTION databank search', and a few other
options.

How does databank searching work?

When databank searching is active (OPTION databank search = yes), Gekko will
look for a variable x in the list of open databanks (cf. the F2 window that is opened
when pressing the F2 key). As shown on the page about OPEN, Gekko operates with
the following databanks:

Number Searchable Non-searchable
Local

1. First Ref

2. Another databank

3. Another databank

T-T Analyse



28

Gekko 3.0 user manual

n'th Last databank

Global

So if databank searching is active, Gekko will first look for a variable x in the Local
databank. This is often empty, since it is only used for temporary (discardable)
variables. Next, Gekko looks in the first-position databank, which is often the Work
databank. If not found in any of these databanks, Gekko looks in any other databank
opened with the OPEN command. If not found in any of these, the Global databank is
queried at last. Note that the Ref databank is never searchable, so a bankless
variable x will never be looked for in the Ref databank.

The search hierarchy means that variables may shadow/mask each other. If
searching is active, the user may put a variable x in the Global databank for later use
in a system of command files (the Global databank is not affected by READ, CLEAR,
etc. and is therefore practical for long-term storage of global variables). But if the
system of command files creates a variable x, or opens a databank containing a
variable x, the x in the Global databank is masked. For instance, the user may state x
= 100;, creating a series x with the value 100 in the first-position databank. After
this, PRT x; will refer to this variable, not the variable in the Global databank (to
refer to that variable, global:x could be used). So when databank searching is
active, and databank identifiers are omitted, the user should keep name collisions in
mind.

There is another pitfall regarding databank searching, namely that deleting a variable
may bring back another variable from being masked. Consider this example:

RESET;

OPEN <edit> bkl; CLEAR bkl; x = 100; CLOSE bkl;
OPEN <edit> bk2; CLEAR bk2; x = 200; CLOSE bk2;
OPEN bkl, bk2; //press F2 to see the databank list
PRT x;

CLOSE bkl;

PRT x;

The first print prints x as 100, whereas the second print prints x as 200. The reason
is that in the first print, x is first found in the bk1 databank, whereas in the second
print, x is first found in the bk2 databank (because bkl was closed). So closing a
databank, or deleting a variable may have the consequence that a variable with the
same name is unmasked in some databank lower in the search hierarchy.

If the variable names in the different databanks are distinct, this is not a problem,
and it is practical to be able to refer to variables without always having to write the
databank name. Also, in some circumstances, databank masking can be used for
selection. Consider two databanks, bkl and bk2, where the quality of the data in bk2
is inferior to the quality of the data in bk1 (for instance because bk2 is an older
databank). In that case, if the databanks are opened with bk1 before bk2, databank

T-T Analyse



Gekko 3.0 user manual 29

searching works as a quality filter. If a variable x exists in bk1, this version is always
used. If it does not exist in bkl, Gekko will look for it in bk2 instead. If it does not
exist in bk2 either, an error will be issued. In that way, the newest version of x is
always found (or an error occurs).

Commands without databank search

A few commands disallow databank searching completely in order to avoid
ambiguities. In these commands, bkl :x is still understood as x from the bkl
databank, but the bankless x will be understood as x from the first-position databank,
without looking elsewhere for the variable.

List of commands where bankless variables are never searched for

COPY, DELETE, Handling variable objects
RENAME

COUNT, INDEX, Finding and displaying variables.
DISP

EXPORT, WRITE External file storage

DOC, REBASE, Similar to the left-hand side in assignments, therefore no
TRUNCATE databank searching.

Note: Wildcards without databank indicator are never searched for in other databanks than the
first-position databank. So the table deals with 'normal’ bankless variables. In some of these
commands, *:x can be used to indicate the occurrence of x in all databanks.

As an example, copYy x TO y; only looks for x in the first-position databank, and if it
is not found, an error is issued. If it is found, it is copied as a new variable y, also in
the first-position databank. If the COPY command allowed searching, the origin of y
would be unclear, since it could origin from some other open databank than the first-
position databank.

Note

Note that a bankless variable on the left-hand side of an expression is always
interpreted as residing in the first-position databank. For instance, x = 100; will
always put the series x into the first-position databank (implicitly using first:x =
100").

Note that the Local or Global databanks are always searchable, independent on MODE
etc.

T-T Analyse



30

Gekko 3.0 user manual

1.7

Wildcards

Wildcards are used to search for variables in one or more databanks. Internally i
Gekko, a wildcard search returns a list of variables in the form of strings, possibly
with databank names and frequencies. There are special rules present regarding how
these wildcards work regarding type and frequency symbols.

Wildcards can also be used to search for variables in a list

Basics

Wildcards for bank searching come in three flavors (here matching variables starting
with 'x' and ending with 'y'):

e String wildcards: ['x*y']. Returns matching strings

e Name wildcards: {'x*y'}. Returns matching names. Actually short for {['x*y']},
cf. the note at the end.

e Naked wildcards: x*y. Returns matching names, same as {'x*y'}.

Ranges and single character matches are possible too, for instance 'x1a..x2z"' or

x?y'.

The difference between returning strings or names can be seen in this example:

TIME 2010 2012;
CREATE xly, x2y; //only necessary in sim-mode

xly = 1; x2y = 2;

PRT ['x*y'l;

PRT {'x*y'};

PRT x*y; //fails

Result:
["x*y"]
'x1y', 'x2y' [2 items]
xly % xly %

2010 1.0000 M 2.0000 M
2011 1.0000 0.00 2.0000 0.00
2012 1.0000 0.00 2.0000 0.00

So the first PRT prints out a list of strings equal to ('x1y', 'x2y'), whereas the
second PRT prints out the two timeseries x1y and x2y. The third PRT fails, since it
expects to multiply two timeseries x and y.

T-T Analyse



Gekko 3.0 user manual 31

However, in some commands like COPY, RENAME, INDEX, DISP, etc., naked wildcards
are allowed, for instance INDEX x*y; to get a list of variables starting with 'x' and
ending with 'y'.

TIME 2010 2012; CREATE xly, x2y; xly = 1; x2y = 2;
INDEX {'x*vy'};
INDEX x*y; //same: naked form

Both INDEX commands print out x1y, x2y as matching items, DISP would print the
two series.

Wildcards without bank indicator only search for the variables in the first-position
databank. To search in all databanks, use for instance INDEX *:x*y; Or PRT
{"*:x*y'};. As an example, consider the case where there are the following
databanks present:

Databank Variables

1. Work X1y X2y

2. bkl x1ly x3y
3. bk2 X2y a3y

Note: the variables in red are the ones that are found first in a databank search

TIME 2010 2012;

xly = 1; x2y = 2;

OPEN<edit>bkl; CLEAR bkl; xly = 10; x3y = 30; CLOSE bkl;
OPEN<edit>bk2; CLEAR bk2; x2y = 200; x3y = 300; CLOSE bk2;
OPEN bkl, bk2;

PRT <n> {'x*y'};

PRT <n> {'*:x*y'};

PRT <n> xly, x2y, x3y;

Examples:
e PRT {'x*y'}; prints Work:x1ly, Work:x2y (only variables from the Work bank)

e PRT {'*:x*y'}; prints Work:xly, Work:x2y, bkl:x1ly, bkl:x3y, bk2:x2y, bk2:x3y
(all 6 variables in the table)

e PRT xly, x2y, x3y; prints the variables Work:x1y, Work:x2y, bkl:x3y (shown in
red, provided that databank searching is active, else the command fails regarding
x3y).

T-T Analyse



32

Gekko 3.0 user manual

While databank searching has advantages regarding concrete variables like x1y, x2y,
%3y, using such a search logic regarding wildcards would be both confusing and error-
prone.

Use of '%’, '#', '!', and stars

In their most strict form, wildcards for bank searching are stated like this:

#m = ['x*y'];

This particular wildcard will return a list of strings containing the names that match
the 'x*y' wildcard, that is, names that start with 'x' and end with 'y'. This wildcard
only matches variables from the first-position databank, with the current frequency.
So if the first-position databank is b1, and the current frequency is annual (!a), the
wildcard matches the same variables as ['bl:x*y!a']. If you need to match all
series of all frequencies (in all open databanks), you can use ['*:*!*'], All scalars
and collections are matched with ['*:%*] and ['*:#*], respectively, so to match
scalars or collections, you need to use '%"' or '#' in the wildcard. However, to match
all variables in a given databank, you may use the special '**' wildcard, so ['*:**"]
matches all variables in all databanks.

The following finds all variables in all banks (as a list of string names):

fa = ["*:*x1X'] 4+ ['x:%%'] 4+ ['*:#4*x']; //+ operator concatenates
fa = ['*:**']; //same: '**' matches all
variables in a bank

#a = ['***']; //same: '***' matches all

variables in all banks

Similarly, the following will match all items in the first-position databank:

fw o= ["xIFT] 4+ ['RXT] 4+ [H#F'];
fftw = ['"**"'];

whereas

ffws = ['*'];

T-T Analyse



Gekko 3.0 user manual 33

matches all series with the same frequency as the current frequency in the first-
position databank.

Bank ranges

Ranges work much like wildcards, using dots in a ['start' .. 'stop']-range. For instance:

#azl = ['xa'..

will match all series of the current frequency in the alphabetical range xa-xz in the
first-position databank. To match a range in another databank, use for instance:

#az2 = ['bl:xa'..'bl:xz']l;

Note that you must state the bankname both before and after the dots.

List searching

You may use wildcards and ranges on lists of strings, for instance:

#m = xa, xay, xdy, xey; //or: #m = ('xa', 'xay', 'xdy', 'xey');
#ml = #m['x*y']; //matches 'xay', 'xdy', 'xey'
#m2 = #m['xa'..'xe']; //matches 'xa', 'xay', 'xdy'

When used on lists, wildcards and ranges work normally, that is, there are no special
rules regarding bank colon (':"), frequency ('!") or type symbols (‘%' and '#'). The
strings in the list are matched as they are.

Details: why the special logic?

The reader may wonder why wildcards have a special kind of logic regarding symbols
'%', '#', and 'I'? This is explained below.

Imagine a databank containing these variables:
e fy'!a, an annual series

e fy!q, a quarterly series

T-T Analyse



34

Gekko 3.0 user manual

e 3y, a string
e #vy, alist

If we use 'naive' wildcards without special rules, we get this:

['*'] -—=> fy!al fy!q/ %YI #y

Everything is matched. This may seem ok, but then what about this:

['"f*y'] --> nothing

Here, the user may wonder why nothing is matched, but this is because of the
frequency symbols ('!"). If, instead, the search pattern ended on a start:

["£%x'] --> fyla, fyl!qg

Suddently the two series match again, because the star matches ''a' and 'lq'. But if
the star is first, we get:

["*y'] -—> %y, #y

Now ''a' and '!'q' are not matched, but on the contrary, the star matches '%' og '#', so
the string and list are matched.

The reader might object that one could just end the wildcard with ''*', and the
timeseries would be matched as expected. But the user has become accustomed to
not having to write frequency indicators on timeseries of the same frequency as the
global frequency. This is one of the advantages of Gekko, being able to write PRT fy;
and imply f£y!'a (if the global frequency is annual), so there would be the risk of users
forgetting about frequencies when using wildcards (especially if they work in the
same frequency most of the time).

Therefore, in Gekko 3.0, the "', '%' and '#' symbols are treated in a special manner
when matching wildcards. In Gekko 3.0, the following is the case:

['*'] --> fyla

T-T Analyse



Gekko 3.0 user manual 35

Only the active frequency is matched (we assume it is annual). No starting '%"' or '#'
are matched.

PRSI = == fvalial, eyl

Here, all frequencies are matched.

['8%'] ==> %y

This is how to match scalars. Collections are ["#*'].

The rationale behind these rules is that much wildcard search takes places regarding
series of a given frequency, and it is therefore beneficial that such wildcard search
works as expected. The users would want to be able to write for instance PRT
{"f*'}; or PRT {'*y'}; without worrying about frequency indicators and
scalars/collection types.

Instead of the tedious ['*!*'] + ['$*'] + ['#*'], matching all series, scalars and
collections in a bank, ['**'] is offered as a shortcut to match all variables in a
databank. In the same vein, ['***'] is a shortcut to ['*:**'], matching all
variables in all databanks, that is, 'everything'.

Note

The form {'a*b'} is actually short for {['a*b']}. In the last version, the inside of {}
is seen to be a list of strings which is converted into a list of names, just like {#m}
converts a list of strings #m into a list of names. For example, #m = ['a*b']; PRT
{#m} ; illustrates this, where PRT #m; would just print the list itself, not the variables
referred to by the list elements. Therefore, PRT {['a*b']} prints the variables, and
as noted, Gekko allows PRT {'a*b'}; as shortfor {['a*b']}.

T-T Analyse



36

Gekko 3.0 user manual

1.8

Naked list

Naked lists are used to avoid unnecessary typing of parentheses and single quotes,
for lists of strings or numbers. Naked lists can only be used on the right-hand side in
assignments (typically list or series definitions), or on the right-hand side in FOR loop
definitions. If a naked list contains only one element, it must contain a trailing
comma (see the 'singletons' section below).

Naked lists are naked in the sense that the normal list definition parentheses (.. .)
are omitted, and strings inside the naked list are stated without single quotes.
Therefore, the strict list definition #m = ('a', 'b', 'c'); may be replaced by the
'naked' #m = a, b, c;, and regarding lists of values, the parentheses may also be
omitted, so that y = (1, 2, 3); may be replaced by the 'naked'y = 1, 2, 3;,
where y is a series.

Important note: in many ways, a naked list definition is very similar to a normal
list definition with enclosing parentheses, but here is one difference to keep in
mind. In a naked list definition, if a list #m is present inside {}-curlies, it is the
elements of #m that are added, not the list #m itself. For instance:

#ml = b, c; #m2 = a, {#ml}, d; //result: 'a', 'b', 'c', 'd'

Compare this with normal list definitions:

#ml = ('b', 'c'); #m2 = ('a', #m2, 'd'); //result: 'a', ('b', 'c'"),
VdV

Here, #m2 becomes a nested list (you could use the flatten() function to unnest
it).

Example: naked list for strings:

#m = a, b, c; //same as #m = ('a', 'b', 'c¢'");

FOR string %i = a, b, ¢; //same as ... = ('a', 'b', 'c")
TELL %i;

END;

Example: naked list for values:

y <2010 2012> = 1, 2, 3; //same as
#m = 1, 2, 3; //same as #m = (1, 2, 3);

Il
—
N
w

The following elements are legal in naked lists:

T-T Analyse



Gekko 3.0 user manual 37

e Normal names like a1, including underscore character ().

e Normal names with bank, frequency and index, like b:a!q[i, j].

e Names/words starting with a digit, like 1a or 1e5.

e Normal integers like 123

¢ Integers starting with zero, like 007

e Floating point values like 1.2 or 1.2e5

e Any character(s) may be replaced by {}-curlies, for instance a{%s}b, where the
inside of {} may be any mathematical expression.

e If a list is present inside {}-curlies, the list items are added one by one, and
characters may be prefixed or suffixed. For instance: #ml1 = b, c; #m2 = a,
{(#m1}, d; will create thelist 'a', 'b', 'c', 'd', whereas #ml = b, c; #m2 =
a, x{#ml}y, d; will create thelist 'a', 'xby', 'xcy', 'd'. (This will also work
if the list items are numbers, but the primary use is for strings).

e Any element may use a prepended with a minus (-), for instance -al1 or -123 or -
1.23.

e Any element may be repeated with rep, for instance 1, 2 rep 3, 30r1, 2, 3
rep *.

e Missings: use m() Or miss ().

Special rules:

o If all elements are either normal integers or contain a decimal point (.), the list
becomes a list of values. The elements may contain a minus sign (-). For instance,
1, 20orl1l.2, 30r1, 1.2e5 all become lists of values. But beware that a list like
12, 02 will become a list of the strings '12', '02', and a list like 12, 1e5
becomes a list of the strings '12', '1e5'. The reason for this is stated below.

e An integer starting with 0 (except the integer 0 itself) is not interpreted as a value
in a naked list. So for instance, 01 is not interpreted as the value 1, and 007 not as
the value 7.

e An element composed of integers + e/E + integers will be interpreted as a string,
for instance 1e5 is interpreted as the string '1e5', not the value 100000. On the
contrary, 1.0e5 is interpreted as 100000, not '1.0e5".

e A list of integers like 1, 2, 3 will become a list of the values 1, 2, 3, not the
strings '1', '2', '3'. But you may easily and without loss transform such a list of
integers into the list of strings '1', '2', '3' via the strings() function. For
instance: #m = 1, 2, 3; #m = #m.strings();.

e Single-element naked lists can be defined with trailing comma, for instance #m =
a, ;. See the 'singletons' section below.

The reason for the above rules is that naked lists are often used to define codes, for
instance sequences of 3-character words consisting of alphanumerical characters,
such as ab7, 7dy, 638, 02e, 058, 1le5. These are all three-character codes, and
may represent, for instance, commodity codes for a large number of commaodities.
Regarding the last two codes, it would be unfortunate if a naked list consisting of
058, 1e5 was understood as a list of the values 58, 100000, because then it could
not be converted back into the list of strings '058', '1e5' via the strings() function.
This could lead to subtle hard-to-find bugs. So in a sense, the naked list logic is loss-
less. It may spring a surprise that for instance the naked list 483, 582, 3b5 becomes
a list of strings, whereas the naked list 483, 582, 385

T-T Analyse



38

Gekko 3.0 user manual

becomes a list of integers. But these integers can be converted back into
corresponding strings without loss or alteration of any kind.

To sum up, if you are dealing with lists of codes, you do not need to worry about
some codes losing leading zeroes, or some codes being interpreted as mathematical
exponents. If your list of codes contain digits only (without leading zeroes), it
becomes a list of values, and Gekko will abort with a type error, if you try to use the
elements as strings. In that case, you can just convert them into strings with the
strings() function.

Singletons

Beware that single-element lists (singletons) are special. The following will not work:

#ml a; //error
#m2 = 100; //error

In that case, you can use a trailing comma to indicate that you are defining a list.

#ml = a,; //or: ('a',) or list('a'")
#m2 = 100, ; //or: (100,) or 1list(100)

Conclusion

Regarding naked lists, there are three important things to remember. (1) If an
element is an integer with leading superfluous zeroes (for instance 01 or 007), all
elements are interpreted as strings. (2) If an element is an integer followed by an e
or E followed by an integer (for instance 1e5), all elements are interpreted as strings.
These rules are to avoid potential loss of or scrambling of information, for instance if
the elements are codes. (3) If all elements are integers, these are transformed into
values. Sometimes codes look like this, for instance 123, 234, 345, but in that case,
they can be transformed back into strings (without information loss) via the strings()
function.

Note

Naked lists do not allow type symbols % or # (except if they are inside {}-curlies).
This is to avoid confusion.

A naked list cannot contain elements with differing types, for instance #m = a, 1.1;.
This will trigger an error, and again this is to avoid confusion.

T-T Analyse



Gekko 3.0 user manual 39

1.9

Filenames

Gekko accepts relative paths, relative to the Gekko working folder. Consider, for
instance, that you have a command file 'job.gcm' with the following READ-statement
inside the 'job.gcm' file:

READ \banks\data;

Now, Gekko will add the sub-folder \banks to the Gekko working folder path. If the
Gekko working folder is "C:\Projects\Model1", the READ statement is translated into:

READ C:\Projects\Modell\banks\data.gbk;

The extension .gbk is automatically added if missing in the READ command.

You may use strings to compose file paths and names:

%$sl = 'Projects';
%$s2 = 'Modell';
%$s3 = 'banks';
%$s4 = 'data';

READ C:\{%s1}\{%s2}\{%s3}\{%s4};
READ '"C:\{%$s1}\{%s2}\{%s3}\{%s4}';

The two READ statements are equivalent: you may always use a string as a filename.
More on string in the section on the STRING command. Path’s must use the

"\' (backslash) or '/' (frontslash), and it is recommended to begin a relative path with
the '\' or '/' character for clarity. It may be omitted though: for instance "READ
banks\data;" is equivalent to "READ \banks\data;".

Frontslash is allowed too, for instance:

READ C:/Projects/Modell/banks/data.gbk;

Valid file names consist of alphanumeric characters or the '_' character. If the file
name contains blanks or special characters (for instance the Danish 'a', '¢' or 'a"),

you may enclose the file name in single quotes ("READ 'last year.gbk' ;

At some point it may be preferable to add the sub-folder to the path of the executing
command file, rather than to the Gekko working folder. Choosing between the two
ways of interpreting relative path’s is not completely obvious, however.

T-T Analyse



40 Gekko 3.0 user manual

1.10 Function keys, etc.

Function keys are used for quick access to specific Gekko commands.At the moment,
only a few function keys are active.

F1 Opens up the help system. You can also type for instance 'HELP;' or
'HELP sim;' from the command line, in the latter case you will get
help on that particular command (SIM).

F2 Opens up the databanks window (close with Esc). Note that the Ref,
Local and Global databanks do not show up in this window if they
are empty. You may also use SERIES? to see what kinds of
timeseries the databanks contain.

Enter If you hit [Enter] on a line without trailing ';', Gekko will
automatically add the ;' for you. If you hit [Enter] in the middle of
a line not ending with ';', Gekko will complain and not add the ';'
automatically.

Ctrl+Enter New line in command prompt, without issuing the command line.

Mark+Ente You may mark several lines in the Main window and execute them
r as one block with [Enter]. This is functionally equivalent to putting
the lines in a command file (.gcm) and executing them with RUN.

Ctrl+M Jump to Main tab.
Ctrl+0 Jump to Output tab.
Ctrl+U Jump to Menu tab.

You may double-click the 'traffic light' indicator in the lower right of the interface to
open up the 'Run status' window.

The left- and right arrow buttons below the menu are for browsing back and forth
when showing DISP (equation browser), or when showing tables by means of menus.
The 'home' button navigates back to the start.

The 'Stop current job' button tries to halt an executing job.

The 'Copy last ...' button/icon at the top of the main Gekko window copies the last
PRT/MULPRT, table, matrix, etc. as spreadsheet cells on the clipboard, for subsequent
pasting into a spreadsheet (similar to CLIP). This is convenient for copy-pasting to for
instance Excel, including matrices.

T-T Analyse



Gekko 3.0 user manual 41

1.11 Help system

It may be difficult to remember all the commands and the exact syntax for each
command. The function key F1 (or typing 'HELP") accesses the Gekko help system. If
you cannot remember the exact syntax for a particular command, you can try typing
"HELP [commandname]", for instance "HELP sim;" (or you may search the help files
for particular phrases).

The help system is contained in a file gekko.chm. (Note: opening this file stand-alone
from a network drive may sometimes pose problems on Windows, due to security
reasons).

The help system is also available online here.

T-T Analyse


http://t-t.dk/gekko/docs/user-manual/index.html?introduction.htm

42

Gekko 3.0 user manual

1.12

Under the hood

Language, licence etc.

Gekko is written in C#.NET, which together with VB.NET and Java are among the
most used programming languages for pc's. Due to C# being object-oriented,
development and redesign is flexible and efficient. The software is written for
Windows .NET, so in order to run on Mac or Linux, the user has to use virtualization
software. Gekko is open-source (public domain, GNU GPL licence), implying that
anybody can use the code for free, but any enhancements must be put into the public
domain as well.

Parser, structure etc.

The databanks and timeseries in Gekko are object-oriented internally. There can be
any number of databanks, with any number of time series for any given periods
(including quarters and months), only constrained by working memory. All values and
calculations are double-precision (64-bit) internally, and missing values are handled
consistently. The timeseries can contain labels, source etc., and the underlying data
structures are dynamically resizing arrays, in order to keep the system fast. Models
and command-scripts (command files, .gcm) are parsed and dynamically translated
into C# code by means of ANTLR, providing fast and reliable parsing.

A model can be loaded dynamically without leaving Gekko. This means richer options
for using different models at the same time, if needed. It also permits for instance
optional fail-safe mode, where the model checks more strictly for illegal values while
running (at a small speed penalty).

Solvers
At the moment, four algorithms for solving a model are provided.:

e First, standard Gauss-Seidel, where damping is supported via the formula codes.
The program solves a large model like ADAM quite quickly with the Gauss-Seidel
algorithm.

¢ In addition, a Newton method with line-search is implemented. This method does
not depend upon the distinction between left- and right-hand side variables, and so
can be used to solve difficult models or goals/means problems. The Newton solver
uses a decomposition of the simultaneous block into a feedback set and the rest of
the simultaneous block, reducing the dimension of the jacobian matrix
considerably. The Newton solver can handle any number of means/goals simply by
changing the set of endogenous variables.

e The Fair-Taylor method ('fair') is used if the model contains leaded endogenous
variables

e Newton Fair-Taylor ('nfair') is used for harder problems, using the Newton method
to accelerate the Fair-Taylor iterations.

T-T Analyse


http://www.antlr.org/

Gekko 3.0 user manual 43

Graphics, tables

Graphics (PLOT) are done with gnuplot as the underlying engine. Gnuplot is installed
together with the rest of the program. Printing and plotting uses the same
syntax/options and underlying code. Graphs can be exported to Word via the
clipboard, or saved to disk as for instance .emf or .svg files. Data tables can be
exported directly to Excel, or via the clipboard to any spreadsheet software accepting
tab-delimited input.

File formats and interfaces

Gekko databanks (.gbk) are zipped protobuffers, so the format is open, well-
documented and easy to interface. Protobuffers are also used internally for caching
models, so that they load faster.

Gekko 3.0 uses an internal Excel engine to read and write to Excel. This is fast and
reliable, but only works for the newer .xlsx format. To read/write the older .xls files,
an interface to Excel via COM Interop is possible, too.

The R interface is deliberately without COM Interop, but relies instead upon simple
file exchange, and the gnuplot and X12A interfaces are similar.

Name

Why was Gekko called Gekko? One of the first versions, from early 2008, was called
Echo. The intention was to find a suitable acronym afterwards, where 'ec’' would be
'economic' or 'econometric'. However, Echo sounded a bit too much like the Danish
shoemaker Ecco. Thus, the similarly sounding Gekko was chosen, partly because a
gecko is a nice and helpful animal, and intentionally choosing the Danish spelling to
distinguish it from, among other things, the Gecko browser engine. The intention was
still to find a suitable acronym, with the 'e' being '‘economic' or 'econometric’, but the
search for a suitable acronym is still ongoing. Gekko supposedly means something
like 'moonlight' in Japanese (which gives better associations than, for instance,
Gordon Gekko, who did not inspire the name).

T-T Analyse


http://www.gnuplot.info/
http://www.ecco.com
https://en.wikipedia.org/wiki/Gecko
https://en.wikipedia.org/wiki/Gecko_(software)
https://en.wikipedia.org/wiki/Gordon_Gekko

44 Gekko 3.0 user manual

1.13 Guided tour

Instead of painstakingly reading through a lot of descriptions of commands etc., you
might prefer to jump right into simulating a model in Gekko, and analyzing the
results. For the purpose of this, a guided tour has been created (the tour will entail

some typing though), where each step is explained, but without delving into too
many details.

The guide can be seen here:

e Gekko Guided tour (external link, Gekko 2.0 simulation examples, not updated to
3.0 yet)

T-T Analyse


http://t-t.dk/gekko/guided-tour

Gekko 3.0 user manual

45

T-T Analyse




Part li



Gekko syntax basics 47

2 Gekko syntax basics

This chapter describes some of the syntax rules in Gekko 3.0, including the

differences relative to the 'older' syntax of Gekko 2.0 (2.4) and earlier. The chapter
contains the following sections:

e Basic syntax rules. A section on syntax basics.
e More about syntax. More details about how the syntax works.
e Syntax diagrams. Diagrams the explain the basic components of the syntax.

T-T Analyse



48

Gekko 3.0 user manual

2.1

Basic syntax rules

This section tries to explain some of the syntax basics.

See the page with syntax diagrams if the basics of hames, expressions, etc. is
confusing.

Basic syntax

Almost all commands start with a command name, for instance PRT (for printing).
You can see the commands sorted into categories here, or the alphabetical list of
commands here. Beware that user-defined procedures may look similar to commands.
Assignments like SERIES, VAL, LIST, etc. may omit the command name.

Many commands accept an option field right after the command name, for instance
PRT <2015 2020>. The option field always uses angle brackets <>, and is often used
to state the local time period used in the particular command. But many other
options may be set, for instance PRT <pch> for percentage printing, or PRT <
filter=avg >.In PRT <filter = avg>, the option type is ‘filter' and option value
is 'avg', whereas in PRT <pch>, the option type is 'pch', and the option should be
understood as short-hand for 'pch = yes'. Many of the options are of yes/no-type
(boolean), and instead of for instance 'pch = no', the user may use the shorter
'nopch’. In assignments, the option field may be stated before or after the left-hand
side variable, so both <2020 2030> x = 100; and x <2020 2030> = 100; are legal.

After the option field, some variables or expressions are typically stated, like for
instance PRT <2015 2020> x, y;.In this case, the timeseries x and y are printed. To
delimit elements, you typically use a comma (,).

All commands end with a semicolon (;), and the commands may span multiple lines.
(If you need a multi-line command in the user interface, use Ctrl+Enter to add
newlines, and then mark the whole block and press Enter).

You may sometimes add extra options at the end of the statement, for instance pPRT
<2015 2020> x, y file = print.lst;. Such extra options use the equal sign (=),
similar to options in the <>-option field.

Gekko operates with seven types of variables: scalars (value, date or string),
collections (list, map, matrix), or series. When referring to a scalar, you must use the
%-symbol, for instance %v. When referring to a collection, you must use the #-
symbol, for instance #m, whereas timeseries do not use symbols. Using such symbols
is helpful when reading expressions like x + %y + #z[2], because x is known to be a
timeseries, %y is known to be a scalar (probably a value, else the expression will fail),
and #z is known to be a collection (from which the second item is selected, so in this

T-T Analyse



Gekko syntax basics 49

case #z is probably a list). In Gekko 3.0, the symbols must also be stated on the left-
hand side of assigments like for instance $v = 100.

As anticipated above, you can use []-brackets to select items. For timeseries, []-
brackets can be used for lags/leads, for instance gdp[-1] or gdp[+1], or for picking
out an observation like gdp[2015] or gdp[2015g3]. For lists, []-brackets are used for
selecting items in the list, for instance #m[2] or #m[1..%n], and for maps, brackets
are used to select elements by name (for instance #m['d'] or the shorter #[d] or
#m.d). Matrices use two dimensions, for instance #a[2..3, 1..%n].You can use
brackets for strings, selecting characters, for instance %s[3] or $s[3..5].

Wildcards either usethe ['...'] or {'...'} pattern or are 'naked'. For instance,
PRT {'y*'}; will print all timeseries starting with 'y'. Such wildcards can also be used
with lists, for instance #m['y*'], selecting all elements starting with 'y'. In some
commands, the stand-alone brackets are not mandatory, for instance INDEX y*;
instead of the more tedious INDEX {'y*'};. The reason why for instance {'a*b'} is
used in PRT is that otherwise the expression PRT a*b; would be ambiguous (does it
mean the mathematical product of two timeseries, or is it a wildcard matching
variables starting with 'a' and ending with 'b'?). See more on the wildcard page.

The colon (:) is used to access open databanks, for instance PRT bk7:pxa;, where
'bk7' is the databank, and 'pxa’ is the timeseries. When writing PRT pxa;, the first-
position databank is implicitly understood if databank searching is inactive, and if
databank searching is active, Gekko will first look for pxa in the first-position
databank, and afterwards in the other open databanks (except Ref). You may use PRT
bank2:pxa; to obtain the values from the bank2 databank. Alternatively, use the at
symbol (@) to indicate the reference databank, for instance: PRT @pxa;.

You may use dot ('.") to indicate lags, for instance PRT pxa.1; instead of PRT pxal-
11;. Dots can also be used to select items from a MAP, for instance #m.x picks out
element 'x' in the map (alternatively, #m['x'] or #m[x] can be used).

Exclamation mark ('!") is used to indicate frequency, for instance PRT pxa!q,
pxa!m; refers to the quarterly or monthly versions of the series pxa.

Strings should always be stated inside single quotes ('), for instance $s = 'Hello
from Gekko.';.Double quotes (") are not used in Gekko, but may be put inside

Gekko strings (the string 'The name "Peter" har 5 characters' is legal). If you
need to insert a scalar or an expressions into a string, the most practical way is via

{}-braces, for instance 'the {%s} car', where s = 'blue'. This is more readable
than the alternative: 'the ' + %s + ' car'. Note also that if s is a string, there is
the equivalence ' {%s}' = %s.

{3}-braces are also used for name-composition. For instance PRT px{%s}; will be
equivalent to PRT pxa;, if $s = 'a'. When reading Gekko 3.0 code containing {}--

T-T Analyse



50

Gekko 3.0 user manual

curlies, these curlies can be thought of as some sequence of characters, for instance
abc123 (without quotes). So if in doubt regarding the use of {...}, for instance
whether some string $s must be put inside {...} or not, try to first consider whether
the command/expression would use a nhame like abc, or a string like 'abc'? If you
would use the former, you must correspondingly use {%s}, and if you would use the
latter, you must correspondingly use %s. Note that there is the following equivalence:
abc = {'abc'}, soin a way the {...}-curlies 'eat' the single quotes belonging to a
string, and inside the {...}-curlies, you may put any expression, as long as it
evaluates to a string. Another interpretation is that the {}-curlies perform a
forwarding operation. If $s = 'abc', the expression {%s} forwards from the variable
$s to the variable abc. See also the syntax diagrams.

Functions use normal parentheses, for instance movavg (x, 3). You may define your
own functions (see here). All functions, both in-built and user-defined, implement so-
called UFCS, so movavg (x, 3) can alternatively be written as x.movavg (3), putting
the first argument on the left.

Power operators are either '**' or '', for instance PRT a**b; or PRT a’b;.

Logical operators use '<', '<=', '==', '>=", '>', '<>"; note in particular that the
equivalence operator is '=="'and not '=', see also IF.

$-conditionals can be used in the same way as in the GAMS software package. So
you can write for instance $x = 1 $ (%x < 0); which sets $x = 1if $x < 0. Thisis
equivalent to IF (3x < 0); %$x = 1; END;. The $-conditionals are often used in
conjunction with lists, for instance y[#i] = 100 $ (#i in #i1); which sets the
array-timeseries y[#i] to 100 for the elements of #i that are part of the subset #i1.

Names (variable names) must start with '%’', '#', a letter or an underscore, and are
subsequently composed of letters, underscore or digits, for instance £16, temp, %£16,
% temp, #£16, # temp. Names may also contain {}-braces. Timeseries names starting
with 'xx' are often of temporary nature (see CREATE).

// and /* ... ¥/ are used for out-commenting lines of code, or blocks of code.

Details

Some syntax from the 2.0 series has been deprecated, in order to clean up the
syntax.

e Using {i} as short-hand for {%i} is no longer possible, for instance in a name
like x{i} instead of x{%i}. First and foremost, using i instead of %i would go
against the Gekko 3.0 principle that the type symbol is a part of the name and

T-T Analyse


https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

Gekko syntax basics 51

hence cannot just be omitted. Next, a further problem with {i} is that any
expression is allowed inside {}-braces, and this fact makes the treatment of {i} as
{%1i} somewhat confusing. For instance, consider this expression: x{i[2020]}. If,
for instance, i is a series with value 100 in the period 2020, the name x{i[2020] }
will be y100. Now, in contrast, the name x{i} will not try to use the series i, but
will instead look for the scalar %i. So just removing the []-index from i means that
i is suddenly understood as %i. Additionally, since using x[a] instead of x['a'] is
possible for array-series and in other indexes, the user may think that x{a} is be
short for x{'a'}, not x{%a}.

Using x%i as short-hand for x{%i}, or x%i |y as short-hand for x{%i}y is no
longer endorsed. There are several reasons for this. First, strings do not support
this notation, so 'x%i' will not have %i in-substituted, whereas "x{%i} " will
(hence, for instance, PRT {'x%i'}; will not work, whereas PRT {'x{%i}'}; will.
Because strings support x{%i} notation inside, it is easy to transform a name like
x{%i} into the corresponding string; just add quotes: 'x{%i}' (and vice versa).
Second, the notation is illogical (or at least complicated). For instance, if 51 = 'a’,
we have in the strict {}-notation that x{%i} = xa. Here, we can easily prepend a
sigil '%', for instance $x{%i} = %xa, and it is similarly easy to append a character,
for instance x{%i}b = xab. And if we wish to omit the 'x' and 'b' we just toss them:
{$i} = a. Now, with the short-hand notation it gets complicated. We have that x%1
= xa which is fine. But if we prepend a type symbol, we have to use % (x%1),
otherwise Gekko will issue an error ($x%1 is illegal). If we append a character, we
have to use the concatenator: x%i |a, since x%ia will look for the scalar %ia. And if
we want to loose the 'x', we have to use {%i}, since a naked %i returns a scalar
string, not the series corresponding to this name. So to sum up, using the short
notation entails cases where the user has to using adding parentheses,
concatenator, or curly braces, which is error-prone, especially for less experienced
users. Finally, there is readability. Whereas x%1i is simple enough to read, how
about x%i|a%i%k|b compared to x{%i}a{%i}{%k}b? Or % (x%1i|a) compared to %
x{%i}a? For these reasons, the x%1i |y notation has been deprecated in Gekko 3.0,
providing simpler logic and programs that are easier to read.

Using #m[%s] as a logical condition is no longer possible. The idea is that
#m could be a list of strings, and #m['a'] could return 1 if 'a' is a member of #m,
and 0 otherwise. This syntax is used by GAMS, but the problem is that in Gekko
3.0, lists may contain values, so should #m[3] also mean a membership check (if
the number 3 is one of the list elements)? But this syntax collides with #m[3] being
used to fetch the element in position 3 in the list. Instead, the user can use %$s in

#m, Or #m.contains (%s).

Omitting scalar or collection symbols on the left-hand side is no longer
possible, for instance using VAL v = 100; or LIST m = ('a', 'b', 'c'); isno
longer legal. In Gekko 3.0, the '%' or '#' symbol is considered part of the variable

T-T Analyse



52

Gekko 3.0 user manual

name, as if these symbols were just special characters alongside 'a’, 'b’, 'c', etc. In
order to comply with this logic, the symbols can never be omitted. Instead, the

correct assignments are VAL %v = 100; or LIST #m = ('a', 'b', 'c');, butin
Gekko 3.0 the types may be omitted, so $v = 100; or #m = ('a', 'b', 'c'); is
legal, too.

List definitions are generally stated with parentheses, for instance ('a’,

'b', 'c').But for convenience reasons, you may use a 'naked’ list definition,
for instance #m = a, b, c; to put the three strings 'a', 'b’, and 'c' into the list #m or
y =1, 2, 3; toput the three values 1, 2, and 3 into the series y. This also works
in FOR loops and is convenient in many cases (remember that a naked list with
only one element must have a trailing comma). For such naked lists, Gekko accepts
elements composed of letters and digits (and some symbols like , -, :, !, [, 1), so
FOR string %i = 38, 007, 1lel0, 2001qgl; is equivalent to FOR string %i =
('38', '007', 'lelO', '2001gl');.See more about naked lists.

Beware that "#m = (a, b, c);" is very different from "#m = a, b, c¢;". The
former finds the three timeseries a, b, and ¢, and puts them into the list as
individual objects (of series type). The latter just inserts three strings. In the
former case, you may use PRT #m;, whereas you must use PRT {#m}; in the latter
case, if you want to refer to the variables corresponding to the string names. Using
lists of strings to refer to variables is often more practical than using lists of series
objects. As an example, you can use the syntax PRT bankl:{#m}; to print bankl:a,
bankl:b, and bankl:c (that is, from the databank bank1), or the syntax pRT

{#m} !'qg; to print out the quarterly series a!qg, b!qg, and c!g. Gekko contains many
inbuilt functions to handle such lists of variable names represented as strings.

Concatenating and inserting strings. When combining (contatenating) variables
into a string, there are generally two ways to do it. The first one is using the '+'
operator, for instance $s1 = 'blue'; %s2 = 'The ' + %sl + ' car';. The other
way is to use {}-braces: $s1 = 'blue'; %s2 = 'The {%sl} car';. Thisis easier
to read, and has another advantage. If $s2 was for instance a value, the first
variant would demand an explicit string conversion, for instance $s2 = 'Number '

+ string(%sl) + ' car';, whereas this is not necessary regarding the last
variant: $s2 = 'Number {%sl} car';. The reason for this is that the {}-braces
already try to convert the inside into a string.

T-T Analyse



Gekko syntax basics 53

2.2

More about syntax

Below, some of the main concepts of the Gekko 3.0 syntax are explained in more
detail.

See the page with syntax diagrams if the basics of names, expressions, etc. is
confusing.

Banks, symbols, names, frequencies, indexes

A variable may be stated in the following way:

[bank] [:] [symbol] [name] [ [freq] [indexes]

For instance, bl:x!qg refers to the quarterly (!q) series x in the b1 databank. If the
series is an array-series, bl:x!qg['a', 'b'] would refer to the sub-series ['a",
'b'] (thatis, with two-dimensional indices 'a’, 'b') of x!q. Frequencies are not used
for non-series types.

The symbols are used in the following ways: series (including array-series) have no
symbol. Scalars (value, date, string) start with ¢ symbol, and collections (list, map,
matrix) start with # symbol.

If the databank is omitted on a variable in a command or on the right-hand side of an
expression, the following will take place (depending upon mode, cf. also the databank
search page):

e sim-mode: If sim-mode is active, Gekko will look for the variable in the first-
position or local/global databank.

e data- and mixed mode: Gekko will first look for the variable in the local databank,
then in the first-position databank, then in subsequent open databanks, and finally
in the global databank. Gekko will never search for a bank-less variable in the
reference (Ref) databank.

In some cases, omitting the databank is silently interpreted as adding first: to the
name, independent of mode settings. for instance COPY x to y; is interpreted as
COPY first:x to first:y;, where first: refers to the first-position databank
(often Work).

If the frequency is omitted for variables of series type, the current frequency will be
silently added. So if the frequency is set to quarterly (option freq g;), you may use
x1 as short for x1!q.

For array-series, the array indexes may sometimes be omitted, so that you may write
PRINT x; instead of PRINT x[#i, #3];, printing out all the elements.

T-T Analyse



54

Gekko 3.0 user manual

Names and quotes

In general, a string is enclosed in single quotes, for instance: 'x', whereas a name is
not, for instance: x. Because of the use of type symbols in Gekko (‘%' and '#' to start
scalar and collection names), the single quotes sometimes be omitted in those cases
where a series would not make sense as input. For instance, for array-series, using
the shorter x[a] instead of the more strict x['a"'] is legal, because in the former
variant it would not make sense to use an index with a series argument. Using x[%a]
is another story, because $a could be a string, so the rule only applies to simple
names (sequences of characters that are either alphanumeric or '_").

In the same manner, a lot of options accept string arguments, for instance COMPARE
<sort=rel>;, where 'rel' is the argument (relative sorting). It would not make sense
for rel to be a timeseries, since a string is expected, and therefore the shorter
<sort=rel> can be used as short-cut for the more strict <sort="rel'>. If the type
needs to be controlled, you could use a string variable, so $s = 'rel'; COMPARE
<sort=%s>; would work fine. This is still work in progress.

Omitting single quotes is possible regarding list definitions and loops too, as seen in
the following section.

Names, lists and loops

In general, lists are defined as comma-separated variables, enclosed in parentheses.
For instance, #m may be a list of strings:

#m ("a’, "', "ge"')g /J/stwick
#m = a, b, c; //naked list, NOT equal to (a, b, c)

As seen, a naked list variant is allowed, in the special case where all of the list
elements are simple strings or simple values. Note that the syntax for a naked list of
strings is always without parentheses in the list definition. The list #m = a, b, c; is
interpreted as three strings 'a', 'b', 'c', whereas the list #m = (a, b, c); is
different, containing three series variables (objects): a, b, c. The list #m = 1, 2, 3;
becomes the three values 1, 2, and 3.

The same goes for FOR, so the two following are equivalent.

FOR string %i = ('a', 'b', 'c'); PRT {%i}; END; //strict
FOR string %i c; PRT {%1i}; END; / /naked

Il
©
o

A one-element list (singleton) is special:

#m = a,; //or: ('a',) or list('a')

T-T Analyse



Gekko syntax basics 55

The empty list is special too:

#m = list(); //note: using () may become legal later on

For a one-element list with string element 'a', you cannot use #m = a; or #m =
('a') ;. In the first case, the right-hand side is interpreted as a series (a), and
assigning a series directly to a list will fail. In the second case the expression
evaluates to #m = 'a';, assigning a string directly to a list (which will fail). Using a
trailing comma like #m = a,; makes it a list.

Indexes [...]

Regarding indexes of array-series or other variables, single quotes on a string can in
general be omitted (both the following are valid):

PRINT x['a', 'b'l; //strict
PRINT x[a, bl; //short

Indexes are often used on lists to pick out items (so-called slicing).

Name-substitution {...}

The {}-curlies are used for name-composition, and in general you may think of {...}
as simply a sequence of characters, like x22 or y 15 sum. When used, the inside of
{...} must evaluate to a string (or list of strings), for instance {%s} or {#m}, for
instance:

$s = 'x';
fm = ('y', 'z'); //or: #m =y, x;
PRT a{%s}, a{#m};

This is equivalent to "PRT ax, ay, az;". In a sense, {...} curly braces removes single
quotes, so that {'x'} = x, transforming the string 'x' into the variable/series x.

As seen, the {}-curlies can also be used together with other characters (or other
curly braces), for instance x{%i}ta. If 3i = 'e', this amounts to xea. Often, instead
of using array-series, normal series may be used to the same effect, so instead of the

T-T Analyse



56

Gekko 3.0 user manual

array-series x['i1', 'j1'], the user may use simply a series called xi1j1. If the
lists #i and #5 contain the i- and j-elements, you may print the series: PRINT x[#1,
#31;, or with normal series: PRINT x{#i}{#7}.

Gekko 3.0 no longer allows omitting the %-symbols inside {}-curlies, so you cannot
use for instance x{i}a instead of x{%i}a. Using x%i|a as synonym for x{%i}a is no
longer endorsed in Gekko 3.0, but it still works.

See also the syntax diagrams.

More on indexes
Indexes can be used for:

e Array-series (mentioned above), for instance x[a, b] or x['a', 'b']. Integers
may be used, if the dimension is compatible with an integer, for instance age
dimension. Trailing zeroes are allowed, so for an array-series, x[007] is understood
as x['007'], not x['7"'].

e Lags/leads, for instance x[-1] or x[+1]. Note that a lag or lead must contain a + or

- as the first character after the bracket. So if you define $i = 2, you may use x[-
%i] or x[+%i], but x[%i] will not work as a lag or lead (even is %i is negative).
Instead, if x is a normal series, x[%i] will be understood as x[2], which again is
understood as the year 2 (two years after the birth of Christ). If x is instead an
array-series, x[%i] will be understood as x['2'] which could, for instance,
represent 2-year olds (if x contains population data).

e Period reference: x[2020q1], first quarter of 2020.
e Positions in LISTs: #m[2] picks out the second element of the list #m.

e Names in MAPs: #m[a] or #m['a'] picks out the variable named a in the map #m.

For simple names, #m.a is equivalent to #m[a] or #m['a'] (the variable a is a
series).

e Matrix references (row/column), for instance #m[2, 1] picks out the numeric value

in row 2, column 1.

e Searching: #m['a*'] finds all elements matching the pattern 'a*'.

e Note that in Gekko 3.0, you cannot use #m[0] to get the number of elements of the

list #m. Use length (#m) Or #m.length () instead.

e Ranges can be used for picking out elements, for instance #m[2..4] picks out

elements 2 to 4 (inclusive), or ¢s[2..4] takes characters 2 to 4 from the string %s.

T-T Analyse



Gekko syntax basics

57

T-T Analyse




58

Gekko 3.0 user manual

2.3

Indexing: list, matrix, map

Gekko lists, matrices and maps are all containers of data, where the data is organized
in some structure.

e A Gekko list is one-dimensional, but can be nested (lists inside lists), and may
contain any Gekko variable type.

e A Gekko matrix is two-dimensional and can only contain values.

e A Gekko map is like a list where the elements are not ordered and hence not
accessed by number index (for instance #m[1], #m[2], etc.), but instead by name
(#m['gdp'], #m['vat'], etc.). In a map, the elements are not ordered sequentially,
but instead strings are used to look up the elements. A Gekko map can be thought
of as a mini-databank.

Lists are defined like for instance (1, 2), a two-element list. Note that a singleton
list must use a trailing comma, for instance (1,). The matrix equivalent would be [1,
21, which is a 1 x 2 matrix (row vector), or alternatively [1; 2], which would be a 2
x 1 matrix (a column vector). A nested list could be stated like ((1, 2), (3, 4)),
which for a matrix would be [1, 2; 3, 47.Alistlike (1, 2) has no awareness of
being a row or a column or anything else; it is just a sequence of humbers that can
be indexed by position.

#ml = ((1, 2), (3, 4));
#m2 = [1, 2; 3, 471;
PRT #ml, #m2;
J//ReguliEs ========c====ccsssssss=s=====so======
#ml
(1, 2), (3, 4)
#m2
1 2
1 1.0000 2.0000
2 3.0000 4.0000

Regarding the list #m1, it contains two sub-lists. Each of these sub-lists contains two
values. So the list is nested, whereas the matrix #m2 is organized in a two-
dimensional structure of rows and columns.

In general, a nested list is indexed like #m1[2] [1], picking out the value 3, and a
matrix is indexed like #m2[2, 11, also picking out the value 3. However, for nested
lists of lists like #m1, Gekko allows the alternatively syntax #m1[2, 1], too. So when
selecting an individual element in a nested list, there is no difference between #m1 [%
i1[%3] and #m1[%i, %3].

Things get more complicated when ranges are used:

// 1 2 3

T-T Analyse



Gekko syntax basics 59

// 4 5 6

// 7 8 9

// 10 11 12

#m = (¢(x, 2, 3), (4, 5, 6), (7, 8, 9, (10, 11, 12));
$vl = #m[2, 31; //6

$v2 = #m[2][3]; //6

#ml = #m[2, 2..3]; // (5, 6)

#m2 = #m[2][2..3]; // (5, 6)

#m3 = #m[2..4, 2]; // (5, 8, 11)

#m4 = #m[2..4]1[2]; // (T, 8, 9)

#m5 = #m([2..4, 2..3]1; //((5, 6), (8, 9), (11, 12))
#m6 = #m([2..4]1([2..31; //((7, 8, 9), (10, 11, 12))

Here, #m is a four-element list, where each element is itself a three-element list. It
can be represented visually as the 2d matrix shown in the comments, but beware
that the nested list has no inherent notion of rows or columns. Both #m1 and #m2
amount to (5, 6).In both cases, the second row is singled out, and elements 2-3
(inclusive) are selected from this. But #m3 and #m4 are different: the former selects
rows 2-4 in column 2, which is (5, 8, 11), whereas #m4 evaluatesto (7, 8, 9).To
understand #m4, we will splititupinto #x = #m[2..4]; #m4 = #x[2];. Here, #x
evaluatesto ((4, 5, 6), (7, 8, 9), (10, 11, 12)) since it picks out elements 2-
4 (inclusive) of the #m list. Next, from #x, the second element of this is selected,
which is (7, 8, 9). Perhaps not surprising, #m5 and #mé6 are different, too. The
former selects rows 2-4 and columns 2-3, resulting in the nested list ((5, 6), (8,
9), (11, 12)), cutting out a part of the 2d matrix shown in the comments. In
contrast, #mé6 evaluatesto ((7, 8, 9), (10, 11, 12)) . We can reuse the #x
temporary list again: #x = #m[2..4]1; #m6 = #x[2..3];.So thistime, #x[2..3]
picks out elements 2-3 from #x, thatis, ((7, 8, 9), (10, 11, 12)).

To sum up, for nested lists of lists, Gekko allows the indexing syntax [... , ... 1in
addition to the standard [...][...] indexing. When the first part of the former kind
of indexing is a single value, there is no confusion. However, when the first part of
such indexing is a range, the [... , ...] syntax selects elements in the same
manner as matrix selection, whereas the [...][...] variant selects something
altogether different.

The reason why nested lists allow [... , ... ] indexing syntax in Gekko is to make
it possible to select elements in a similar manner to matrices, making it easier to use
nested lists to represent for instance spreadsheet cells, tables or other 2d structures
with mixed contents (for instance text, dates, and values). Another reason is to
comply tightly with Python arrays (NumPy library), where such indexing is possible.
Python also has a matrix library, but this is being deprecated in favor of using NumPy
arrays instead (also for linear algebra calculations), among other things because
arrays generalize naturally to n dimensions ("tensors"), in contrast to 2-dimensional
matrices.

Arrays in Python

T-T Analyse


https://en.wikipedia.org/wiki/NumPy

60

Gekko 3.0 user manual

Since lists in Gekko follow most of Python's convention, the Python NumPy library
also inspires some of the intricacies of multidimensional objects. First, we will have a
look at the ndarray (n-dimensional array) variable type in Python.

import numpy as np
m (ry, 2, 31,104, 5, 1, [7, 8, 91, [10, 11, 12]]
a np.array (m)

In the following code, m is a standard nested list, whereas a is an array. Here, m[0]
will pick out the list [1, 2, 31, and a[0] will pick out the array [1, 2, 3], note that
indices are 0-based in Python. Both m[0] [0] and a[0] [0] and a[0, 0] will pick out
1, butm([0, 0] will fail with an error Selecting one of the row elements and a range
of column elements produces this:

ml = m[1l, 1:3] #type error
m2 = m[1][1:3] #[5, 6]
al = a[l, 1:3] #[5, 6]
a2 = a[l][1:3] #[5, 6]
Again, the list does not allow [... , ...] notation, but apart from this, everything

is as expected (the range 1:3 means elements 2 and 3) . Now we try to select a
range of rows and a fixed column:

m3 = m[l:4, 1] #type error

m4d = m[1:4][1] #[7, 8, 9]

a3 = a[l:4, 11 #[5, 8, 11] <-- note!
ad = af[l:411[1]1 #[7, 8, 9]

In this case, m4 and a4 still only obtain the second row, whereas a3 obtains the
second column (and m3 fails with an error).

Selecting several rows and columns at the same time:

mS = m[1:4, 1:3] #type error

mo6 = m[1:4]([1:3] #[[7, 8, 91,010, 11, 12]]

a5 = a[l:4, 1:3] #[[5,0]1,[8, 9],[11, 121] <-- note!
a6 = a[l:4][1:3]1 #[[7, 8, 91,[10, 11, 121]

In this case, there is no difference, apart from the expected type error regarding m5.

T-T Analyse



Gekko syntax basics 61

2.4

Syntax diagrams

Gekko 3.0 has a more strict syntax than Gekko 2.x and earlier. The following
diagrams illustrate some of the fundamental building blocks of the syntax of 3.0. So
whenever Gekko refuses one of your expressions, and the syntax error does not
make sense, you may consult the following diagrams and perhaps understand the
issue by means of these. The blue boxes below provide examples.

One of the most fundamental building blocks of Gekko is the name.

name (normal name)
> a
1%s}

'y » alphanum if
a{%s}b

{ l >|E=xer .| } ;Tii_{:ESZ}b

Here, alphanum means alphanumerical characters: letters, digits, and underscore,
whereas expr is any legal Gekko expression. Gekko will evaluate whatever is inside
the {}-curlies, and will expect the inside to be a string or a list of strings. Note that
alphanum excludes %, #, !, : and other symbols.

To make it possible to write for instance x{%i} shorter as x%1i, a "complicated
name" (cname) is introduced:

cname (complicated name)

— name > % a name [ » a%s|c
afm
¢ Rl a%sl%s2

-
%

In many cases, such a cname can be used instead of a normal name. Note that the
name part of the cname may contain {}-curlies, not just alphanumeric characters. The
cname is mostly used to avoid typing too many {}-curlies, cf. the examples in the
blue box. In command files, procedures and functions, it is often best to use normal
name instead of cname, for readability and maintainability.

A variable name is a precise reference to an object residing in a particular Gekko
databank. It may include type symbols % or #, or frequency !. The upper part of the
diagram illustrates timeseries, which have no type symbols and may include a
frequency. The lower part of the diagram illustrates scalars and collections, starting
with a type symbol.

T-T Analyse



62

Gekko 3.0 user manual

varname (variable name)

w

P name A 'y »>
a%s
cname name |
{%51}!{%52}

%5

#m

o name | ; s
Lo 0]

Note that if you want to compose a scalar or collection name using a cname, you must
use parentheses. For instance, % (a%b) designates a scalar name, where the name
itself (excluding the %) is asb. But in general it is much clearer to use the equivalent
name version %a{%b} instead of the cname version % (a%b). Note that %a%b is not legal
syntax, since it would be too confusing.

A varname can reside in any databank (or MAP), and a bankvarname is hence
designated as follows:

bankvarname (variable name with databank)

R e :
b
b:
b|name|T>|:| b
{

m
55l :{%s2}

[}

So either there is no bankname, else a colon (:) is used, or @ can be used to imply
the reference databank.

Indexing can be done with either []-brackets, or with a dot (.). You can use .. to
designate a sequence inside the []-brackets.

T-T Analyse



Gekko syntax basics 63

index (use of []-indexing)

o | b
m ¥ T al2020]
#m([l..2, 3..10]
(a + b) [2020q1]
a[’b’][2020]
#m. x

#m.£("a’)

a.l

al’b’].1
a!g[2020q1]

e ]
e |

The dot (.) is used in three ways. The expression #m.x picks out the series x from the
map #m (alternatively, #m['x'] does the same thing). The expression x.f (a) is
equivalent to f (x, a), because Gekko implements UFCS. Finally, an expression like
x.1 is equivalent to x[-1], that is, lagging one period.

The function syntax is completely standard:

function (call of function)
H| T |»>| ( F >| expr |7>| ) |»+ 2120) o0

f(1+2, 3+4)
Lists are defined in the following way:

list (list definition)

ﬂ — m D—> NOTEl: “(expr)” is not
considered a list, use
”(expr,)” for a one-element
|:|4 list.

In general, a trailing
comma is allowed. See also
naked lists.

(1, 2, 3)

(1, 2, 3,)

(2,)

(a’, 'b’, '¢’)

(2020g3, 2020g4, 2021qgl)
(1, "a", 2020g3)

(1+2, %s+"a’, 2020g3+2)
(x, %s, #m)

Maps are defined in the following way:

T-T Analyse


https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

64

Gekko 3.0 user manual

map (map definition)

e

Matrices are defined in the following way:

matrix (matrix definition)

A logical statement:

L

logical (logical expression, eg. used in IF or with $-conditional)

—— e =

T

NOTE: Dollar or indexer may be
used with varname. Type may also
be indicated, for instance (VAL %v
= 2). As for list, trailing comma
is allowed

%5 = "a’', v = 2, %d = 2020)
(x = x1/x2, %v = x3[2020])

(#ml = (1, 2), #m2 = [1, 2])
(series<2020 2021>x = (1, 2))

[1, 2; 3, 4]
[1]
[1, 2, 3]
2>1
ot o= rpr
Ya’ in #m
%X

The last one tests if %x is
0 or not. Logicals can be
combined with and, or, not,
for instance:

%x »>= 10 and 3x <= 20

The keyword in checks if the first expr is a member of the second expr.

Dollar-conditionals:

T-T Analyse



Gekko syntax basics 65

dollar (dollar conditions a la GAMS)

_B a s (b > 100)

(a + b) $ (x[2020q1] == 100)
a $ (‘a’ in #m)

Note that parentheses are always used, and membership uses the in keyword. A
GAMS expression like x (i) $ i0(i) is thus translated into x[#i] $ (#i in #i0).
Using x[#i] S #iO0[#i] or x[#i] S (#i0[#i]) will not work. See the "Details"
section of this page for an explanation.

T-T Analyse



Part lll



Gekko commands 67

Gekko commands

This chapter describes in detail the purpose of the different Gekko commands, the

syntax to be used, the results produced, together with examples etc. Please select a
command on the menu at the left.

Regarding general syntax, the reader may consult the short chapter on this here.

Apart from the command sections, the chapter contains an overview:

¢ Command overview. The commands are listed by category, and you may choose to
see MODE-specific versions of the this list: sim-mode or data-mode. See the

chapter 'Gekko commands' for an alphabetical list of commands, and the functions
section to see functions.

T-T Analyse



68

Gekko 3.0 user manual

3.1

Reading guide

The subjects in the chapter "Gekko commands" follow a general pattern similar to
layout below. Regarding general syntax, you may read a short description here.

Introduction

Syntax

Example

Note

Related options

Related
commands

A brief description of the command.

The general syntax for the command. Many of the commands can
use arguments or options.

The following conventions are used in the description of the
syntax:

e Commands are in capital letters (for instance: PRT).

e Predifined keywords are in capital letters (for instance: ROWS,
or ROWS=yesno)

e Elements that are defined elsewhere in the syntax definition
are in italics (for instance: period).

Many commands accept a period argument. When using the
period argument, the command will only be performed for the
local time period, for instance

COMMAND < period > ... ; //for instance SIM
<2015 2020>

The examples serve to illustrate the typical or common uses of
the command.

The notes concerns exceptions to the command and any specific
features of the command. These notes may also include
comparisons to other commands.

A list of related options.

A list of commands with similar functions, or other commands
typically used together with the specific command

T-T Analyse



Gekko commands 69

3.2 Command overview

Note: You may consult the specialized overviews regarding sim- and data-modes
here:

e Sim-mode commands overview

e Data-mode commands overview.

Introduction

Below, all Gekko commands are listed, grouped together by functionality (regarding
functions, see the chapter on these: 'Gekko functions'). Before delving into the
particular commands etc., you may prefer reading some introductory guides:

e Setup
e Basic concepts

e Guided tour

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference, baseline bank). There are the following commands related to

databanks:

READ Reads a databank file (typically gbk) into the first-position and
reference databanks.

WRITE Writes the first-position databank to a gbk file

IMPORT Merges a databank file (typically non-gbk) into the first-position
databank

EXPORT Writes the first-position databank to a non-gbk file

OPEN Opens a databank file (typically gbk). May use OPEN<edit> or
OPEN<ref>.

CLOSE Closes 'named' databanks (cf. OPEN)

CLONE Makes the reference databank an exact copy of the first-position
databank.

DOWNLOAD Retrieves timeseries from a web-based database

COPY Copies timeseries between banks (or inside the first-position
databank)

RENAME Renames timeseries.

INDEX Uses wildcards to search for timeseries in databanks.

COUNT Uses wildcards to count timeseries in databanks.

COMPARE Finds differences between the first-position and reference
databanks.

FINDMISSINGDA This command finds timeseries with missing values.

TA

HDG Inserts a heading (description) into a gbk databank

UNLOCK Sets a databank editable

LOCK Sets a databank non-editable

Timeseries

T-T Analyse



70

Gekko 3.0 user manual

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly or undated.

TIME Sets global time for timeseries operations.

TIMEFILTER Omits or averages certain periods in output

CREATE Create a new timeseries

DELETE Delete an existing timeseries

SERIES Transform a timeseries using mathematical expressions or data
values

COLLAPSE Convert e.g. quarterly timeseries into annual timeseries etc.

INTERPOLATE Convert e.g. annual timeseries into quarterly timeseries etc.

SMOQOTH Fills in missing values in a timeseries

SPLICE Splices two timeseries into one.

REBASE Calculates an index series

TRUNCATE Removes observations in a timeseries outside the stated sample.

ANALYZE Computes cross-correlations etc.

DOC Change meta information (label, source and date stamp)

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the command file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists

DATE Scalar variable of date type

STRING Scalar variable of string type

VAL Scalar variable of value type

MATRIX Define a matrix

MEM Shows a list of scalar variables and their values
Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP command also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference (‘Ref")
databank, for instance @gdp. Or else use colon to indicate a databank, for instance
mybank:gdp.

PRT Prints timeseries or expressions in different ways

MULPRT Prints multipliers: differences between the first-position and
reference databanks.

DISP Prints info regarding timeseries, and starts equation browser

PLOT Show a graph of timeseries (using gnuplot)

SHEET Like PRT, but shows timeseries data in Excel

CLIP Like PRT, but puts timeseries data on the Windows clipboard

DECOMP Opens up the decomposition window

TELL Prints text strings on the screen

T-T Analyse



Gekko commands 71

Model

A model can be loaded directly from a .frm file. After the model is loaded, a number
of commands can be used:

MODEL Load, parse and compile a model from file.

SIM Simulates the model (also if there are goals/means)

ENDO Endogenize variables (means)

EXO Exogenize variables (goals)

UNFIX Removes ENDO/EXO goals/means.

CHECKOFF Skip convergence check for chosen variables (Gauss)
ITERSHOW Show iterations in detail for chosen variable (Gauss)
SIGN For signing models with signatures.

Command files

Larger tasks can be run by means of command files (.gcm). There are the following
commands related to such files:

RUN Runs a .gcm command file. Use the EDIT command to edit these
files.

PIPE Direct output to an external file instead of screen

INI Runs gekko.ini if located in the program and/or working folder

Functions/procedures

You may use user-defined functions or procedures to avoid repetitive tasks and
encapsulate functionality.

FUNCTION Defines a user-defined function.
PROCEDURE Defines a user-defined procedure.
Cleanup

The principal cleanup-command is the following

RESTART Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

RESET Same as RESTART, but without running any gekko.ini files.

CLEAR Clearing databanks

CLS Clears main window (short for 'clear screen')

CUT Closes all PLOT and DECOMP windows

Control flow

T-T Analyse



72

Gekko 3.0 user manual

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software

matures.

FOR

—
T

M

END
RETURN
STOP
EXIT
ACCEPT
PAUSE
GOTO
TARGET

Tables/menus
TABLE
MENU

Econometrics

OoLS

R integration

R_FILE
R_EXPORT
R_RUN

Miscellaneous

For-loop over lists/strings, values or dates, parallel loops are
possible.

Conditional statement (IF-ELSE-END).

Ends loop (FOR), conditional statement (IF) or
FUNCTION/PROCEDURE.

Returns from the command file or function defintion.
Stops execution completely.

Stops execution completely, and terminates Gekko.
Input data interactively

Waiting for the user to click [Enter]

Transfers execution to the corresponding TARGET
Receives execution from the corresponding GOTO

Prints out a predefined table (xml)
Opens up a menu (html)

Single-equation linear regression

Starts a R session, with a particular R file as starting point
Decorates the R file with matrices from Gekko
Runs the decorated R file, and returns matrices back to Gekko

The following commands did not fall into the above categories, and so are gathered

here:

MODE

HELP
OPTION
EDIT

XEDIT

SYS
TRANSLATE

Set Gekko mode to sim/data/mixed

Access the help system

Sets different options

Edit a file via Notepad

Edit a xml file via XML Notepad.

Access the system shell if needed

Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘*Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

T-T Analyse



Gekko commands

73

T-T Analyse




74

Gekko 3.0 user manual

3.2.1

Sim-mode command overview

Note: You may consult the general overview regarding all commands here:
e General command overview

Introduction

Sim-mode (cf. MODE) is focused on solving models, comparing scenarios etc. Below,
the different Gekko simulation related commands are listed, grouped together by
functionality (regarding functions, see the chapter on these: 'Gekko functions'). The
commands listed below are the core commands regarding model simulation.

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference bank). There are the following commands related to databanks:

READ Reads a databank file (typically gbk) into the first-position and
reference databanks.

WRITE Writes the first-position databank to a gbk file

IMPORT Merges a databank file (typically non-gbk) into the first-position
databank

EXPORT Writes the first-position databank to a non-gbk file

CLONE Makes the reference databank an exact copy of the first-position
databank.

COMPARE Finds differences between the first-position and reference
databanks.

FINDMISSINGDA This command finds timeseries with missing values.
TA
HDG Inserts a heading (description) into a gbk databank

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly or undated.

TIME Sets global time for timeseries operations.

TIMEFILTER Omits or averages certain periods in output

CREATE Create a new timeseries

DELETE Delete an existing timeseries

SERIES Transform a timeseries using mathematical expressions or data
values

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the command file easier to read). In addition, scalar variables like
strings, dates and values can be used.

T-T Analyse



Gekko commands 75

LIST Create and delete lists

DATE Scalar variable of date type

STRING Scalar variable of string type

VAL Scalar variable of value type

MEM Shows a list of scalar variables and their values
Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP command also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference
(baseline) databank, for instance @gdp. Or else use colon to indicate a databank, for
instance mybank:gdp.

PRT Prints timeseries or expressions in different ways

MULPRT Prints multipliers: differences between the first-position and
reference databanks.

DISP Prints info regarding timeseries, and starts equation browser

PLOT Show a graph of timeseries (using gnuplot)

SHEET Like PRT, but shows timeseries data in Excel

CLIP Like PRT, but puts timeseries data on the Windows clipboard

DECOMP Opens up the decomposition window

TELL Prints text strings on the screen

Model

A model can be loaded directly from a .frm file. After the model is loaded, a number
of commands can be used:

MODEL Load, parse and compile a model from file.

SIM Simulates the model (also if there are goals/means)

ENDO Endogenize variables (means)

EXO Exogenize variables (goals)

UNFIX Removes ENDO/EXO goals/means.

CHECKOFF Skip convergence check for chosen variables (Gauss)
ITERSHOW Show iterations in detail for chosen variable (Gauss)
SIGN For signing models with signatures.

Command files

Larger tasks can be run by means of command files (.gcm). There are the following
commands related to such files:

RUN Runs a .gcm command file. Use the EDIT command to edit these
files.

PIPE Direct output to an external file instead of screen

INI Runs gekko.ini if located in the program and/or working folder

T-T Analyse



76

Gekko 3.0 user manual

Cleanup

The principal cleanup-command is the following

RESTART

Control flow

Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

Same as RESTART, but without running any gekko.ini files.
Clearing databanks

Clears main window (short for 'clear screen')

Closes all PLOT or DECOMP windows

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software

matures.

RETURN
STOP
EXIT
ACCEPT
PAUSE

Tables/menus
TABLE

MENU

Miscellaneous

Returns from the command file.

Stops execution completely.

Stops execution completely, and terminates Gekko.
Input data interactively

Waiting for the user to click [Enter]

Prints out a predefined table (xml)
Opens up a menu (html)

The following commands did not fall into the above categories, and so are gathered

here:

MODE

HELP
OPTION
EDIT

XEDIT

SYS
TRANSLATE

Set Gekko mode to sim/data/mixed

Access the help system

Sets different options

Edit a file via Notepad

Edit a xml file via XML Notepad.

Access the system shell if needed

Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

T-T Analyse



Gekko commands 77

3.2.2 Data-mode command overview

Note: You may consult the general overview regarding all commands here:
e General command overview

Introduction

Data-mode (cf. MODE) is focused on databanks, handling of timeseries, data revision
and similar purposes. Below, the different Gekko data related commands are listed,
grouped together by functionality (regarding functions, see the chapter on these:
'Gekko functions'). The commands listed below are the core commands regarding data
handling.

Databanks

At startup, Gekko operates with two databanks; 'Work' (first-position, working bank)
and 'Ref' (reference bank). There are the following commands related to databanks:

IMPORT Merges a databank file (typically non-gbk) into the first-position
databank

EXPORT Writes the first-position databank to a non-gbk file

OPEN Opens a databank file (typically gbk). May use OPEN<edit> or
OPEN<ref>.

CLOSE Closes 'named' databanks (cf. OPEN)

DOWNLOAD Retrieves timeseries from a web-based database

COPY Copies timeseries between banks (or inside the first-position
databank)

RENAME Renames timeseries.

INDEX Uses wildcards to search for timeseries in databanks.

COUNT Uses wildcards to count timeseries in databanks.

UNLOCK Sets a databank editable

LOCK Sets a databank non-editable

Timeseries

Timeseries exist as objects in a databank. Frequency can be annual, quarterly,
monthly or undated.

TIME Sets global time for timeseries operations.

DELETE Delete an existing timeseries

SERIES Transform a timeseries using mathematical expressions or data
values

COLLAPSE Convert e.g. quarterly timeseries into annual timeseries etc.

INTERPOLATE Convert e.g. annual timeseries into quarterly timeseries etc.

SMOQOTH Fills in missing values in a timeseries

SPLICE Splices two timeseries into one.

REBASE Calculates an index series

TRUNCATE Removes observations in a timeseries outside the stated sample.

ANALYZE Computes cross-correlations etc.

T-T Analyse



Gekko 3.0 user manual

DOC Change meta information (label, source and date stamp)

Lists, scalars, matrices etc.

Gekko can put names of timeseries into a list, in order to reuse the list for different
purposes (or make the command file easier to read). In addition, scalar variables like
strings, dates and values can be used.

LIST Create and delete lists

DATE Scalar variable of date type

STRING Scalar variable of string type

VAL Scalar variable of value type

MATRIX Define a matrix

MEM Shows a list of scalar variables and their values
Show data

Gekko can show data in several ways, including printing on the screen, graphs, or
showing the data in an Excel sheet. In addition, there is a special table-like
decomposition window (DECOMP). The DISP command also functions as an in-built
equation browser. You may prefix a variable with '@' to indicate the reference
databank, for instance @gdp. Or else use colon to indicate a databank, for instance
mybank:gdp.

PRT Prints timeseries or expressions in different ways

DISP Prints info regarding timeseries, and starts equation browser
PLOT Show a graph of timeseries (using gnuplot)

SHEET Like PRT, but shows timeseries data in Excel

CLIP Like PRT, but puts timeseries data on the Windows clipboard
TELL Prints text strings on the screen

Command files

Larger tasks can be run by means of command files (.gcm). There are the following
commands related to such files:

RUN Runs a .gcm command file. Use the EDIT command to edit these
files.

PIPE Direct output to an external file instead of screen

INI Runs gekko.ini if located in the program and/or working folder

Functions/procedures

You may use user-defined functions or procedures to avoid repetitive tasks and
encapsulate functionality.

FUNCTION Defines a user-defined function.
PROCEDURE Defines a user-defined procedure.

T-T Analyse



Gekko commands 79

Cleanup

The principal cleanup-command is the following

RESTART

0
[92]

ESET
LEAR
LS

u

@

@)

(@]
—

Control flow

Clears all databanks, lists, scalars, models, etc. and runs any
gekko.ini files.

Same as RESTART, but without running any gekko.ini files.
Clearing databanks

Clears main window (short for 'clear screen')

Closes all PLOT or DECOMP windows

Gekko supports basic control flow like loops, conditional statements etc. At the
moment the possibilities are quite limited, but will be augmented as the software

matures.

FOR

—

F

END
RETURN
STOP
EXIT
ACCEPT
PAUSE
GOTO
TARGET

Tables/menus

TABLE
MENU

Econometrics

OoLS

R integration

For-loop over lists/strings, values or dates, parallel loops are
possible.

Conditional statement (IF-ELSE-END).

Ends loop (FOR), conditional statement (IF) or
FUNCTION/PROCEDURE.

Returns from the command file or function defintion.
Stops execution completely.

Stops execution completely, and terminates Gekko.
Input data interactively

Waiting for the user to click [Enter]

Transfers execution to the corresponding TARGET
Receives execution from the corresponding GOTO

Prints out a predefined table (xml)
Opens up a menu (html)

Single-equation linear regression

Starts a R session, with a particular R file as starting point
Decorates the R file with matrices from Gekko
Runs the decorated R file, and returns matrices back to Gekko

T-T Analyse



80

Gekko 3.0 user manual

Miscellaneous

The following commands did not fall into the above categories, and so are gathered

here:

MODE Set Gekko mode to sim/data/mixed

HELP Access the help system

OPTION Sets different options

EDIT Edit a file via Notepad

XEDIT Edit a xml file via XML Notepad.

SYS Access the system shell if needed

TRANSLATE Translates syntax from Gekko 1.8 or AREMOS

From the menu items (‘*Utilities’), you can also compare two databanks, check
residuals, and compare variables in model/databank/varlist.

T-T Analyse



Gekko commands 81

3.3 ACCEPT

ACCEPT is used to input data to Gekko, during a session. See also PAUSE.

Syntax

ACCEPT type variable message;

type Choose between val, date or string. For string type, you do not
need to enclose the input in quotes.

variable The name of the variable

message Text string to be displayed (please remember single quotes).
You can use '\n' to insert a new line.

Examples

The command may contain text inside single quotes:

ACCEPT string %n 'Variable name';
ACCEPT string %s 'Label';

ACCEPT date %d 'Date';

ACCEPT val %v 'Value';

CREATE {%n}; //if it does not exist
DOC {%n} label = %s;

SERIES {%n} [%d] = %v;

DISP <%d-1 %d+1> {%n};

The four ACCEPT-input might be the following:

'Input variable name' --> vat
'Input label --> Value added tax
'Input date' --> 2016

'Input value' --> 0.25

This will create the series vat, with the label 'Value added tax', and the value 0.25 in
2016.

If you need to accept list items, you may accept them as a comma-separated string,
and afterwards use the split() function to split the string into a list of strings.

T-T Analyse



82

Gekko 3.0 user manual

Related commands

RETURN, STOP, EXIT, PAUSE

T-T Analyse



Gekko commands 83

3.4

ANALYZE

ANALYZE calculates statistics on timeseries (mean, standard deviation, etc), including
correlation coefficients between the variables.

For each variable (expression), Gekko prints out mean, standard deviation, and min

and max values. In addition, cross-correlations are computed, and put into the matrix
#corr.

Syntax

ANALYZE <period> variables;

period (Optional). Local period, for instance 2010 2020, 2010g1 2020g4 oOr
sperl Sper2+l.

variables A list of variables (timeseries expressions)

e If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

e If a variable without databank indication is not found in the first-position databank,
Gekko will look for it in other open databanks if databank search is active (cf.
MODE).

Examples

Analyze the growth rate of the three variables x, vy, z:

ANALYZE <1980 2015> pch(x), pch(y), pch(z);

Note

The cross-correlations are computed as Pearson product-moment correlation
coefficients.

If you square the cross-correlation matrix (multiply (#corr, #corr)), these squared
values correspond to the R2 value you obtain by pairwise linear regression between
the variables, for instance oLs x2 = x1;.

T-T Analyse


https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Gekko 3.0 user manual

Related commands

OLS

T-T Analyse



Gekko commands 85

3.5

BLOCK

A BLOCK structure is used to set the time period and/or other options temporarily. A
block can for instance be used inside a function or procedure definition, where the
time period, frequency or other options may be changed, but where these changes
should be undone after leaving the function/procedure. A block could be used
together with LOCAL variables to avoid changing the state of the program when
calling a function/procedure.

Using a BLOCK series dyn = yes; ; END; is the only way to set the <dyn>
option on several expressions at the same time. This is because OPTION series dyn
should only be used when really needed, that is, for expressions like x = x[-1] + 1;
and similar. So using the option together with a BLOCK makes sure the option is
turned off again.

Syntax
BLOCK period, optionl, option2, ...;
period (Optional). Local period, for instance 2010 2020, 2010g1 2020qg4 or
sperl %Sper2+l.
The period must be first in the list of BLOCK options, and must
include the TIME keyword, for instance BLOCK time 2020
20302 |0 o o |p| EINDg
option A list of option settings (OPTION statements, without the 'OPTION'
keyword).
Examples

The following is an example of nested blocks that set the time period

TIME 2001 2003;
BLOCK time 2011 2013;

yl = 100; //yl: 2011-13
BLOCK time 2021 2023;
y2 = 100; //y2: 2021-23
END;
y3 = 100; //y3: 2011-13
END;
y4 = 100; //y4: 2001-2003

T-T Analyse



86

Gekko 3.0 user manual

This is an example of setting two options for printing (corresponding to OPTION print
fields ndec = 1; OPTION print fields pdec = 1;).

TIME 2001 2003;

yl = 1.17; yl <2002 2003> %= 1.27, 1.37;

BLOCK print fields ndec = 1, print fields pdec = 1;
1

PRT yl; //printed with decimal

END;

PRT y1; //printed with default decimals

// Result:

// el S

// 2001 1.2 M

// 2002 1.2 1.3

// 2003 1.2 1.4

//

// V2l %

// 2001 1.1700 M

// 2002 1.1849 1.27

// 2003 1.2011 1.37
Note

BLOCK can also be used to change frequency temporarily, for instance TIME 2021
2023; BLOCK time 2021gl 2023g4, freq = g; y = 100; END;. This will create the
quarterly series y!q defined over 2001q1-2023g4. After the commands have been
run, the time period will be back to annual 2021-23.

You can use any OPTION setting together with BLOCK, just omit the 'OPTION'
keyword, and separate options with commas.

Related commands

LOCAL, OPTION, TIME

T-T Analyse



Gekko commands 87

3.6

CHECKOFF

The command puts variables on an ignore-list, so that they do not influence
convergence using Gauss-Seidel iterations.

Syntax
CHECKOFF ;
CHECKOFF variables ;
CHECKOFF ? ;
[empty] If no variables are stated, i.e. a CHECKOFF without arguments,
the list of non-checked variables is cleared.
variables Variable names or list
? Prints the list of currently ignored variables concerning
convergence in Gauss-Seidel method.
Example

CHECKOFF accepts variable names or lists (including wildcards), for instance:

CHECKOFF x;
CHECKOFF {#m}; //where #m is a list of names (strings)

Currrently ignored variables can be seen with

CHECKOFFE ?;

There is no CHECKON command. The CHECKOFF command is non-additive (like the
ENDO and EXO commands). To eliminate a CHECKOFF-variable, just remove it from
the list given to the CHECKOFF command. To clear the CHECKOFF-list, issue a
CHECKOFF command with no arguments. An alternative to this is setting "OPTION
solve gauss conv ignorevars = no". In that case the list will be ignored.

Note

In order for this command to work, "OPTION solve gauss conv ignorevars" must be
set to 'yes' (which is its default value).

T-T Analyse



88

Gekko 3.0 user manual

CHECKOFF is also the related to the ITERSHOW command. Sometimes a particular
variable, or a type of variables, may postpone the convergence of the Gauss-Seidel
algorithm. To avoid that, such variables may be put on the CHECKOFF list, and they

will be ignored regarding convergence check.

Related commands

SIM, OPTION, ITERSHOW

T-T Analyse



Gekko commands 89

3.7 CLEAR

The CLEAR command is used to clear databanks in memory (that is, delete all
variables inside the databanks).

Syntax

CLEAR ;
CLEAR databank ;
CLEAR <FIRST REF> ;

databank The name of the databank (click F2 to see the list of databanks
-- note that the Ref databanks does not show up in the F2
window if it is empty).

FIRST Clears the first-position databank

REF Clears the reference databank

Examples (clearing databanks)

To clear a particular databank, use:

CLEAR mybank;

In particular, you may clear the Work and/or Ref databanks like this:

CLEAR work;
CLEAR ref;

To clear both the first-position and reference databanks, use CLEAR without
arguments:

CLEAR;

Alternatively, there are these local options:

CLEAR<first>;

Clears the first-position databank (which is often 'Work'), whereas

T-T Analyse



90

Gekko 3.0 user manual

CLEAR<ref>;

Clears the reference databank (which is always 'Ref").

Note

To delete individual variables, see the DELETE command. To clear the entire
workspace, see the RESET and RESTART commands.

Since user functions, procedures or models do not live in databanks, CLEAR does not
clear these. Use RESET/RESTART to that end. Also, CLEAR without arguments does

not clear the local or global databanks.

Related commands

DELETE, RESET, RESTART

T-T Analyse



Gekko commands 91

3.8

CLIP

CLIP has the same syntax and functionality as SHEET, so please see this command.
Instead of sending the result to Excel as SHEET does, CLIP sends the result to the
clipboard. Thus, the cells can be pasted into any spreadsheet (or other applications)
accepting tab-delimited cells from the clipboard. Formatting of the cells is lost in
comparison with SHEET, but otherwise the cells are the same. The loss of formatting
may even be considered a benefit in some cases, for instance when pasting cells into
different locations in the same spreadsheet.

The functionality is very similar to the 'Copy' button in the Gekko user interface. This
button copies the last PRT/MULPRT or table to the clipboard (as tab-delimited cells).

CLIP uses the same internal component as PRT, so regarding operators and other
details, also see the PRT help page.

Syntax

Please see the SHEET command regarding syntax.

Note

The decimal separator used when copying to the clipboard can be changed by means
of the option shown below. (This option will also apply to the 'Copy' button).

Related options

OPTION interface excel decimalseparator = [comma|period].

Related commands

SHEET, PRT, PLOT

T-T Analyse



92

Gekko 3.0 user manual

3.9

CLONE

The CLONE command copies the first-position databank into the (cleared) reference
databank. After this, all variables in the two banks are identical, and all MULPRT,
PLOT<m>, COMPARE, etc. will show no differences.

Syntax

CLONE;

Example

You may use the CLONE command in the following way:

MODEL m;

READ data;

TIME 2015 2050;
SIM;

CLONE;

SERIES vat += 0.01;
SIM;

MULPRT gdp;

The CLONE statement makes sure that the first-position and reference databanks are
identical after the model is simulated for the first time. Hence, the differences (the
'multiplier') regarding the two scenarios can be printed with MULPRT command.

Note
The READ command always creates the reference databank as an exact copy of the
first-position databank after reading. You may use READ<first> or READ<ref> to

read data into the first-position or reference databank exclusively. The READ
command is equivalent to READ<first> followed by CLONE.

Related commands

READ, OPEN, MODEL, MULPRT, SIM, DECOMP

T-T Analyse



Gekko commands 93

3.10

CLOSE

The CLOSE command is used to close databanks in memory.
If the contents of the databank have been altered, these changes are written back til

the databank file. This is often used in combination with OPEN <edit> databank;,
where the changes are later on saved to disk after a CLOSE databank;.

Syntax

CLOSE <SAVE=...> databanks;

SAVE= With CLOSE <save=no>, Gekko will not write the databank to
file, even if the databank contents has changed. See also OPEN
<save=no>.

databanks The databank(s) to be closed. A star (*) indicates all open
databanks opened by means of the OPEN command. You may
provide a list of banks like CLOSE dbl, db2;

Example

Use this syntax to close a databank:

CLOSE mybank;

Closes databank 'mybank' (that has been opened by means of "OPEN mybank;" and
writes any changes to the databank back to the databank file).

CLOSE *;

Closes all databanks opened by means of the OPEN command (and writes any
changes to the databanks back to their databank files). After this, the Work databank
will be in first position (Work cannot be closed).

Closing of more than one databank (separate with commas):

CLOSE dbl, db2;

T-T Analyse



94

Gekko 3.0 user manual

Note

CLOSE cannot close Work or Ref databanks, and neither the local or global
databanks. See the closely related OPEN command.

Related commands

OPEN, CLEAR, DELETE

T-T Analyse



Gekko commands

3.11

95

CLS

CLS clears the output window.

Syntax

CLS;

Example

The RESTART (or RESET) statement will not clear the output window (but clears
everything else in the workspace), so you may use CLS before (or after) your
RESTART statement:

CLS; CUT; RESTART;

This clears the output window, closes any plot or decomp windows, and restarts
Gekko.

Related commands

CLEAR, RESTART, RESET, CUT

T-T Analyse




96

Gekko 3.0 user manual

3.12

COLLAPSE

COLLAPSE transform one higher-frequency timeseries to a lower-frequency
timeseries, for instance converting quarterly data to annual data. Use INTERPOLATE
to do the inverse transformation.

Syntax

COLLAPSE 1lf = hf method;

If Lower frequency timeseries. Frequency can be indicated with
suffix !a, !q or 'm. Banknames may be used.

hf Higher-frequencey timeseries. Frequency can be indicated with
suffix !a, Iq or Im. Banknames may be used.

method (Optional). Choose between:
e total: The higher-freq observations are summed.
e avg: The higher-freq observations are averaged.
o first: The first higher-freq observation is used.
e last: The last higher-freq observation is used.

Note: default is 'total'.

e If a variable on the right-hand side of = is stated without databank, Gekko may look
for it in the list of open databanks (if databank search is active, cf. MODE).

Example

Use this to convert frequency:

COLLAPSE fY!a = fY!qg;

Since the method is 'total' as default, this will create the annual timeseries fy!a
where each annual observation is the sum of the corresponding quarters in fy!q.

COLLAPSE fY'!a = gbank:fY!qg first;

With option 'first', the first quarter of each year would be used instead of summing
the quarters. Here, the variable is taken from the databank gbank.

T-T Analyse



Gekko commands

Note
If a frequency indicator is omitted, Gekko will use the current frequency.
You can also use PRT<collapse> to get similar transformations in prints.

See also IMPORT<collapse> regarding higher frequencies than quarters.

Related commands

INTERPOLATE, SERIES, CREATE, PRT

97

T-T Analyse




98

Gekko 3.0 user manual

3.13

COMPARE

COMPARE compares variables in the first-position and reference databanks. The
comparison is only done for timeseries of the same frequency as the global frequency
setting. The comparison is done over the given period (or the global period if a period
is not provided), and the user may provide a list of variables that are checked (if no
list is given, all variables are checked).

COMPARE will per default put the output in the file compare_databanks.txt (this
filename can be changed). You may set thresholds regarding absolute or relative
differences (options ABS, REL and PCH), and you may dump a list #dif with the
different series names (cf. DUMP).

The COMPARE command is an upgraded version of the same command in Gekko 2.4
and earlier. The Gekko 3.0 command fully replaces and improves the menu item
'Utilities' --> 'Compare two databanks...' in the Gekko user interface.

Syntax
COMPARE < period ABS=... DUMP REL=... SORT=... PCH=... > variables

FILE=... ;

period (Optional). Local period, for instance 2010 2020, 2010g1 202094 Or %
perl Sper2+l.

ABS= Absolute differences smaller than the value are not shown, for instance
<abs = 150>.

DUMP If this option is set, a list #di f will be constructed, containing the list of
different timeseries.

REL= Relative differences smaller than the value are not shown, for instance
<rel = 0.01> equivalent to 1%. You may alternatively use PCH for the
same purpose.

SORT= Choose between alpha (default), abs or rel. The first sorts
alphabetically (which is default), the next sorts after absolute
differences, and the last sorts after relative differences. The sorting
and the use of ABS=, REL=, and PCH= are independent of each other.

PCH= Percentage differences smaller than the value are not shown, for

instance <rel = 1.0> corresponding to 1%. You may alternatively use
REL for the same purpose.

T-T Analyse



Gekko commands 99

variabl A list of variable names. If no variables are given, the full databanks is

es compared. The names are separated by comma (like x, vy, z),and a
list #x of names should be used with {}-braces: {#x}. Regarding array-
series, you may either indicate the name of the array-series itself (x),
in which case all sub-series are checked, or you may state individual
elements (like x[a, k]).

FILE= Filenames may be contain an absolute path like c:
\projects\gekko\myfile, a relative path like \gekko\myfile.gbk, or
be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.

e If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Example

Compare all variables for the global period, or a given period:

COMPARE; //global period
COMPARE <2010 2020>; //for this given period

Do the same, with a user-chosen filename:
COMPARE <2010 2020> file=dif.txt;

Sort the result by relative differences:
COMPARE <sort=rel>;

Only compare series names from the list #x:

#x = x1, x2, x3;
COMPARE <2010 2020> {#x};
COMPARE <2010 2020> x1, x2, x3; //same as above

Do not show relative differences smaller than 0.02 (that is, 2%):

COMPARE <2010 2020 rel=0.02>;

You may 'dump' a list #dif containing the names of the timeseries that are different:

T-T Analyse



100

Gekko 3.0 user manual

COMPARE <dump>;

PLOT <g> {#dif}; //plots the percentage differences

Array-series are supported, consider this example:

reset;

time 2001 2002;

XX = series(2);

xx[a, x] 100, 100;
xx[b, x] = 200, 200;
xx[a, y] = 300, 300;
xx[b, y] = 400, 400;
yy = series(1l);

yy[i] = 1000, 1000;
#ml = a, b;

#m2 = list('a'); //the easiest way to state a l-element list
clone;

xx[b, y] = 400.4, 402;
yyl[i] 1000.2, 1004;

yy[31 = 2000;

compare <dump sort = rel>;
plot <g> {#dif};

prt #dif;
flat list.

compare xx[b, yl; //comparing only this particular element.

The file compare_databanks.txt will contain the following output:
Comparing first-position and reference databanks

There are the following 5 series in both banks:
xxla, x], xxla, y], xx[b, x], xx[b, y], yyli]

//print out the names of the different timeseries as a

There are the following 1 series in the first-position databank, but not

in Ref databank:
yy[3J]

There are the following O series in the Ref databank, but not in the

first-position databank:
[none]

Out of the 5 common series,

xx[b, vyl WORK REFERENCE ABS DIFF % DIFF
max = 0.50

2001 400.4000 400.0000 0.4000 0.10

2002 402.0000 400.0000 2.0000 0.50

yyl[i] WORK REFERENCE ABS DIFF % DIFF
max = 0.40

2001 1000.2000 1000.0000 0.2000 0.02

2002 1004.0000 1000.0000 4.0000 0.40

there are differences regarding 2 of them:

T-T Analyse



Gekko commands 101

At the right of each comparison, the value that is sorted after is shown (‘max') --
largest differences are shown first. In this case, max = 0.50 means that the maximal
percentage difference is 0.50% (in 2002) for the array-series xx[b, vy].

Note

Note: local option <rel> and <pch> cannot be used at the same time. If <abs> and
<rel>/<pch> are used at the same time, series with differences less than the abs or
rel/pch criterion are not shown.

This functionality was previously only accessible from the Gekko menu, but is now
command-driven.

Related commands

MULPRT, PRT

T-T Analyse



102 Gekko 3.0 user manual

3.14 COPY

The command is used to copy variables, either inside a databank, or between
databanks.

Note that 'naked' wildcards are allowed in this command, so you may for instance use
the shorter a*b instead of {'a*b"'}.

Syntax

COPY < period RESPECT FROMBANK=... TOBANK=... ERROR=... PRINT >
namesl TO names2;

period (Optional). Local period, for instance 2010 2020, 2010gl 2020g4 or
sperl Sper2+l.

RESPECT (Optional). With this option, if no period is given, the global period
is used.

FROMBAN (Optional). A databank name from where the list of timeseries are
K= copied from.

TOBANK= (Optional). A databank name to where the list of timeseries are
copied to. You may optionally use AS instead of TO.

ERROR= (Optional). With COPY<error=no>, Gekko will try to copy the items,
but will not fail with an error if some of the items cannot be found.

PRINT (Optional). With this option set, Gekko will print a list of which
variables are copied to where, but without actually copying
anything. The option can be practical for debugging.

namesl Variablename(s) or list(s) (wild-cards are allowed). You may
prepend a databank name as bank:variable.

TO (Optional). The TO part of the COPY command is optional. If
omitted, the variables will be copied to the first-position databank
(with the same names).

namesZ2 (Optional). A corresponding list with the new names. You may
prepend a databank name as bank:variable (or use bank:* to keep
the same names).

e If no period is given inside the <...> angle brackets, no time period is used.
e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

T-T Analyse



Gekko commands 103

If the RESPECT option is active, and the new name exists as a timeseries beforehand,
it is only the observations inside the local time period that are copied into the
existing timeseries (and not any meta-information like labels, etc.).

Examples
Inside the first-position databank

To copy items inside the first-position databank, consider the following examples:

RESET;

al = 1; bl = 2; cl = 3;

COPY al TO az2;

COPY al, bl, cl TO a2, b2, c2;

#listl = al, bl, cl;

#1list2 = a2, b2, c2;

COPY {#listl} TO {#list2}; //note that "COPY #listl TO
#list2;" would copy the list itself

If you use the RESPECT option, only the observations inside the global time period
are used. For instance:

COPY <respect> al TO az;
Else
COPY <2010 2020> al TO a2;

will copy observations belonging to that particular period.

Note that a list inside {}-curlies auto-expands if there is a name part before of after
the {}, so that the example could have been done like this instead:

RESET;

#m = a, b, c; //or: #m = ('a', 'b', 'c');
al = 1; bl = 2; cl = 3;

COPY {#m}1l TO {#m}2; //al, bl, cl to a2, b2, c2

From other databanks to the first-position databank

In these cases, you typically omit the TO keyword, if you are preserving the same
names.

T-T Analyse



104

Gekko 3.0 user manual

You may copy timeseries from other databanks (either the reference databank, or
databanks opened with the OPEN command), by using a colon:

COPY mybank:al, mybank:a2;

This will copy the two variables a1 and a2 from the databank mybank to the first-
position databank (with the same names). For several items, using a list may be
easier:

#fm = al, a2;
COPY mybank: {#m}; //note that "COPY mybank:#m;" will try to
find a list #m in mybank

where #m is a list with the timeseries names. Or alternatively, you may use the
<from=...> option:

COPY <frombank=mybank> al, a2; //this works too: COPY
<frombank=mybank> {#m};

If you are copying from the reference databank into the first-position databank, you
may use this:

COPY @{#m};

Between arbitrary databanks

In this case, the frombank= and tobank= options can be practical, for instance:

COPY <frombank=bankl tobank=bank2> al TO a2;

This copies bankl:al to bank2:a2. You may use lists instead of these names. This will
do the same thing:

COPY bankl:al TO bank2:a2;

Or with lists:

COPY bankl: {#ml} TO bank2:{#m2};

T-T Analyse



Gekko commands 105

where #m1 is the list of names to be copied, and #m2 is a list of the resulting names
(that is, a renaming list). If the names are the same, you can just use TO bank2: *.

Wildcards and ranges can be used, for instance:

COPY bank2:a* TO bankl:*;
COPY bank2:al..bank2:a5 TO bankl:*;

The first command will copy all timeseries starting with a from bank2 to bank1 (you
could have used <frombank=... tobank=...> as well to denote the databanks. The
second line does the same thing, but only regarding the name range 'al’' to 'a5'".

Copying timeseries a1l from databank bank2 to the reference databank can be done
with:

COPY bank2:al TO @*; //or COPY bank2:al TO ref:*

Wildcards and ranges
It is often practical to use wildcards to copy items. You may for instance copy all the

items starting with 'fx' from the open bank mybank to the first-position databank with
this command:

COPY mybankl:fx*;
COPY mybankl:f?a; //single character wildcard
COPY mybankl:pxa..mybankl:pxgz; //a range of names

You may copy an entire databank into the first-position databank like this:

COPY mybankl:**; //double star matches all variable types and all
frequencies

If you for instance need to replace all the variables in the first-position databank with
the variables in the reference databank, you may use this:

CLEAR<Lfirst>;
COPY @**; //or "COPY ref:**"

Regarding syntax rules of wildcards, see more in the INDEX section. See also the
wildcards page.

Note

T-T Analyse



106

Gekko 3.0 user manual

If you use the 'from="'or 'to=' options together with explicit databank indicators
(colon), the explicit databank indicators will override the 'from=' or 'to=' options.

If preferred, you may use COPY ...

Related commands

CLONE, RENAME, INDEX, DELETE

AS |oo o

instead of copy ...

TO |0 o o

T-T Analyse



Gekko commands 107

3.15 COUNT

The command is used to search for variables in databanks, using wildcards.
The COUNT command is essentially a compact INDEX comnand without the output.

Note that 'naked' wildcards are allowed in this command, so you may for instance use
the shorter a*b instead of {'a*b'}.

A wildcard like '*' does not match everything in Gekko: it only matches (in the first-
position databank) variables with no '%"' and '#' symbols, and only matches the

current frequency. You may use the special wildcard "**' to match all variables in a
databank, or '***' to match all variables in all databanks.

Syntax

COUNT <BANK=... > type wildcards ;

BANK= (Optional). A databank name indicating where the variables are to
be located.

type (Optional). Restrict the type of variables.

wildcard The variables to be searched for. You may use banknames to indicate

a particular bank, and you may separate the wildcards with commas.
In general, wildcards are of the form a*x to find all variables starting
with 'a' and ending with 'x', or a?x to match only one character.

e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The following provides a list of all variables in all databanks:

COUNT **x*; //all variables in all banks
COUNITIAR AL //same as above
COUNT *:%*, *:#*, *:*l*;, //same as above

Example

The following COUNT command will look for timeseries beginning with 'f' in the first-
position databank (and with the current frequency):

T-T Analyse



108

Gekko 3.0 user manual

RESET;
fa = 1;
COUNT f*;

Note

See the INDEX command for more examples.

If you use variable names without wildcards or ranges, an existence check is
performed (count = 1 if it exists, 0 otherwise).

See also the second half of this page regarding wildcards, syntax, etc.

Related commands

LIST

!

I

NDE

fb = 2; fc =

X

//result:

38
3

T-T Analyse



Gekko commands 109

3.16 CUT

Closes any open PLOT or DECOMP windows.
This can also be done via the button 'Close all PLOT and DECOMP windows' in the
Gekko main window. When using this button, and if the Gekko main window is out of

focus, you may have to click the button two times (the first time brings the Gekko
main window back in focus).

Syntax

CUT;

Related commands

CLS, RESET, RESTART

T-T Analyse



110

Gekko 3.0 user manual

3.17

CREATE

This command creates a new series in the first-position databank. The series contains
no data, but can be used afterwards.

If you use Gekko in a data revision setting, consider using "MODE data;", where
options are set so that you avoid a lot of CREATE statements ("MODE data" will set
"OPTION databank create auto = yes;", "OPTION databank search = yes;", and
others).

Syntax

CREATE variables ;

CREATE ?;
variables Variablename(s) or list(s) (wild-cards is allowed)
? Prints a list of all created variables

e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

The reason for CREATE in sim-mode is to avoid accidentally creating a new variable
because of misspelling etc. Imagine a model with exogenous variable b_vat = 0.25.
The user thinks that the variable name is just vat (which might be what the VAT was
called in an older version of the model). Without mandatory CREATE, setting vat =
0.26 will just create a new series that has no relation to the model, and hence does
not affect any endogenous variables. With mandatory CREATE, setting vat = 0.26 will
result in an error, and the user will hopefully discover that the proper name is b_vat.

There is an exception to the create rule: names beginning with 'xx' can always be
auto-created (useful for temporary series variables).

Examples

In sim-mode, variables cannot be created on the fly, for instance:

RESET;
MODE sim;
x = 100; //fails

Here, x cannot be auto-created. The following will work:

T-T Analyse



Gekko commands

RESET;

MODE sim;
CREATE x;

x = 100; //ok

Series beginning with 'xx' are always auto-created.

Related options

OPTION databank create auto = no; [yes|no]
OPTION databank create message = yes; [yes|no]

Related commands

SERIES, DELETE

111

T-T Analyse




112

Gekko 3.0 user manual

3.18

DATE

The DATE command is used to assign a date to a scalar variable of date type. Date
names always start with the symbol '%’, like the other scalar types val and string.
Using the DATE keyword is no longer mandatory in Gekko 3.0.

Dates are used in combination with series variables, setting the periods over which
these are calculated, printed, etc. See also the TIME command.

Syntax

%d = expression;
DATE %d = expression;
DATE ?; //print string scalars

It is no longer legal to use for instance DATE d = 2020;, omitting the '%"'. As the
right-hand side, quarterly, monthly and undated dates are supported with 'q', 'm', and
'u' indicators, for instance 2020g4 or 2020m12.

Normally, the DATE keyword can be omitted, if the right-hand side is a date like for
instance 2020g4. But in the case $d = 2020;, %d will actually become a value. To
avoid that, you can use DATE %d = 2020;, %d = date (2020);, or $d = 2020a;
(2020a1 will work, too). In most cases, sd = 2020; should work fine though, since
Gekko can auto-convert integers into annual dates.

There are a number of in-built date functions to compose and extract dates.

Date combining functions

Function Description Examples

name

date(d, f, Converts the date d into a sd = 202092;

opt) new date with frequency f PRT %d.date('m',
'start'); //2020m4

(string), and option opt

(string). The option can be 2 el

'end'); //2020mé6

'Start' or 'end'. PRT %d.date('a',
'start'); //2020

When converting from a PRT %d.date('a',

higher frequency to a lower 'end'); //2020

frequency, the result does
not depend upon the option
opt.

Returns: date

date(y, f, Constructs a new quarterly td = date (2020, 'q',

T-T Analyse



Gekko commands 113

sub)

fromExcelDa
te(v)

getFreq(d)

getMonth(d)

getQuarter(d
)

or monthly date from y 2); //2020g2
(integer), frequency

(string), and subperiod

(integer).

Note: you may also use
date(x), where x can be a
value or a string, and
Gekko will try to convert
the argument into a date.

Returns: date

Converts an Excel date (the See examples regarding the
val v, counting the number toExcelDate() function.

of days since January 1,

1900) to year, month and

day (hours etc. are not

converted). The year,

month and day are returned

as a map with the values %

y, %om, %d.

WARNING: this function will
soon return a Gekko date
instead. See also
toExcelDate(). [New in
3.0.7]

Returns: map.

Extracts the frequency of a sd = 202092;
date PRT %d.getfreq(); //'q'

Returns: string

Extracts the month number %d = 2020m2;

from a date. More specific PRT %d.getmonth(); //2
than getSubPer(), and will

fail if the date is not

monthly.

Returns: val

Extracts the quarter sd = 202092;

number from a date. More PRT %d.getquarter(); //2
specific than getSubPer(),

and will fail if the date is

not quarterly.

Returns: val

T-T Analyse



114

Gekko 3.0 user manual

getSubPer(d Extracts the sub-period

) from a date (1 if annual or
undated, the quarter if
quarterly, and the month if
monthly).
Returns: val

getYear(d) Extracts the year from a
date.

Returns: val

Converts year, month and
day (integers) into an Excel
date (counting the number
of days since January 1,
1900). See also
fromExcelDate(). Excel
dates can be subtracted to
obtain days. [New in 3.0.7]

toExcelDate(
y, m, d)

Returns: val.

Examples

Note that you may use expressions in the option
instance (where %perl and %per2 are two dates):

PRT <%perl-2 Sperl+l> fY;

$d = 202092;

PRT %d.getsubper(); //2
sd = 202092;

PRT %d.getyear(); //2020

%vl = toExcelDate (2019, 11,
12) g

%v2 = toExcelDate (2019, 12,
3);

PRT %vl, %v2; //43781 and
43802

PRT %v2 - %vl; //21 days in
between

#x = fromExcelDate (%v1 +
100) ;

//100 days from %vl: Feb. 20,
2020.

PRT #x.%y, #x.%m, #x.%d;

field, when referring to dates. For

You may wish to use dates to control the flow of your system of command files,
centralizing the assignment of dates in one place.

2012;
2040;

global:%perl //will actually be
global:%per?2
READ bank2;

<%$perl S%perl> x2 += 1000;

SIM <%perl S%per2>;

MULPRT <$perl-1 Sper2> y2;

//only 1 year

come a value, not a date

Note here the use of the Global databank for storing the two dates. The Global

databank is unaffected by READ statements, and

is practical for storage of general

settings like such dates. Conversions are possible:

T-T Analyse



Gekko commands 115

$s1l = '2010'; //string
$vl = 2015; //value
$dl = date(%sl);

$d2 = date(%vl);
TIME %dl %d2;

Note that in order to convert the string %s1, you need an explicit conversion with the
date() function (on the contrary, the conversion from the value %v1 is automatic).
The conversion will fail if not possible, for instance the string '201x' or the val
2015.4).

You may convert a date into a val like this:

CREATE data; //only necessary in sim-mode
FOR date %d = 1990 to 2012;

data[%d] = val(%d) - 2000;
END;

This will not work without the val() function. The result is this (for the last three

years):
data
2010 10.0000
2011 11.0000
2012 12.0000
Note

See the page with syntax diagrams if the basics of nhames, expressions, etc. is
confusing.

If you need to convert a VAL or STRING scalar to a DATE type, use the date()
conversion function.

Regarding variable types and the Gekko type system, see the VAR section. In this
appendix, variable assignment rules, including variable types, is explained in more
detail.

Related commands

T-T Analyse



116 Gekko 3.0 user manual

STRING, VAL, FOR, IF, TIME

T-T Analyse



Gekko commands 117

3.19

DECOMP

DECOMP of variables (equations) only works properly on simulated values, where the
left-hand sides and the right-hand sides are equal. So for simulated values, or for
comparing simulated values, DECOMP is ok. This restriction will be fixed in a patch to
Gekko 3.0.

DECOMP opens a special window with an Excel-like sheet showing the contributions
etc. The DECOMP command can decompose in two ways:

e Variable: an existing model equation can be decomposed, analyzing how the
changes in the left-hand side of the equation can be decomposed into contributions
from variables on the right-hand side of the equation. The decomposition is carried
out on on the differences between current and lagged values (time decomposition),
or on the differences between the first-position and reference databanks (multiplier
decomposition).

e Expression: DECOMP can decompose a user-provided expression. This can be
thought of as anything legal in a PRT statement (with some limitations).

In the DECOMP window, regarding the list of variables shown in the first column,
endogenous (left-hand side) variables are marked in blue. You may click on these to
track an effect further (in that case, a new DECOMP window opens). Cells can be
copy-pasted to Excel or other spreadsheets (use Ctrl-A til select all cells). If variable
labels are present/loaded (cf. MODEL), these will be shown when the mouse hovers
over variables in the first column.

There is an "Update table" button for updating the table if the underlying data
changes. For instance, after a new simulation or after a READ statement.

It should be noted that DECOMP only decomposes an expression into contributions
from series or values (VAL). So in a multiplier decomposition, do not expect Gekko to
calculate contributions from matrices or lists of values, if these are different between
the first-position and reference databanks (but contributions from VAL scalars will be
identified).

Syntax

DECOMP < period > variable;
DECOMP < period > expression;

period (Optional). Local period, for instance 2010 2020, 2010qg1
2020g4 or %perl S%per2+1.

variable The name of the endogenous variable to be decomposed.
expression An expression: anything legal in for instance a PRT
statement.

T-T Analyse



118

Gekko 3.0 user manual

e If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

Details

The DECOMP window consists basically of a selector at the top, a table in the middle,
and the equation/expression at the bottom. The selector consists of three parts: time-
change selector, multiplier selector, and some auxiliary options at the right.

In the time-change and multiplier selectors, you may choose to either see 'raw' (non-
decomposed) or 'decomp' (decomposed) values. The raw values are really just
tabelling the relevant variables, optionally transforming them via the operators n, d,
p, dp for time-changes, or n, m, g, mp for multipliers (see the PRT command for a list
of these so-called 'short' operators). Raw values seldom sum up, so the first row is
not usually equal to the sum of the rest of the rows (this only holds for simple sums
in levels).

In contrast, the decomposed values for time-change or multiplier will sum up, so that
the first row is equal to the sum of the rest of the rows. In that way, you may get an
idea of why the left-hand side (or expression) changes relative to the previous period
or relative to the reference databank.

In the auxiliary options at the upper right of the window, you may indicate that you
want to see values from the reference databank instead of the first-position
databank, or that you prefer the decomposition output scaled so that the first line is
100 (%) and the other lines sum up to 100. The number of decimals shown can be
changed, and the table can be updated by pressing the 'Update table' button (in case
you wish to have changes in the databanks reflected in the table).

The decomposition is done by means of linearizing the equation (for time-changes: in
the previous period, and for multiplier changes: for reference databank values) and
using this linearization to forecast how much the left-hand side is expected to change
due to the changes in the right-hand side (dy = B1 * dx1 + B2 * dx2 + ...). This may
be more or less precise, depending upon how non-linear the equation is. If there is an
error, that is, the contributions do not add up to 100% of the change in the left-hand
side, the contributions are adjusted proportionally so that they sum up anyway.

Regarding decomposition of model equations, there is a further source of potential
imprecision too, namely if the databank values of the first row (the dependent
variable) do not correspond to the equation. If this is so, for instance for historical
data, a further proportional adjustment is applied, so that the contributions sum up.
(This problem does not exist regarding decomposition of an expression).

Clicking 'Show errors' allows you to inspect possible decomposition and data errors.
If, for instance, you have selected 'Abs. time change' (row) and 'Decomp' (column),
you may click both 'Show as shares' and 'Show errors' at the same time. This gives a
good idea of any decomposition or data errors. If the decomposition error shows for

T-T Analyse



Gekko commands 119

instance 2.50% for a particular period, this means that only 97.50% of the change in
the right hand side (or expression) can be explained by means of the linearization.
The smaller the decomposition error is, the more confidence can be put into the
decomposed contributions (for linear equations, the decomposition error would be 0
in the absence of rounding errors).

Examples

After performing a multiplier analysis, you may want to decompose an usercost
expression like the following:

DECOMP <2010 2020> (l1-t)*i + b - (1-b)*rpi + 0.2*t;

If a model has been loaded with MODEL, and the usercost variable is called uc, you
may instead use:

DECOMP <2010 2020> uc;

This will look up the uc equation (the equation with uc on the left-hand side) and
decompose that equation.

Note

DISP has a similar functionality, allowing to trace variables through model equations.
If you need to decompose a long expression, you can mark the lines and hit [Enter]
to execute the lines as one block of code. (Or use a command file).

You can only indicate one variable or expression in the DECOMP command. This is to
avoid the command potentially opening up a lot of DECOMP windows at the same
time.

The 'decimalseparator' option listed below controls how the cells are copied to the

clipboard (for pasting in a spreadsheet), when the user uses copy-paste of cells in the
DECOMP window.

Related options

OPTION interface excel decimalseparator = period; [period, comma]

Related commands

T-T Analyse



120 Gekko 3.0 user manual

T-T Analyse



Gekko commands 121

3.20

DELETE

DELETE is used to remove variables from databanks.

Syntax

DELETE variables;
DELETE < NONMODEL > ;

NONMODEL Removes superfluous timeseries in the first-position and
reference databanks (provided a model has been defined with
MODEL). The removal is only done for series of the same
frequency as the global frequency setting. For instance, you
might have a databank and model variable y for income. Now,
imagine that the definition and contents of the variable is
changed to y2 in both the databank and model. If the old
variable y still resides in the databank, this may create
confusion, and the NONMODEL option removes such non-model
variables. Cf. also the Gekko menu 'Utilities' --> 'Compare
model/databank/varlist...".

e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

« Note that 'naked' wildcards are allowed in this command, so you may for instance

use the shorter a*b instead of {'a*b'}.

Examples

Delete a series x, a string ¢x, and a list #x:

x = 100;
$x = 'a';
#x = a, b;

DELETE x, %x, #x;

If, instead, you want to delete the series corresponding to the contents of $x and #x,
use {}-curlies:

a = 100;
b = 200;
e = 3005
$x = 'a';
#x = b, ¢c; //or: #x = ('b', 'c")

T-T Analyse



122 Gekko 3.0 user manual

DELETE {%x}, {#x}; //deletes the series a, b, c
DELETE %x, #x; //deletes the string %x and the list #x

You may use wildcards like in COPY, INDEX, RENAME, etc.:

DELETE **;

This will delete all variables from the first-position databank. Alternatively (and
better):

CLEAR first; //or CLEAR work, if Work is the first-position
databank

Another example:

DELETE x*!q;

This will delete all quarterly series starting with x. You may also delete a variable
from a particular databank (provided that bank is opened with OPEN<edit> or
unlocked with UNLOCK), for instance:

DELETE bank2:x1!qg;

Remove non-model variables with this special option:

DELETE <nonmodel>;

Note

To clear the entire workspace, including databanks, list, scalars, models, etc., see
RESTART or RESET. To delete the contents of databanks, see CLEAR.

Related commands

CREATE, SERIES, RESTART, RESET

T-T Analyse



Gekko commands 123

3.21 DISP

The command is primarily used to print series or array-series, showing precedents
and dependents if a model is loaded, and showing meta-information (cf. DOC). If a
variable list is contained in the model file (.frm file) or as an external varlist.dat file
(cf. MODEL), this information is shown, too.

If a model is loaded, the DISP command starts the equation browser. This means that
linked variables can be clicked, and that you may browse forwards and backwards by
means of the arrow buttons in the user interface. The 'home' button will browse back
to the first DISP that started the equation browser.

When displaying an array-series, the dimensions, possible domains, etc. are shown.
DISP of other variable types than series works like PRINT.

If you have loaded a GAMS model with MODEL<gms>, you must set OPTION model
type = gams to DISP the equations properly. For GAMS models, there are special
options regarding how to identify which variable a given equation determines.

Syntax

DISP < period INFO > variables ;
DISP 'search string' ;

period (Optional). Local period, for instance 2010 2020, 2010gl1 2020qg4 or
sperl %per2+l.

INFO (Optional). Used to print out right-hand side variables for a given
endogenous variable. Mostly used when a SIM breaks down,
together with OPTION solve failsafe = yes.

variables Variables or lists (wildcards and bank indicators may be used), and
items may be separated by commas.

'search A string in single quotes to search for in all labels. Gekko will
string' search for the string in both the variable list (if such a list is loaded
with the model), and in the labels of each timeseries (cf. DOC).

e If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

¢ Note that 'naked' wildcards are allowed in this command, so you may for instance
use the shorter a*b instead of {'a*b'}.

T-T Analyse



124 Gekko 3.0 user manual

Example

DISP the volume of GDP and private consumption for the (local) period 2000-2010:

DISP <2000 2010> fy, fcp;

If a model is loaded, you will be able to see which variables the given variable affect
(dependents). You will also see the equation (if the variable is endogenous), and
hence the variable’s precedents. These variables are clickable, so the DISP command
functions as an entrance to the equation browser.

If a variable list is put after a 'VARLIST;' or 'VARLIST$' in the model file (or is located

in an external varlist.dat file), this meta-information is shown. You may search these
labels in the following way:

DISP 'import';

This will list all variables with a label containing this search string.

Wildcards can be used:

DISP bank2:x*!qg;

Displays quarterly series starting with 'x', from bank2.

Per default, only 3 lines of data is written when DISP'ing a variable. However, you
can click the link ('show') to see any hidden periods. This limitation is intended for
easier use of DISP as an equation browser.

Note

Regarding DISP of GAMS equations, see the description of the MODEL <dep = ...>
local option under MODEL.

You can use a TIMEFILTER to omit periods for a more readable output. (If a
TIMEFILTER is set, the print disp maxlines = 3 option is overruled, so that all
non-filtered periods are shown even if there are more than 3 of these).

The DISP<info> command can be used to print out right-hand side variables for a
given endogenous variable. It can only be used for a one-period time period. It is

T-T Analyse



Gekko commands 125

called automatically if failsafe mode solving is set (OPTION solve failsafe yes) and
the simulation fails.

Related options
OPTION model type = default; //default | gams
OPTION print disp maxlines = 3;

OPTION model gams dep current = no;
OPTION model gams dep method = lhs; // Ihs | egname

Related commands

PRT, MULPRT, PLOT, DECOMP, TELL

T-T Analyse



126

Gekko 3.0 user manual

3.22

DOC

The command is used to 'manually' change meta information fields in a timeseries.

The meta information is shown in the DISP command.

Syntax

DOC variables LABEL=... SOURCE=... UNITS=... STAMP=... ;
DOC <browser>;

variables Variablename(s) or list(s) (wild-cards are allowed). You may
prepend a databank name as bank:variable.

LABEL= (Optional). Changes the label of the timeseries. You may use
LABEL=" to clear.

SOURCE= (Optional). Changes the source of the timeseries. You may use
SOURCE=" to clear.

UNITS= (Optional). Changes the units of the timeseries. You may use
UNITS=" to clear.

STAMP= (Optional). Changes the stamp of the timeseries. You may use
STAMP=" to clear.

e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

DOC <browser> produces a stand-alone equation browser in html, which can, for
instance, be put on a web server. The produces system is independent of Gekko and
shows variables, formulas, labels, graphs, estimation output, data, etc. This inner
workings of this system will be documented later on, if needed before then, please
contact the Gekko editor. Essentially the system replicates how DISP can show
equations etc. from inside Gekko.

Examples

To change label, source and stamp on the timeseries £y, use:

DOC fY label='Gdp' source='Statistics Denmark' stamp='11-01-2015";

T-T Analyse



Gekko commands 127

To clear the label, use an empty string:

DOC fy label='";

Note
Meta information like this is read from and written to .gbk or .tsd files.

Regarding meta-information on timeseries, you may set these directly when defining
the series, for instance <label = 'Value added tax'> vat = 0.25;.

Related commands

READ, IMPORT, WRITE, EXPORT, DISP

T-T Analyse



128 Gekko 3.0 user manual

3.23 DOWNLOAD

At the moment, the command is used to interface to a particular Danish databank
containing among other things timeseries data. The downloaded file is in "px" format,
that is, PC-Axis. This is a format widely used by statistical offices.

It is the intention to augment the DOWNLOAD command regarding other online
databanks. Note that you can import a px file with IMPORT<px> or IMPORT<px
array>.

The data is downloaded into the first-position databank.

Syntax
DOWNLOAD < ARRAY > url filename DUMP=...;

ARRAY (Optional). If this is set, and DUMP is not used, Gekko will put the
data into array-timeseries rather than normal timeseries. If DUMP is
used, you may use IMPORT <px array> afterwards.

url Url (web address) to the databank. Note: the web address should be
in quotes.

filename Filename of the JSON file defining what data to download.

DUMP= (Optional). Name of the file in which to store the contents of the
download (in this case, a px-file).

Examples
Example:
RESET;

OPTION freqg m;

TIME 2000 2016;

DOWNLOAD 'https://api.statbank.dk/vl/data' statbank.json;
PLOT {'*'};

This imports data from api.statbank.dk, with the file statbank.json file describing what
data to download.

T-T Analyse


http://www.scb.se/sv_/PC-Axis/Start/

Gekko commands

129

"table": "priseé",
"format": "px",
"valuePresentation": "Value",
"variables": [
{
"code": "VAREGR",
"values": ["011200", "011100"]
b o
{
"code": "enhed",
"values": ["100"]
b
{
"code": "tid",
"values": ["*"]

You may use ["*"] to get all values of the field. The resulting series are called
pris6 VAREGR 011200 enhed 100 and pris6 VAREGR 011100 enhed 100.

After the DOWNLOAD command, these two timeseries are available in the first-

position (Work) databank. The above provedure can be split into two parts (first

dumping the download as data.px, and then importing that file):

RESET;
OPTION freqg m;
TIME 2000 2016;

DOWNLOAD 'https://api.statbank.dk/vl/data' statbank.json dump =

data;
IMPORT <px> data;
PLOT {'*'};

If you prefer to use array-series, you may use that <array> option:

RESET;
OPTION freqg m;
TIME 2000 2016;

DOWNLOAD <array> 'https://api.statbank.dk/vl/data' statbank.json;
PLOT {'*'};

or in two steps:

T-T Analyse




130 Gekko 3.0 user manual

RESET';

OPTION freqg m;

TIME 2000 2016;

DOWNLOAD 'https://api.statbank.dk/vl/data' statbank.json dump =
data;

IMPORT <px array> data;

PLOT {'*'};

This produces array-series pris6['011200', '100'] and pris6['011100', '100'].
Because of the leading zero of the first element, you cannot use for instance
pris6[011200, 100]

to refer to the first array-series (it will be understood as pris6[11200, 100]).

Reading the px format

The PC-Axis px format is a flexible data format well suited for multidimensional data.
The format is used by many statistical offices in different countries to let their users

retrieve statistics. Gekko does not use all of the contents of a px file. The way Gekko
reads it is the following:

For instance, the timeseries name
"PRODO01_saesonkorrigering_EJSAESON_brancheDB07_BC" may be composed from
the px file (and the timeseries may get the following label (metadata): "Ikke
saesonkorrigeret, BC Rastofindvinding og industri"). The timeseries names and data
are extracted as follows:

e MATRIX= . Gets the table name from this (used in the timeseries names), for
instance "PRODO1".

e CODES("tid"). Decodes the time periods used. The alternative CODES("time") is
allowed. [New in 3.0.3].

e CODES(...). Gets dimension names and dimension elements from this (*), for use
in the timeseries names. For instance, the name part "brancheDB07_BC", where
the first is the dimension name, and the last is the dimension element.

e VALUES(...). Only used for metadata in the timeseries (timeseries labels).

e DATA= . Read the data from here. If, for instance, there is one dimension with 3
elements, and another with 4 elements, Gekko expects 12 numbers in all. Gekko
will not accept if a number is split between lines, and numbers should preferably
always be followed by a blank also at the end of the line (this is recommended in
the px definition). Gekko will count the numbers, and a warning is issued if there
are too few numbers compared to the span of the dimensions. In that case, the
data may be scrambled/misaligned in Gekko, so take care! If there are too many
numbers, Gekko will fail with an error.

e STUB= . Is not used!

(*) If there is a .json file involved, the often shorter dimension names from the .json
are used instead.

T-T Analyse



Gekko commands 131

Note that some sources of px files provide very long single lines of data (thousands of
characters). If such a file is opened in a text editor and saved afterwards, the editor
may insert line breaks that may render the file unreadable in Gekko (because
numbers become split between lines).

Note

For more advanced px reading, you may take a look at the pxr package in R.

Related commands

IMPORT, READ, OPEN

T-T Analyse


https://cran.r-project.org/web/packages/pxR/

132 Gekko 3.0 user manual

3.24 EDIT

The EDIT command uses Notepad to open up the designated file. The command is
practical for editing command files (.gcm), file lists, table or menu files, data files like
.csv, .prn, etc. See also XEDIT for xml files.

You may use remote control for command files, cf. OPTION interface remote =
yes|no;.

Syntax

EDIT filename ;

filename Filenames may be contain an absolute path like c:
\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,
or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.
The extension .gcm is automatically added, if it is missing. If the
filename is set to '*', you will be asked to choose the file in Windows
Explorer.

Examples

You may use this to open up the file forecstl.gcm from the working folder:
EDIT forecstl;

The .gcm extension is automatically inserted. You may select .gcm files like this:
EDIT *;

This will open up a file dialog with .gcm files to choose from.

Related options

OPTION interface remote = no; [yes|no]

T-T Analyse



Gekko commands

Related commands

S

YS

4

X

EDI

T

133

T-T Analyse




134 Gekko 3.0 user manual

3.25 ELSE

An ELSE statement is used in conjunction with an IF condition and an END statement.

Related commands

IF, ELSE

T-T Analyse



Gekko commands 135

3.26

END

An END statement concludes a FOR (loop), IF (condition) or FUNCTION/PROCEDURE
statement. Gekko will fail if the END statement is missing.

To execute for instance a loop in the command window, it is often convenient to use
Ctrl+Enter for newlines, and then execute all the lines as a unified block by means of

marking all the relevant lines and hitting [Enter]. In that case, the lines are
executed in the same way as using a command file.

Related commands

FOR, IF, FUNCTION, PROCEDURE

T-T Analyse



136

Gekko 3.0 user manual

3.27

ENDO

ENDO and EXO are used for fixing, that is, setting variables to some values (goal),

and asking the system to solve this by means of other variables (means). The ENDO

command works differently depending upon OPTION model type.

e With OPTION model type = default, ENDO endogenizes a list of variables
(without date settings). A model must be defined beforehand.

e With OPTION model type = gams, ENDO produces array-series with names starting
with 'endo_'. These array-series can subsequently be used to tell e.g. GAMS which
variables are fixed and non-fixed. ENDO must indicate dates.

Use UNFIX to remove previously set ENDO or EXO variables.

Syntax

default type: ENDO variablel, variable2, ... ;

gams type: ENDO <periodO> wvariablel <periodl>, variable2
<period2>, ... ;

variabl Default type: The variables are simple series names, or lists of these,
es for instance x2, or {#m}.
Gams type: The variables are series or array-series names, for instance
x2 or x2[a, b]. For array-series, lists may be used, for instance x2[a,
#i, #3j1, where #i and #7 are lists of strings.

period0 @ A period is a Gekko time interval like <2020 2030> or <2020qg1
2030g4>. The general period can be set in the periodO field, and this
period will be be used for the variables, unless specific periods are
given in the periodl, period2, etc.

periodl = A period is a Gekko time interval like <2020 2030> or <2020qg1
, 2030g4>. These specific periods will overrule the general period
period2 = (period0).

y e

Examples
Default type

If you need to exogenize a variable £y, and endogenize a variable tg, use this:

T-T Analyse



Gekko commands

137

OPTION model type = default; //is default
MODEL forecst; //a model must be loaded beforehand

EXO fy; //a list of strings can be used, for instance {#m}
ENDO tg;
SIM <fix>; //option <fix> must be used to enforce the
goals/means.

Gams type

The following example exogenizes variables x1[a, k1] and y1, and endogenizes

x2[a, k1] and y2.

OPTION model type = gams;

EXO x1[a, k1] <2022 2024>, yl <2024 2026>; //or: x1['a', 'kl1'
ENDO <2023 2025> x2[a, k1] <2021 2023>, y2; //or: x2['a', 'kl'
PRT <2020 2027 width=20 n> exo x1, exo yl, endo x2, endo y2;

]
]

The resulting variables are as follows (note that these variables are overwritten if

they exist beforehand):

exo x1[a, k1] exo yl endo x2[a, k1]
endo_y2

2020 M M M
M

2021 M M 1.0000
M

2022 1.0000 M 1.0000
M

2023 1.0000 M 1.0000
1.0000

2024 1.0000 1.0000 M
1.0000

2025 M 1.0000 M
1.0000

2026 M 1.0000 M
M

2027 M M M
M

Instead of individual elements, you may use lists:

OPTION model type = gams;

#a = al, a2;

#k = k1, k2;

EXO <2022 2024> x1([#a, #k];

ENDO <2021 2023> x2[#a, #kl;

PRT <2020 2025 width=20 split n> exo x1, endo x2;

The two lists are automatically unfolded into 2 x 2 = 4 elements (subseries)
regarding exo x1 and endo_x2:

T-T Analyse




138

Gekko 3.0 user manual

exo x1[al
exo x1[a2, k2]

2020
M

2021
M

2022
1.0000

2023
1.0000

2024
1.0000

2025
M

¢, k1]

endo x2[al, k1]

endo x2[a2, k2]

2020
M

2021
1.0000

2022
1.0000

2023
1.0000

2024
M

2025
M

Note

M

1.0000

1.0000

1.0000

exo x1[al, k2]
M
M
1.0000
1.0000

1.0000

endo x2[al, k2]
M

1.0000

1.0000

1.0000

exo x1[a2, k1]
M
M
1.0000
1.0000

1.0000

endo x2[a2, kl]
M

1.0000

1.0000

1.0000

With default type, the ENDO and EXO statements are non-cumulative, so all
endogenized/exogenized variables should be present in the same ENDO/EXO

statement.

With gams type, the ENDO and EXO statements are cumulative in the sense that
ENDO or EXO do not delete existing endo_... and exo_... array-series.

Related options

OPTION model type = default; //default | gams

Related commands

T-T Analyse



Gekko commands

139

T-T Analyse




140 Gekko 3.0 user manual

3.28 EXIT

The command EXIT terminates the application (without any warning, so use it
carefully). It is often used in order to run Gekko sessions from batch (.bat) files.

From the user interface, you may exit by means of 'File' --> 'Exit', or Alt+F4. To
stop/abort a program while it is running, you can use the red stop button in the user
interface.

Syntax

EXIT ;

Related commands

STOP, RETURN

T-T Analyse



Gekko commands 141

3.29

EXO

ENDO and EXO are used for fixing, that is, setting variables to some values (goal),
and asking the system to solve this by means of other variables (means). The EXO
command works differently depending upon OPTION model type.

e With OPTION model type = default, EXO exogenizes a list of variables (without
date settings). A model must be defined beforehand.

e With OPTION model type = gams, EXO produces array-series with names starting
with 'exo_'. These array-series can subsequently be used to tell e.g. GAMS which
variables are fixed and non-fixed. EXO must indicate dates.

Use UNFIX to remove previously set ENDO or EXO variables.

Regarding syntax, examples, etc., see the ENDO command.

Related options

OPTION model type = default; //default | gams

Related commands

ENDO, SIM, UNFIX

T-T Analyse



142

Gekko 3.0 user manual

3.30

EXPORT

The command writes the first-position databank or specific variables to a non-gbk file
in a particular format. Use WRITE to write to a .gbk file.

Please note that the EXPORT formats currently only supports series (or a matrix), not
other variable types (you may use WRITE to store these in .gbk files).

Compatibility note: If a time period is not indicated in the <>-option field, Gekko
3.0 will only export data inside the global time period. Before Gekko 3.0, all data
would have been exported. To emulate previous behavior, you can use
EXPORT<all>. Alternatively, you may set "OPTION budfix import export = yes;". If
the option is set, IMPORT and EXPORT will work as in pre-3.0 versions. The option
will be removed at some point, so it is better to change occurrences of date-less
EXPORT to EXPORT<all> in old command files.

Excel note: When constructing xlIsx files, if you encounter "dates" with integer
numbers larger than 20000, this may be because Excel shows the dates as numbers
rather than dates. You may try to change the format of the date cells: right-click,
"Format cells", "Date".

There is the following equivalence between EXPORT and WRITE: EXPORT =
WRITE<respect>, and the inverse: WRITE = EXPORT<all>. If a local period is set,
EXPORT and WRITE behave in the same way.

Syntax
EXPORT < period format ALL CAPS=... COLS DATEFORMAT=... DATETYPE=...
OP=... > filename ;
EXPORT < period format ALL CAPS=... COLS DATEFORMAT=... DATETYPE=...
OP=... > variables TO variables FILE=filename ;
period (Optional). Without a time period indicated, Gekko will write all the
data for all observations. When a period is indicated, the written
data(bank) is truncated.
format File format. Choose between CSV, FLAT, GCM, GDX, GNUPLOT, PRN,

R, TSD, TSP, XLS/XLSX (regarding gbk, see the WRITE command).

e CSV: Only frequencies matching the current frequency setting will
be written.

e FLAT. This is a special Gekko text-based format with lines that
resemble series statements. See more details in the IMPORT
section.

e GCM. This will export series as Gekko SERIES statements. You can
use operators n, d, p, m or g, for instance EXPORT<gcm op=p>
{#vars} file=data; to put the percentage change in the #vars

T-T Analyse



Gekko commands 143

ALL

CAPS=

timeseries into the file data.gcm. Alternatively, you may use ~=, %
=, += or *= operators, for instance EXPORT<gcm op="'%="'>

{#vars} file=data;. With the latter operators, you must enclose
them in single quotes ('). You may use EXPORT<gcm> to export in
levels (corresponding to operator n). A .gcm file is imported simply
with RUN. See the FLAT format for a faster version of this format.

e GDX: A binary GAMS-database. Note "OPTION gams exe folder =
..." where it is possible to point to the exact GAMS folder
(otherwise the system will try to auto-locate GAMS). It seems
necessary to use a 32-bit version of GAMS, since the current
version of Gekko is 32-bit. Please note that only array-timeseries
(see SERIES) are written to the .gdx file, and that Gekko does not
(at the moment) export timeless timeseries. GAMS can be freely
downloaded as a demo, and the demo will work fine regarding
Gekko EXPORT.

e GNUPLOT: Gekko writes a prn-like format suitable for gnuplot. If
no period is set, Gekko will write all years occurring in the first-
position databank. (Note: PLOT also implicitly produces such a
data file, see the temporary files folder, under \gnuplot. Location
is given with Help --> About... in the main Gekko window).

e PRN: Same behaviour as for the CSV type.

e R: Exports matrices as a R script file. The syntax is a bit
convoluted, since matrices and not series are exported, and the
EXPORT<r> syntax is expected to change at some point. To export
several matrices in one go, you need to state the matrix names as
list items, for instance like this: #m1 = [1, 2; 3, 4]; #m2 =
[11, 12; 13, 14]1; #matrices = ('#ml', '#m2'); EXPORT<r>
{#matrices} file=matrix.r; Exporting a single matrix is more
simple: #m = [1, 2; 3, 4]; EXPORT<r> #m file=matrix.r;.
For running R more interactively, see R_RUN.

e TSD: For interchange with AREMOS and others. With option
'CAPS=no0', all .tsd variable names are written as they are
(otherwise they will be written as all caps).

e TSP: Gekko will write TSP records (load statements). Works for
annual frequencies only.

e XLS or XLSX: Gekko will try to write the data to an Excel
workbook. Only frequencies matching the current frequency
setting will be written. If no period is set, global time will be used.
Cf. also the SHEET command. The engine used for Excel writing
can be changed with "OPTION sheet engine = ...;". You can also
export a matrix to xlsx format.

(Optional). With this option, all observations are exported,
regardless of the global time period. This corresponds to pre-3.0
Gekko behavior.

When exporting a tsd file, the default is now to write the variable
names with all caps. This is because AREMOS fails if this is not done.
To avoid the caps, you may use option <tsd caps=no>.

T-T Analyse


https://www.gams.com/download/
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

144 Gekko 3.0 user manual

COoLSs (Optional). For .csv, .prn or Excel files, this indicates whether the
timeseries are running downwards in columns.

OP= (Optional). For .gcm files, this value indicates the operator used for
the SERIES statements.

DATEFOR (Optional). These options control the date format for .xlsx and .csv

MAT= files. DATEFORMAT can be either 'gekko' (default) or a format string

DATETYPE | like 'yyyy-mm-dd', and the latter may contain a first or last

= indicator, for instance 'yyyy-mm-dd last', which indicates for
quarterly or monthly data that the /ast day of the quarter or month
is used. DATETYPE can be either 'text' or 'excel'. In the former
case, the dates are understood as text strings (for instance
'2020g3" or '2020-09-30" for a quarterly date), and in the latter
case (not relevant for .csv files), the date is understood as an Excel
date, which basically counts the days since January 1, 1900. This
number would correspond to 44104 for the date 2020-09-31, and
can be shown in Excel in different ways depending upon date format
settings, language settings, etc., but the internal number itself is
unambiguous. [New in 3.0.5].

variables Variables or lists (wildcards and bank indicators may be used), and
items may be separated by commas. If no variables are given, the
full first-position databank is written.

TO You may use TO to rename variables before they are written, for
instance EXPORT <csv> x* to * old file = test;, where Gekko
will look for variables starting with x, and the found variables will
acquire a _old suffix. This logic is similar to the copy and RENAME
commands.

filename Filenames may be contain an absolute path like c:
\projects\gekko\myfile, a relative path like \gekko\myfile.gbk,
or be stated without a path. Filenames containing blanks and special
characters should be put inside quotes. See more on filenames here.

e If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

e If a variable is stated without databank, the databank is assumed to be the first-
position databank.

Examples

T-T Analyse



Gekko commands 145

You may export the contents of the first-position databank into a spreadsheet like
this:

EXPORT <xlsx all> data;

This produces the file data.xIsx. The <all> option makes sure that all observations
are exported: if omitted, only observations inside the global time period are exported.
If you only want subset of the variables or a subset of the time period, you may write
for instance:

EXPORT <2040 2050 xlsx> fy, fe, fm FILE=sim4050;

This produces the file sim4050.xlsx, containing the three variables over the period
2040-50. You may also use lists or wild-card lists regarding the variables:

EXPORT <xlsx> fX* file=fxfile;

This writes all variables in the first-position databank starting with 'fX' to the file
fxfile.xlsx.

EXPORT <2015 2020 gcm op=p> px* file=px;

This writes all variables in the first-position databank starting with 'pX' to the
command file px.gcm. The variables are written as percentage growth SERIES
statements (the data can be imported afterwards with RUN).

EXPORT <gdx> ats file=gamsdata;

This will export the array-timeseries ats to gamsdata.gdx.

Export of a matrix #m to Excel (matrix.xlsx):

EXPORT <xlsx> #m file = matrix.xlsx;

Note

You may use SHEET if you need to put expressions into an Excel sheet, or into
particular cells.

T-T Analyse



146 Gekko 3.0 user manual

If option folder = yes, and option folder bank is set, the EXPORT statement
tries to write to that particular folder instead of the working folder.

Related options

OPTION folder bank = [empty];
OPTION interface csv decimalseparator = period; [period|comma]

Related commands

IMPORT, READ, WRITE, SHEET

T-T Analyse



Gekko commands 147

3.31 FINDMISSINGDATA

This command finds timeseries with missing values (only the timeseries with
frequency matching the global frequency setting).

Please note that the command is not intended to be put inside a large loop. In such
cases, using the iif() function is better, see the end of the examples section.

Syntax
FINDMISSINGDATA < period REPLACE=... > variables ;

period (Optional). Local period, for instance 2010 2020,
2010gl 202094 or Sperl S%per2+l.

REPLACE= You may use for instance <REPLACE = 0> to
replace any missing values with 0 (or any other
value). When using the REPLACE options, lists are
not generated.

variables List of variable(s) to check, array-series can be

stated. If omitted, all series from the first-position
databank are investigated.

e If no period is given inside the <...> angle brackets, the global period is used (cf.
TIME).

e If no variables are given, all variables in the first-position databank will be
investigated

Examples

For instance, the command

FINDMISSINGDATA <2008 2010>;

looks for all series (including array-subseries) with any missing values in the period
2008-2010. You may restrict it like this:

FINDMISSINGDATA <2008 2010> {#vars};

T-T Analyse



148

Gekko 3.0 user manual

where the list #vars contains the names of the relevant variables you want to check.
Gekko outputs a number of lists from the investigation: for instance the list
#missingdata contains all variables with missing data in the first-position databank,
whereas the lists #missingdata all, #missingdata endo etc. are subsets of that list,
and correspond to the Gekko-defined lists #al1l, #endo etc. (i.e., all model variables,
all endogenous model variables, etc.).

FINDMISSINGDATA <2008 2010 replace = 0> {#vars};

This does not produce any lists, but replaces any missing values with 0.

You may use wild-card lists if preferable:

FINDMISSINGDATA <2008 2010> fX*, fYf*;

This will check all variables starting with 'fX' or 'fYf'. If a period is not given, the
global time setting is used.

If you need to change missing values to something else, using the iif() function is
often much more speedy. For instance:

RESET; MODE data; OPTION freqg m;
TIME 2017m7 2017ml10;

x = 100, 200, m(), 400;

y = 110, 210, 310, 410;

zi =S, == MmO, Yr X)i
PRT <n> x, vy, zZ;

The result is:

X % z
2017
m7 100.0000 110.0000 100.0000
m8 200.0000 210.0000 200.0000
m9 M 310.0000 310.0000
ml0 400.0000 410.0000 400.0000

The x series has a hole in it (2017m9), and the iif() function checks (for each of the
four periods) if x has a missing value, and if so it uses the y value, else the x value.
So the resulting z series has the hole filled with the 2017m9 observation from y. The
m() function inside the iif() function just returns a missing value. A dollar conditional
($) works similar to iif(), and the replace() function can also be used.

Note

T-T Analyse



Gekko commands

149

The command is convenient when developing new models or changing existing
models.

Related commands

COMPARE, DELETE, see also 'Utilities' --> 'Compare two databanks' (same as

COMPARE)

T-T Analyse




150

Gekko 3.0 user manual

3.32

FOR

The FOR command initiates a loop over strings, dates or values. Parallel loops
(tandem) over lists are also possible. Like the procedure and function definitions,
Gekko demands that the variable type is stated explicitly.

Loop over elements

This elements loop loops through the list of elements on the right-hand side of '=".
Indicating the type here is mandatory in Gekko 3.0.

FOR [type] %x = items ;

statements... ;
END ;
[type] The type must be indicated
5X The loop variable $x
items Any list of items. For a simple list of strings, you may use the

naked list a, b, cinstead of ('a', 'b', 'c'), similar to how a
list may be defined using short form. You may also use for
instance lists (#mylist) or wildcards (e.g. £x*). You may also use
a list of values, for instance (1, 2, 3), or a list of dates, for
instance (2001gl, 2001g2, 2001g3).

Note that you may use parentheses, for instance FOR ([type] %x = items), like
the IF command.

Parallel loop over elements

This parallel string loop loops through the items in parallel/tandem. So in the i'th
iteration, $s1 is equal to the i'th item in items1, $s2 is equal to the i'th item in
items2, etc. The number of items must be the same in all the lists on the right-hand
sides of the '=". And the names on the left-hand sides of the '=' must be different.
The type must be stated.

FOR typel $%$sl=itemsl type2 %$s2=items2 type3 %s3=items3 ... ;
statements... ;

END ;
%s1, %s2, ... The loop variables (for instance: strings).

T-T Analyse



Gekko commands 151

items1, Any list of items.
items2, ...
Note that you may use parentheses FOR( %sl=itemsl %s2=items2 ... ), like

the IF command.

Date loop, FOR ... TO

A date loop loops through dates from a start date to an end date, with an optional
stepsize. (To use logical conditions on individual observations inside timeseries, see
the iif() function)

FOR date %d = datel TO date2 BY step ;

statements... ;

END ;
%d The loop variable d (of date type).
datel Start date (inclusive), can be expression (including integer value).
date2 End date (inclusive), can be expression (including integer value).
step (Optional). An optional stepsize (default step: 1). Must be integer,

and may be negative. You may omit BY step if not needed. You may
use STEP instead of BY if preferred.

TO You may use '.."' (range) instead: for instance FOR date %d =
20159l .. 202094;

Note that you may use parentheses FOR (date %d = datel TO date2 BY
step), like the IF command. If one or both of datel and date2 are positive
integers, they will be interpreted as annual dates.

Value loop, FOR ... TO

A value loop loops through values from a start value to an end value, with an
optional stepsize. If the stepsize is negative, the values will decrement.

T-T Analyse



152 Gekko 3.0 user manual

FOR val %v = vall TO val2 BY step ;

statements... ;
END ;
\% The loop variable %v.
vall Start value. Can be any number or expression.
val2 End value. Can be any number or expression.
step An optional stepsize (default step: 1). Can be any number or

expression, and may be negative. Omit BY step if not needed. You
may use STEP instead of BY if preferred.

TO You may use '.."' (range) instead: for instance FOR val %v = 1
100;

Note that you may use parentheses FOR (val %v = vall TO val2 BY step),
like the IF command.

Examples (list)

You may wish to use some sector codes to print out production values easily:

FOR string %i = nf, nz, gz, o; //or: ('nf', 'nz', 'gz', 'o')
PRT £X{%i};
END;

This will print out the variables £fxnf, fXnz, fXgz, fxo (one by one). You may use

a pre-defined list after the '="in the for statement FOR string %i = #mylist;, or a
wild-card list (FOR string %i = ['fx*'];), or combinations of these.
Nested loop:

FOR string %i = a, b, ¢c; //or: ('a', 'b', 'c")

FOR string %3 = x, vy, zZ;
PRT var{%i}o{%J};
END;
END;

The loop prints 9 variables beginning with varaox, varaoy, varaoz, varbox,
varboy, ... etc.

T-T Analyse



Gekko commands 153

Note that you can easily pre- and suffix list items, cf. the LIST command. Gekko can
also loop over a list of values or dates, for instance:

OPTION freqg g;
FOR date %d = (2020gl, 2020g3); //omitting the parenthesis will
not work
TIME %d %d+1;
END;

This will set the period 2020g1-2020g2, and afterwards 2020g3-2020g4. Note the
parenthesis in the first line. Without it, the list will be understood as ('2020q1’,
'2020g3"), that is, two strings and not two dates.

You may use parallel lists like this:

#ml = a, b, ¢; //or: ('a', 'b', 'c')
#m2 = x, y, z;
FOR string %i = #ml string %j = #m2; //or: FOR string %i = a,
b, c string % = x, vy, Z;
TELL '{%i}, {%j}';
END;

In contrast to the nested loop above (that ran the PRT statement 3*3 = 9 times), this
loop only runs the TELL statement 3 times in all. The result is the following:

a, x
b, vy
€, Z

The parallel loops is an easy way to loop two (or more) lists in tandem. It is easier to
use than doing the same loop 'manually’, like the code below (this code produces the
same output):

#ml = a, b, c;
#m2 = x, y, z;
FOR val %v
%1 = #ml[
%3 = #m2[
TELL '{%i
END;

to #ml.length();

—~— o° o° ||
=

{531

Examples (dates range)

T-T Analyse



154 Gekko 3.0 user manual

To compute the largest number of the variable £x{%i}, for the sectors a, b, nf, gf,
over the period %d1 to %d2:

$dl = 1990;
$d2 = 2015;
#vars = a, b, nf, qgf;
$max = 0; //initialize
FOR string %i = #vars;
FOR date %d = %dl1 to %d2;
IF (fx{%i}[%d] > %Smax) ;
$max = f£X{%i}[%d];

$dmax = %d;
$imax = %i;
END;
END;
END;
TELL 'Largest value in sector {%imax}, period {%dmax}, value = {%
max}.';

After this loop, the string $imax will contain the sector name with the highest
number, the date %$dmax will contain the period containing that number, and the
value smax will contain the max number. It is assumed that the values are all
positive, so that $max can safely start out with value 0.

This example sets the timeseries y, depending upon two timeseries x1 and x2, over
the period 2001-2003. For the observations where x1 > x2, y is set to x0, else to v
(a scalar).

FOR (date %d 2001 to 2003);

IF (x1[%d] > x2[%d]);
SERIES y[%d] = x0[%d];
ELSE;
SERIES y[%d] = %v;
END;
END;

Note that such conditional setting of values via time-looping can be done much easier
with the iif() function:

<2001 2003> y = iif(x1, '>', x2, x0, %v);
You may loop over frequencies like this:

FOR string %i = a, q, m;
OPTION freq = {%i};
SERIES xx = 100;

END;

T-T Analyse



Gekko commands 155

After this, there will be series xx!a, xx!q and xx!m, corresponding to each of the
frequencies a, g and m.

Examples (values range)

A value loop is similar to date loops

FOR val v = 10 to 0 by -2.5;
TELL 'Value: {%v}';
END;

This will print out the numbers 10, 7.5, 5, 2.5 and 0.

FOR (val v = 10 to 0 by -2.5)
TELL 'Value: {%v}';
END;

Equivalently, using parentheses (the semicolon in the first line may be omitted in this
case). This is just to avoid an error if the user assumes the same syntax as the IF
command (which has mandatory parentheses).

Note

You may sometimes need to use an explicit type conversion from one scalar variable
type to another. In that case, use the conversion functions val(), date() or string().

Related commands

T-T Analyse



156 Gekko 3.0 user manual

3.33 FUNCTION

FUNCTION is used to define user-defined functions. Such user functions may return a
variable (if you need to return multiple variables, consider returning a map). For a
function that does not return anything, you may consider using a procedure instead.
A procedure is essentially the same as a user functions with no return value.

Note that all Gekko functions (both in-built and user-defined) implement so-called
UFCS so that a function like for instance f (x, y) can be written as x.f (y), and f (x,
y, z) can be written as x.f(y, z).

You may decorate a user function with a <>-option field containing an optional time
period. User-defined functions allow optional parameters with default values, and the
function may prompt (ask) the user about these parameters, if £2 (...) is used
instead of £ (...), where £ is the name of the function.

How to use a library of Gekko functions/procedures in 3.0?

In Gekko 3.0, the OPTION library file = ...; is obsolete. Instead, you can
just put your user-defined functions/procedures in for instance a file called
lib.gcm. Afterwards, you can define a gekko.ini file containing the line rRUN
lib.gcm; so that lib.gcm is always run at Gekko startup, or after a RESTART. See
the lib.gcm example on the RESTART help page. In Gekko 3.0, user
functions/procedures are always available after they have been defined, as long
as the use is chronologically after the definition.

Function hints

If a function has syntax errors, you may try to out-comment the FUNCTION
statement and corresponding END statement for better error messages. Function
arguments do not reside in any databanks, so if you have a function like FUNCTION
void f(series x); RUN data.gcm; END; you cannot expect to use x inside the
data.gcm command file, for instance expecting it to reside in the first-position
databank (regarding function arguments, in many cases using the name type is
more practical than the series type).

Syntax
FUNCTION type funcname (<date tl, date t2>, typel varl labell = defaultl,
type2 var2 label2 = default2, ...);
expressions... ;
END;

The function body must contain at least one RETURN statement, returning a variable.

T-T Analyse


https://en.wikipedia.org/wiki/Uniform_Function_Call_Syntax

Gekko commands 157

t1, t2 (Optional). You may state optional time period parameters inside
<>-brackets, for instance FUNCTION series f (<date %tl, date %
t2>, series x); after which 3t1 and $t2 are assigned to for
instance 2020 and 2030 in the call £ (<2020 2030>, =z). If the
function is called without <>-brackets, for instance £ (z) , the
parameters 3t1 and %t2 are assigned to the local/global time period
instead. Using a <>-brackets in a function call does not in itself
change the local time period inside the function: use for instance the
BLOCK structure to do that. See examples.

typel, ... Types of incoming and outgoing variables: series, val, date,
string, list, map, matrix. You may also use the special name type
for parameters, which behaves 100% as a string inside the
function, but where the single quotes are omitted when calling the
function from outside (the shorter call £ (y) is used instead of
f£('y")). If the function does not return anything, use void as type.

varl, ... The parameters/variables/expressions

labell, ... (Optional). A label for the parameter, used if the function is
promting (called with £2 (...)). See more about prompting below.

defaulti, . (Optional). A default value for the parameter. If the parameter is
omitted, the default value is used. If the function is asked to prompt
(called with £2 (...)) and the parameter is omitted, the default

value is shown in the dialog box. In the dialog box, Enter or Escape
will return the default value, and fire up the next dialog box (for the
next optional parameter). If a ; is entered in the dialog box, all the
remaining parameters attain their default values, and no more
dialog boxes are shown. For string input, the use of quotes (') in the
input box is optional. At the moment, only val, date and string
types can be used for prompting input boxes.

funcname The function name

body The function body, that is, the commands to be performed. Use
RETURN to return a variable. If several variables need to be
returned, use a map or list to bundle them.

Tip: if you need to stop execution at a particular line, try inserting a line with a non-
existing function like for instance stop () ;. This will abort the program in a clean way
and make it possible to inspect variables etc.

Example

T-T Analyse



158 Gekko 3.0 user manual

Value examples, including multiple return values

The function square() below returns the input VAL squared.

FUNCTION val sg(val %x);
RETURN %x*%x;
END;

So the VAL statement will produce a scalar value %y = 16, whereas 3z = 256 (the
function calls may be nested).

Multiple variables may be returned, using a collection like for instance a map:

FUNCTION map f (val %$x, val %y);

RETURN (%sum = %x + %y, %product = %$x * %y); //see definition of
a2 map
END;

#m = £(3, 7);
PRT #m.%sum, #m.%product; //10, 21

Date example

FUNCTION date add3(date %d);
RETURN %d + 3;

$d3 = add3(2000g3) ;
PRT %d3; //2001g2

String example

FUNCTION string f (string %x);
RETURN %x + 'shine';

5y = £('sun');
PRT %y; //'sunshine'

If you prefer to omit the quotes when calling the function (that is, f (sun) instead of
f('sun'), you may use the name type:

T-T Analyse



Gekko commands

FUNCTION string f (name

RETURN %$x + 'shine';

sy = f(sun);

PRT %y; //'sunshine'

List example

sX) ;
//%x behaves

FUNCTION val ncommon (list #x,

ftemp = intersect (#x,
RETURN #itemp.len () ;
END;
A e

#ml = x1, x2, x3, x4;
#fm2 = x2, x4, x5, x6;
$v = ncommon (#ml, #m2) ;
PRT %v; //2 common elements

Series example

ty);

FUNCTION series idx(series x,

RETURN x/x[%d];

END;

TI

ME 2000 2010;

CREATE x1; SERIES x1 =1
PRT x1, idx(xl, 2002), i

The function idx() provides indexed values.

Combined example

0, 11,
dx (x1,

FUNCTION void load(string %n,

va

EN

lo
1o
di

1 %v);
CREATE {%n}; //must use {...}-braces to use as name.

DOC {%n} label = %labe

Lg

SERIES <%dl %d2> {%n} = Sv;

list

date

12,

2008) ;

#y);

5d) ;

13, 11, 14, 16, 17,

string %label,

RETURN;
D;
ad('extral', 'Helper variable',

ad('vat', 'VAT rate',
sp extral, vat;

1980,

2020,

1980, 2020,

0.25);

date %dl,

100) ;

159

completely like a string

15, 19, 20;

//index 2002=1 and 2008=1

date %d2,

T-T Analyse




160

Gekko 3.0 user manual

The load() function will create the two timeseries extral and vat, both with labels,
and values 100 and 120, respectively. Since the function does not return any
variable, you may use a procedure instead.

Local period example

function series f (<date %tl, date %t2>);
block time %$tl %t2;

y = 100;
end;
return y; //return statement after the block ends

end;

TIME 2001 2001;

z1l <2002 2002> = f£(); //z1l will be 100 in 2002
z2 <2002 2002> = £(<2003 2003>); //z2 will be 100 in 2003
p <2001 2003 n> zl, z2;

// Result:

// z1 z2
// 2001 M M
// 2002 100.0000 M
// 2003 M 100.0000

In the z1 statement, it is seen how the local period <2002 2002> is used inside the
f() function, by means of a BLOCK using the arguments st1 and %t2. The f() function
itself is not called with time period, and since the time period is absent in the function
call, st1 and %t2 are assigned to the local period set outside of the f() function.

The z2 statement illustrates a call of f() where a time period is present inside the f()
function. This overrules the local time period 2002-2002.

Promt and default values example

Gekko user-defined functions allow default values, and prompting regarding these.

function val f(val %x1, val $%$x2 'parameter 2' = 1, wval %x3
'parameter 3' = 2);
return 10000 * %x1 + 100 * %$x2 + %$x3;
end;
syl = £(9, 3, 4); //--> 90304
sy2 = £(9, 3); //-=> 90302
sy3 = £(9); //==> 90102
syd = £2(9, 3); //enter 5 into the dialog box —--> 90305
$y5 = £?2(9); //enter 6 and 7 into the dialog boxes --> 90607
$y6 = £2(9); //enter 6 and ';' into the dialog box --> 90602
mem;

Beware that £ () or £2 () will fail with an error, since the first parameter is required.
As shown regarding the last function call, you may terminate a sequence of input

T-T Analyse



Gekko commands 161

boxes with ;, which means the default values are used for the current and following
parameters. Pressing Enter or Escape returns the default value, and opens up the
next input box. For prompt input, only the variable types val, date, string and name

are supported at the moment (for name type, use for instance ... , name %x2
'parameter 2' = 'x', ...).
Note

See also PROCEDURE. A procedure can be thought of as a function without return
values. Procedures and user functions do not live in databanks, and are hence not
affected by CLEAR, CLOSE, READ, etc., but are removed with RESTART or RESET.

If a function is defined without <>-brackets to indicate time, it may still be called
with <>-brackets. In that case, the time period inside the brackets is just ignored.

Note that in Gekko 3.0, multiple return values are handled with maps. In Gekko's
before 3.0, so-called tuples were used to the same effect (such tuples do not work
anymore).

You can at most use 14 arguments, else use maps to bundle incoming arguments. Per
default, all arguments are passed by value, not by reference (cf. OPTION system
clone). This means that functions cannot have so-called side-effects on the incoming
arguments. Maps can be practical for bundling output variables.

It is planned to introduce the type namelist in addition to the name type, so that an
argument like (a, b, c) can mean ('a', 'b', 'c') internally.

Related options

OPTION library file = [filename];

Related commands

PROCEDURE, RUN

T-T Analyse



162 Gekko 3.0 user manual

3.34 GLOBAL

The GLOBAL command is used to designate variable names that are to be located in
the Global databank. Following a GLOBAL x; statement, any subsequent use of x
(without databank designation) will be understood as global:x.

After Gekko leaves the command file, function or procedure, these global variables
live on in the Global databank. Therefore, using GLOBAL or global:x = ... can be
practical regarding permanent storage of variables, for instance settings, without
polluting the 'normal' databanks.

Use GLOBAL<all>; to render all variables global. After a GLOBAL<all>, you can still
search for a bankless variable x outside of the Global databank by means of the
special all: designation (for instance y = all:x;).

See the description of the OPEN command regarding different types of databanks in
Gekko.

See also the similar LOCAL command, for local variables.

Syntax

GLOBAL varnames;
GLOBAL <all>;

varname = Comma-separated list of variables

s
ALL (Optional). With this option, all following (in the rest of the

program/function/procedure) left-hand side variables without explicit
databank designation are located in the Global databank. For a
variable x that you would like to keep in another databank despite
using a GLOBAL<all>, you may use first:x or another bank
designation to circumvent GLOBAL<all>.

Examples

GLOBAL x, %y, f#z;

After this, any use of x, %y, or #z (in the present command file, function or
procedure) will be interpreted as global:x, global:%y, and global:#z.

T-T Analyse



Gekko commands 163

The Global databank is searched last, if databank searching is active (that is, data- or
mixed mode), cf. databank search.

Variables in the Global databank survive for instance READ and CLEAR commands,
and the Global databank is practical for storing long-term variables like setting etc.
For instance:

global:%perl 2010;
global:%per?2 2050;
global:%path = 'm:\data\scenario2';
global:%unit 1000;

As long as Global is not cleared explicitly (or a RESET or RESTART is issued), $perl,
$per2, $path, and sunit would be available. In data- or mixed mode, you can just
refer to for instance %peri, provided that there is no $perl located in other open
databanks. If you want to be absolutely sure that the variable is taken from Global,
you can use global:%perl to refer to the variable.

To avoid all the global: indicators, you may consider this alternative, using a
procedure for the global settings:

RESET';
PROCEDURE globals;
GLOBAL<all>;
Sperl = 2010;
$per2 = 2050;
$path = 'm:\data\scenario2';
unit = 1000;
END;
globals; //call the procedure
//
// the rest of the program here
//
Note

You are not forced to use the GLOBAL keyword, when operating with global variables.
Defining global:%perl = 2010; first, and referring to global:%perl later on is
possible, too. In that sense, the GLOBAL keyword is just for convenience, especially if
$perl is used several times.

Variables in the Global databank are practical for settings, etc. These variables
survive READ, CLEAR, etc., and do not 'pollute' the first-position databank if this is
later on written to file.

T-T Analyse



164

Gekko 3.0 user manual

Note that the Local or Global databanks are always searchable, independent on MODE

etc.

Related commands

LOCAL

T-T Analyse



Gekko commands 165

3.35 GOTO

GOTO can be used to transfer execution to some other point (TARGET) in the
program.

You should mostly use this statement to jump out of loops (cf. the example below). It
is not intended for jumping around in plain non-looping code, where the presence of
GOTO/TARGET may render the programs slow-running and hard to read.

Syntax

GOTO name;

The label must be name-like, that is, alphanumeric characters including underscore
(and not starting with a digit). You can not use scalars or expressions etc. as labels.

Examples

$sum = 0;
FOR val %1 = 1 to 5;
IF (%1 == 4);
GOTO 1bll;
END;
Ssum += $i;
END;
TARGET 1bll;

This example skips the iterations before the fourth iteration is about to be executed.
The value of $sum will be 6 (= 1+2+3, not 1+2+3+4+5).

The example below is NOT what the command is intended for:

TELL 'a'; GOTO x1;

TARGET x2; TELL 'c'; GOTO x3;
TARGET x1; TELL 'b'; GOTO x2;
TARGET x3; TELL 'd';

This prints 'a', 'b', 'c’, 'd', but please use other means to organize the flow of your
gcm-file!

Note

T-T Analyse



166 Gekko 3.0 user manual

Target names cannot be duplicated. An error will be issued.

The program will also fail with an error, if the label does not exist. But 'orphaned'
labels are accepted (a TARGET without a corresponding GOTO).

You cannot call a target inside a loop, from outside the same loop. For instance, the
following will fail, and an error will be issued:

$sum = 0;

GOTO 1bl1l;

FOR val %1 = 1 to 5;
TARGET 1bll;
Ssum += $1i;

END;

Eternal loops may be accidently created, for instance the line TARGET 1bl1; GOTO
1b11; will run forever. This example is easy to spot, but such problems may arise if
the GOTO structure is misused. It has been proven that the GOTO statement is
technically superflous, and it can lead to so-called spaghetti code (cf. Dijkstra: "Go To
Statement Considered Harmful").

At a later point, BREAK and CONTINUE might be added to Gekko loops, too.

Related commands

TARGET

T-T Analyse



Gekko commands 167

3.36

HDG

HDG (heading) will put the heading into a databank file. This only works for .gbk
files.

Syntax

HDG heading ;

heading A string

Examples

Putting a heading on a databank can be useful:

HDG 'Bank for multiplier analysis, simulated 2010-2050';
WRITE mulbank ;
READ mulbank ;

When reading the .gbk databank, info like this is printed on the screen:

Info : Bank for multiplier analysis, simulated 2010-2050
Date : 26-10-2011 11:13:31

The heading will also be shown in the databank list (F2 button).

Databank files in .gbk format can contain meta-information like headings and date
and time when written.

Related commands

WRITE, READ

T-T Analyse



168

Gekko 3.0 user manual

3.37

HELP

The HELP command (or F1) provides access to Gekko help system. Through the HELP
command it is possible to get quick help on a command and its syntax, examples, etc.

The help system opens up in a separate window and is of the type "Compiled HTML
Help" (stored in a .chm file). The help system is browsable/searchable. It is typically
not possible to open the .chm from a network drive. Per default Gekko copies the
.chm file to a temporary folder on the user's hard disk, in order to avoid this problem.

The help files are also available online here. The online version is not updated as
often as the inbuilt version (.chm).

Syntax

HELP command;

command (Optional). The command on which help is needed. If the
command does not exist, the help system will indicate that the
file is missing. Opening up with just HELP; is possible, but in
that case pressing F1 is easier. Using the menu: 'Help' -->
'Gekko help file' is also possible.

Examples

If, for instance, you are in doubt about the syntax regarding the SERIES command,
you may look directly for this topic in the help file:

HELP series;

If you cannot remember that the name of the relevant command is SERIES (for
instance), you may write

HELP;

In the section "Gekko commands", there is a page called "Command overview" where
the commands are grouped by categories. Else, the .chm help system is also
searchable, cf. the "Search" tab.

T-T Analyse


https://t-t.dk/gekko/user-manual/

Gekko commands 169

Related options

OPTION folder help = [empty];
OPTION interface help copylocal = [yes|no];

Related commands

OPTION

T-T Analyse



170

Gekko 3.0 user manual

3.38

IF

The IF command is used for conditional execution of different blocks of statements.
The IF statement works with strings, dates, and values (or for instance single
timeseries observations like x[20107).

You may sometimes need to explicitly convert the variables in order to compare them
(by means of the functions val(), date() or string()).

If you need to perform IF-like operations inside a SERIES, you may use $-
conditionals on expressions, or the iif() function. See examples in the SERIES
section.

The IF-statements work with operators like for instance 1F ($x == 100); ...;
END;, testing if $x has the value 100. But IF-statements also works with single
values, like IF (%x); ...; END;. In that case, the statements are not executed if %x
has the value 0, and are executed otherwise.

Syntax
IF ( expression );
statementsl... ;
ELSE;
statements2... ;
END ;
expression A logical expression involving strings, dates or values (or single

timeseries observations like x[20101), in addition to the logical
operators AND, OR, NOT, <, <=, ==, >=, >, <>. Please note that logical
equivalence uses == (and not = which is assignment) , and that
you must use <> for logical difference, not for instance !=.

If the expression is a scalar value, the statements are not
executed if the scalar value is 0, and are executed otherwise.

statementsl @ Gekko commands to be executed if expression is true.

statements2 @ (Optional). Gekko commands to be executed if expression is false.

Example

T-T Analyse



Gekko commands 171

See more examples involving IF in loops in the FOR help file. A very simple example
using the string scalar variable.

Swrite = 'yes';
IF (%write == 'yes'); //note the use of '==', using '=' here
will fail
TELL 'Yes chosen';
ELSE;
TELL 'No chosen';
END;

To choose between more choices (and test validity of swrite), you may use:

Swrite = 'yes';

IF (%write == 'yes');
TELL 'Yes chosen';

ELSE; IF (%write == 'no');
TELL 'No chosen';

ELSE; IF (%write == 'maybe');
TELL 'Maybe chosen';

ELSE;

TELL 'ERROR: The scalar variable should be yes, no or maybe';
END; END; END;

This is a little awkward with the three ending ENDs (a 'real' ELSEIF statement will be
provided later on to provide easier syntax for several cases).

o°

v 2000;

s = '2000"';

date %d = 2000; //without 'date' it becomes a value

IF (%v == val(%s) AND %v == val (%d) AND date(%s) == %d)
TELL 'Ok';

ELSE;
TELL 'Not ok';

END;

o

This will print 'Ok’. Note that you have to explicitly convert the variables to be able to
compare them, otherwise you will get an error. In this case, the conversion functions
val() and date() are used. The conversions may seem obvious and superfluous here,
but consider this example:

= '100"';

1 ="33";

v = 133;

IF (%v == %s + %sl) //Will give type mismatch error
TELL 'Ok';

END;

T-T Analyse



172

Gekko 3.0 user manual

This gives an error, because Gekko does not know how to compare the value 133
with the string '10033' (the sum of the two strings taken literally). So

IF (%v == val(%s + %sl)) //will be false, comparing 133 and
10033

or this:
IF (%v == val(%s) + val(%sl)) //will be true, comparing 133 and
133

To avoid ambiguities, the type system in Gekko is quite strict. To access individual
observations from a series in the first-position databank, use the variable [period]
syntax:

TIME 2010 2012;

//CREATE data; //use this in sim-mode
data = 1, 2, 3;

DATE %d = 2011; %v = 2;

IF (data[%d] == %v) TELL 'Ok'; END;

This will print 'Ok'. To compare and transform timeseries depending upon individual
observations, see the iif() function.

The $-conditional can often be used instead of IF, for instance:

IF(x[2015] == 100);
y = 2;

ELSE;
y = 0;

END;

This can be stated in the following much simpler way, using the $-conditional.

SERIES y = 2 $ (x[2015] == 100);

Note

e Note the use of two equal signs (==) in IF-commands, and <> for logical difference.

e There is also an exist (x) function that returns 0 or 1 depending upon whether the
series x exists or not.

e See the iif() function for logical conditions inside timeseries observations.

T-T Analyse



Gekko commands

173

e You may ask a list if it has a particular member (will return 1 for true, and 0 for
false). For instance 'a' in #mis true if #m contains 'a'. Therefore, you may for

instance use IF('a' in #m) without logical operator. The alternative syntax
#m.contains ('a') is equivalent.

Related commands

FOR, END, STRING, DATE, VAL

T-T Analyse




174 Gekko 3.0 user manual

3.39 IMPORT

The IMPORT command merges data (typically series) from an external file into the
first-position databank. The IMPORT statement is primarily for non-.gbk files, and it
should be noted that IMPORT without options restricts data to the global time period,
it only puts data into the first-position databank, and it merges data with any pre-
existing data in the first-position databank.

Import supports collapsing (aggregating) data points of high frequency into monthly,
quarterly or annual series, cf. the <collapse> option.

Compatibility note: If a time period is not indicated in the <>-option field, Gekko
3.0 will only import data inside the global time period. Before Gekko 3.0, all data
would have been imported. To emulate previous behavior, you can use
IMPORT<all>. Alternatively, you may set "OPTION bugfix import export = yes;". If
the option is set, IMPORT and EXPORT will work as in pre-3.0 versions. The option
will be removed at some point, so it is better to change occurrences of date-less
IMPORT to IMPORT<all> in old command files.

Tabular formats note: When using IMPORT with xlIsx, csv or prn files, it is advised
to first set the global frequency (option freq = ...) to the frequency of the data
file (temporary frequency change can be done with BLOCK freq ...; IMPORT ... ;
END; ). With DATEFORMAT and DATETYPE at their default values, dates like 1990a1,
1990y or 90 are treated as annual 1990. A date like 199003 is treated as 19903 or
1990m3, if global frequency is set to g or m. To import data with undated (u)
frequency, the global frequency should be set to u first.

IMPORT is intended for non-.gbk files, and can be thought of as a soft version of
READ. In contrast to READ, IMPORT does not clear the first-position databank
(instead it merges data), it only imports data corresponding to the global time period
(unless a time period or <all> is used), and it does not alter the Ref databank. There
are the following equivalences: IMPORT = READ<first merge respect>, and the
inverse: READ = CLEAR<first> + IMPORT<all> + CLONE.

Syntax
IMPORT < period format ALL ARRAY COLS REF SHEET=... CELL=...
NAMECELL=... DATECELL=... COLLAPSE=... METHOD=... DATEFORMAT=...
DATETYPE=... > filename TO bankname;
period (Optional). Without a time period indicated, Gekko will import all

the data for all observations. When a period is indicated, the
databank is time-truncated.

T-T Analyse



Gekko commands 175

format

(Optional). Choose between CSV, FLAT; GDX, PCIM, PRN, PX, TSD,
TSP, XLS, XLSX.

e CSV: Comma-separated file. Tabular format with rows/cols
consisting of names and dates. The global frequency (OPTION
freq) must correspond to the frequency in the file.

e FLAT: A Gekko-specific text-based format with lines that
resemble Gekko series statements. The format is: variable name
+ start date + end date + numbers. These items are separated
by blanks, for instance "x 2020 2022 1.5 -2.5 3.5". This
corresponds to x <2020 2022> = 1.5, -2.5, 3.5;.If only one
number is given, it will be used for the full time period. You can
use 'm' or 'm()' to indicate a missing value. Blank lines and lines
beginning with '//' are ignored. This format reads much faster
than 'real' series statements (which have to be parsed and
compiled before the values are extracted).

e GDX: A binary GAMS-database. Note OPTION gams exe folder
= ... where it is possible to point to the exact GAMS folder
(otherwise the system will try to auto-locate GAMS). It seems
necessary to use a 32-bit version of GAMS, since the current
version of Gekko is 32-bit. Please note that the data is read as
array-timeseries (see SERIES), and that Gekko only reads
variables, parameters, sets (as Gekko lists) and domains. GAMS
can be freely downloaded as a demo, and the demo will work fine
regarding Gekko IMPORT. Default options are OPTION gams time
set = 't'; OPTION gams time prefix = ''; OPTION gams
time offset = 0; OPTION gams time detect auto = no;.
This corresponds to time having the set name 't', with natural
values, for instance 2020, 2021, etc. Default GAMS read is using
a fast reader (low-level API). If this poses problems, try the more
robust normal API by setting OPTION gams fast = no;. See
more under OPTION.

e PCIM: A binary PCIM databank.

e PRN: The first item in the prn format must be either 'date’ or
'name' to indicate the orientation. The global frequency (oPTION
freq = ...) must correspond to the frequency in the file.

e PX: Imports a PC-Axis file. See also the <array> option. See
more info regarding the px format and how Gekko reads it under
the DOWNLOAD command.

e TSD: For interchange with AREMOS and others.

e TSP: Imports TSP records.

e XLS and XLSX: Tabular format with rows/cols consisting of
names and dates. If you need to pick out Excel data from
particular cells, see SHEET<import>. The global frequency
(OPTION freg = ...) must correspond to the frequency in the
file. The engine used for Excel reading can be changed with
OPTION sheet engine = ...;.

T-T Analyse


https://www.gams.com/download/
http://www.scb.se/sv_/PC-Axis/Start/
https://en.wikipedia.org/wiki/TSP_(econometrics_software)

176

Gekko 3.0 user manual

filename

ALL

REF

CoLs

TO

ARRAY

CELL=
DATECELL=
NAMECELL

COLLAPSE=

Filenames may be contain an absolute path like c:
\projects\gekko\myfile, a relative path like
\gekko\myfile.gbk, or be stated without a path. Filenames
containing blanks and special characters should be put inside
quotes. See more on filenames here.

If the filename is set to "*', you will be asked to choose the file in
Windows Explorer.

The extension .gbk is automatically added, if it is missing.

(Optional). With this option, all observations are imported,
regardless of the global time period. This corresponds to pre-3.0
Gekko behavior.

(Optional). Reads the file into the reference databank (shown as
REF on the F2 window list). Note that the Ref/reference databanks
does not show up in the F2 window if it is empty.

(Optional). For .csv or Excel files, this indicates whether the
timeseries are running downwards in columns. Note that for .prn
files, you indicate this in the first 'cell' (date/name).

(Optional). If "TO bankname" is indicated, Gekko will put the data
into a seperate 'named' databank alongside the Work and Ref
databanks. For instance, after IMPORT <xlsx> adambk TO a;, you
may refer to the variables by means of colon, for instance PRT
a:varl;. If you use IMPORT <xlsx> adambk TO *;, the bankname
will be the same as the file name. It should be noted that the
databank will be read-only (non-editable) when opened like this
(this functionality is a subset of the OPEN command)

(Optional). Regarding the PX format, if this option is set, Gekko
will put the data into array-timeseries rather than normal
timeseries (for the GDX format, Gekko always puts into array-
timeseries per default).

(Optional). For Excel files: the first cell of the data section.
Defaults to 'B2".

(Optional). For Excel files: the first cell of the dates labels.
Calculated from CELL location if not provided.

(Optional). For Excel files: the first cell of the names labels.
Calculated from CELL location if not provided.

(Optional). For Excel files with Excel-dates that are going to be
collapsed, this option can be set to either m, g or a and indicates
the frequency that the data points are being collapsed into. A data

T-T Analyse



Gekko commands 177

METHOD=

DATEFORM
AT=
DATETYPE=

point is an Excel date and a corresponding value, for instance 24-
Dec-2010 with the value 123.45. In your Excel version, this date
might be shown as 24/12/2010 (British English) or 12/24/2010
(US English) or in other formats, but internally there is no
confusion, since the Excel dates are stored as values (technically
the number of days since January 1, 1900). See the collapse
example below.

(Optional: default = total). For Excel files using COLLAPSE, the
METHOD option sets how the collapse (aggregation) is performed.
Choose between total, avg, first, last, count, cf. also the COLLAPSE
command. Use "method=count"” to check that data is being
collapsed as desired, and note that "method=avg" amounts to
"method=total" divided by "method=count". After collapsing into
monthly or quarterly timeseries, X12A may be used for seasonal
adjustment.

(Optional). These options control the date format for .xIsx and .csv
files. DATEFORMAT can be either 'gekko' (default) or a for